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Vibrational Spectroscopy - Infrared and Raman

The number of normal modes of vibration of a molecule with N atoms can be
determined from the displacements of each atom in the x, y, and z directions. There
are obviously 3N such displacements, but 3 of these result in translation of the
whole molecule in the x, y, and z directions, and 3 result in molecular rotations.
Thus the molecule has 3N-6 normal modes of vibration.   [ 3N-5 if the molecule is
linear, since there is no rotation possible about the molecular axis. ]

The symmetry of each of the normal modes can easily be determined by Group
Theory since the matrices that describe the atomic displacements have characters
that form the basis for irreducible representations of the molecular point group.

We use a square planar molecule (point group D4h) as an example

We represent the three degrees of freedom of each atom by 15 unit vectors, 3 on
each stom.
We then determine the character of the 15 x 15 matrix that describes the motions of
the atoms corresponding to the symmetry operations of the molecular point group

Each atomic x,y,z vector contributes to the character by 
+1 (if it remains in place after the symmetry operation), 
-1 (if it is inverted), 
cos � (if it is rotated by �(; note that cos 90( = 0) 
0 (if it is moved out of position), 

E 2C4 C2 2C21 2C22 i 2S4 )h 2)v 
(xz, yz)

2)d 


xyz 15 1 -1 -3 -1 -3 -1 5 3 1
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xyz can be reduced to A1g+A2g+B1g+B2g+Eg+2A2u+B2u+3Eu

The Character Table shows us that A2g and Eg are rotations and A2u and Eu are
translations

Therefore thr symmetries of the normal modes are

A1g + B1g + B2g + A2u + B2u +2Eu

We can also discover which of these involve pure bond stretches by using the four
bonds as a basis set

E 2C4 C2 2C21 2C22 i 2S4 )h 2)v 
(xz, yz)

2)d 


bond 4 0 0 2 0 0 0 4 2 0


bond reduces to A1g + B1g + Eu
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Selection Rules

Consider a particular vibration

Transition from 
n=0 to n=1 Fundamental
n=0 to n=2 First overtone
n=0 to n=3 Second overtone
etc

Assuming normal harmonic oscillation, the wave function for the i-th normal mode of
order n (vibrational quantum number 0,1,2....) can be written as

Ψ
i i

( / )

n i i(n ) N e H ( )i i= − α ξ α ξ2 2

where Ni is a normalization factor
 Hn is a Hermite polynomial of order n

H0(x) = 1
H1(x) = 2x
H2(x) = 4x2 - 2
H3(x) = 8x3 - 12x

!i is the i-th normal coordinate
 �i = 2%�i/h
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So the ground state wave-function is 

 ψ α ξ

i iN e i i( ) ( / )0 2 2= −

Since normal coordinates are normalized, 5i(0) is invariant under all symmetry
operations and forms a basis for the totally symmetric representation.

For the excited states the wave functions take the symmetry of the n-th Hermite
polynomial.
   
Fundamental transitions (n=0 to n=1) give rise to IR and Raman absorption bands
that are at least an order of magnitude greater than any other kind, and are of greatest
practical interest.

For the case of the square-planar molecule AB4 we found the normal vibrational
modes to be

A1g + B1g + B2g + A2u + B2u +2Eu

These are the symmetries of the n=1 vibrational wave-functions

Since the ground state vibrational wave-function has A1g symmetry, infrared-active
transitions must be to those excited states that belong to the same representation as
one or more of the Cartesian coordinates.  This for D4h the allowed transitions are to
A2u and Eu only – i.e. there are three observable fundamental bands (one of which, an
Eu mode, corresponds to pure bond stretching, see 
bond above)

What about Raman spectroscopy?
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The Raman Effect

The oscillating electric field of the radiation induces a dipole  in the molecule
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M E= α

where � is the polarizability

For radiation of frequency �0

M = �E0cos(2%�0t) (1)

For a vibrating molecule � is time-dependent
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where Q1 is a displacement coordinate

For a molecular vibration of frequency �1

Q1 = Q1
0cos(2%�1t) (3)

where Q1
0 is the vibrational amplitude

Combining equations (1), (2), and (3)....
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The first term is the Rayleigh Scattering (no frequency change) and the second term
describes the Antistokes (�0+�1) and Stokes (�0-�1) regions of the Raman Scattering.
A quantum mechanical treatment correctly predicts that the antistokes lines are much
less intense than the stokes lines.
  

Since  and  are both vector quantities, �0 is a second rank tensor.
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For non-chiral molecules �0yx = �0xy , etc and with the proper choice of axes the
tensor can be diagonalized, so that �0 can be represented by three principal
components  �0xx , �0yy , and �0zz

Thus the polarizability operator has the symmetry of quadratic and binary functions
of x, y, and z.

For D4h the Raman-allowed transitions are A1g, B1g, and B2g  Again, checking with

bond, the A1g and B1g modes correspond to pure bond stretches.

So for a D4h AB4 molecule there are three IR and three Raman allowed fundamental
transitions. Note that, for a centrosymmetric molecule, no Raman-active vibration is
also IR-active, and vice-versa. (Exclusion Rule)
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Complications...

Configuration Interaction (Fermi Resonance) will occur if
�a (fundamental) � �b (combination or overtone), and the symmetries of both are the
same

Original example. CO2.
The three fundamental transitions have frequencies
667 (bend, IR-active), 
1337 (symmetric stretch, Raman-active) and 
2350 cm-1 (antisymmetric stretch, IR-active)

The Raman spectrum of CO2 shows two bands of similar intensity at 1285 and 1388
cm-1.

The 1337-cm-1 vibration has (g
+ symmetry (in D

�h) and the first overtone of the
bending mode (expected at 2 x 667 = 1334 cm-1) contains a component of (g

+

symmetry.

The overtone band should be very weak, but “steals” intensity from the allowed
fundamental band since the new excited states are linear combinations of the original
excited states.
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Many IR spectra are recorded on solids (as KBr pellets or hydrocarbon mulls).  The
site symmetry of a particular molecule in the crystal may alter the selection rules.

For example   CO3
2– has D3h symmetry in solution.  The totally symmetric A1g

stretching mode is IR-inactive, but Raman-active.

In CaCO3 (calcite) the site-symmetry of CO3
2– is D3, but the totally-symmetric mode

(nowA1)is still IR-inactive.

In CaCO3 (aragonite) the site-symmetry is Cs and the totally-symmetric mode (now
A1) is allowed and can be observed weakly.

Degenerate modes may be split in solids, e.g. the bending mode of SCN– has E
symmetry, but in solid KSCN two bands are seen at 470 and 484 cm-1.


