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Symmetry, Point Group s and Character Tables

Character Table for C3v

E 2C3 3)v

A1 1 1 1 z x2 + y2, z2

A2 1 1 -1 Rz

E 2 -1 0 (x, y) (Rx, Ry) (x2 - y2, xy) (xz, yz)

The  lists the symmetry operations of the groupfirst row
These are:  E (identity) 

C3 (proper rotation by 2%/3) 
)v (reflection in vertical mirror plane, i.e. one
containing the C3 axis)

Order of group 
= number of non-redundant symmetry operations ( = 6 in this
case)

Symmetry operations are collected into classes. Operations
belong to the same class if they can be interconverted by another
symmetry operation of the group

e.g. the two C3 operations are C3
1 and C3

2   (C3
3 = E) 

C3
2 = )vC3

1

and the three )v’s are interconverted by C3
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The lists the Mulliken symbols for thefirst column block
irreducible representations of the group, according to whether
they are one-dimensional (A or B), two-dimensional (E), or
three dimensional (T).

The   lists the characters of the matricessecond column block
(of smallest possible dimension) that describe the symmetry
operations. 

There are five important properties of the irreducible
representations (irr’s)....

1. The number of irr’s equals the number of classes.

2. In any given representation the characters of all matrices
belonging to operations in the same class are identical

3. The sum of the squares of the dimensions of the irr’s equals
the order of the group (h)
for C3v,    1

2 + 12 + 22 = 6

4. The sum of the squares of the characters in any irr equals h
e.g. for E in C3v ,    2

2 + 2(-12) + 3(02) = 6

5. The vectors whose components are the characters of two
different irr’s are orthogonal, i.e.

     when i gj χ χ
i j

R

R R( ) ( ) =∑ 0
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e.g. for A2 and E in C3v,
(1)(2) + 2(1)(-1) + 3(-1)(0) = 0

The  shows which irr’s correspond tothird column block
translations (unit x, y, z vectors) and rotations. 

The  gives the corresponding informationfourth column block
for quadratic functions



�

x

y
x1,y1

x2,y2

Matrix Representation of Symmetry Operations in C3v

Method 1: effects on point (x,y,z)

Rotation about z-axis

Since  x2 = x1cos � + y1sin �
  y2 = -x1sin � + y1cos �
  and z2 = z1

The matrix is  

  or for the case of C3
1   

cos sin

sin cos

θ θ
θ θ

0

0

0 0 1

−
















− −
−

















1 2 3 2 0

3 2 1 2 0

0 0 1

/

/

 
Note that the trigonometric convention is that a clockwise
rotation corresponds to negative �.
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Method 2.  Numbered atoms in a molecule, e.g. NH3

      
         operation

Thus for  clockwise C3
1

′
′
′
′



















=





































1

2

3

4

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

1

2

3

4
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atoms 
xyz

C3
1 1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0



















3 = 1 − −
−

















1 2 3 2 0

3 2 1 2 0

0 0 1

/

/

3 = 0

C3
2 1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0



















3 = 1 −
− −

















1 2 3 2 0

3 2 1 2 0

0 0 1

/

/

3 = 0

)2 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



















3 = 2 −















1 0 0

0 1 0

0 0 1

3 = 1

)3 1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



















3 = 2 1 2 3 2 0

3 2 1 2 0

0 0 1

/

/

−
− −

















3 = 1

)4 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



















3 = 2 1 2 3 2 0

3 2 1 2 0

0 0 1

/

/−
















3 = 1

E 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















3 = 4 1 0 0

0 1 0

0 0 1

















3 = 3
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Reduction of Representations

a
h

R R
i

R
i

= ∑
1 χ χ( ) ( )

ai is the number of times the i-th irr appears in the representation

For 
atoms 

a(A1) = 1/6{4(1) + 2(1)(1) + 3(1)(2)} = 2

a(A2) = 1/6{4(1) + 2(1)(1) + 3(-1)(2)} = 0

a(E) = 1/6{4(2) +2(-1)(1) + 3(0)(2)} = 1

So 
atoms = 2A1 + E

Similarly we can show that   
xyz = A1 + E
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The wave-functions of a molecule are bases for
irreducible representations of the symmetry
group to which the molecule belongs.

Examples using atomic orbitals
s-orbitals transform as the totally symmetric
representation 
(A1 in C3v)

p-orbitals transform as the coordinates x, y, z 
(E and A1 in C3v)

d-orbitals transform as the binary and quadratic
functions (xz, x2-y2, etc)
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The Direct Product of two degenerate functions
X1, X2, ...Xm and Y1, Y2, ...Yn is the set of
functions XiYk.  The direct product is also a
representation of the group.

The characters of a direct product representation
equal the products of the characters of the
original representations...

i.e.  3(R) = 31(R)32(R) for each operation R
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We can demonstrate this with examples from C3v

E 2C3 3)v

A1 1 1 1 z x2 + y2, z2

A2 1 1 -1 Rz

E 2 -1 0 (x, y) (Rx, Ry) (x2 - y2, xy) (xz, yz)

Direct Product E 2C3 3)v Result

A1A2 1 1 -1 A2

A2E 2 -1 0 E

E2 4 1 0 A1+A2+E

A1A2E 2 -1 0 E
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In spectroscopy we observe transitions between
two energy states of molecules, Ei and Ej, that
are defined by wave-functions 5i and 5j.

Radiation of frequency � is absorbed or emitted
when

h� = Ei – Ej

The intensity of the absorbed or emitted
radiation is determined by the magnitude of the
Transition Moment which takes the general
form

ψ ψ τ
i jO d

∧

∫
where Ô is the appropriate transition moment
operator – its nature depends upon the type of
spectroscopy involved.
  
A spectroscopic transition will be observed only
if the transition moment integral is non-zero.
[This statement is the basis for all spectroscopic
selection rules.]
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For an integral to be non-zero, the function must
be “even”

     i.e. f(x) g f(-x)f x dx( ) ≠
−∞

∞

∫ 0

if f(x) = -f(-x) the function is “odd” and 

f x dx( ) =
−∞

∞

∫ 0

Simple examples of odd functions are y = x,
x3,...
Even functions   y = x2, x4,...

An odd function is invariant under all operations
of the symmetry group to which the molecule
belongs.  This means that the function must
form a basis for the totally symmetric
irreducible representation of the group, i.e. the
one with all characters = +1.
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For an integral involving the product of two
wave-functions 5A      and 5B (which are bases for
irreducible representations) we can generate a
direct product representation 
AB which can be
broken down into a sum of irreducible
representations, see Table.


AB will contain the totally symmetric
representation only if 5A and 5B transform as the
same irreducible representation.

This is easily proved from the reduction formula

 a
h

R R
T S A B

R

T S
= ∑1 χ χ( ) ( )

      =     since all 3TS = 1
1
h

R
A B

R

χ∑ ( )

But since 3AB(R) = 3A(R)3B(R)

 a
h

R R
T S A

R

B
= ∑1 χ χ( ) ( )

which from the properties of irr’s  = 1 only if 3A = 3B for all R’s.
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The transition moment integral involves a triple
product.  
This will be non-zero only if the direct product
of two of the functions is or contains the same
representation as is given by the third function.

Generally, when dealing with the transition
moment integral we evaluate the representations
spanned by the product of the wave-functions
5i5j and compare these with the representation
of the operator Ô.
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The interaction of electromagnetic radiation
with a molecule can occur through coupling of
the oscillating electric or magnetic vectors of the
radiation with changes in electric or magnetic
dipoles in the molecule, with higher multipoles,
or with polarizability tensors.  The most
important type of interaction is through the
electric dipole.  

Such transitions are said to be “electric dipole
allowed” and are considerably more intense than
any other.

The relative intensities are
electric dipole 1
magnetic dipole ~10–5

electric quadrupole  ~10–6  
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An electric dipole allowed transition will be
observed if there is a change in the molecule’s
dipole moment between the states corresponding
to 5i and 5j. This can occur as a result of a
molecular vibration (� Infrared spectroscopy)
or as a result of an intramolecular electron
displacement (� Electronic spectroscopy).  In
both cases the transition moment operator Ô is
the electric dipole operator which has the form

µ = + +∑ ∑∑e x e y e zi
i

i i i i i
ii

where ei is the charge on the i-th particle, and xi,
yi and zi are its coordinates.
We are only interested in the symmetry
properties of this operator, and these are
determined by the symmetry of the three
cartesian coordinates x, y, and z. 

Thus µ belongs to the irreducible
representation(s) that transform as (the
translations) x, y, z, shown in the Character
Table for the group.


