
Computational Statistics and Data Analysis 99 (2016) 68–80

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

A flexible zero-inflated model to address data dispersion
Kimberly F. Sellers a,b,∗, Andrew Raim b

a Mathematics and Statistics Department, Georgetown University, Washington, DC, USA
b Center for Statistical Research & Methodology, U.S. Census Bureau, Washington, DC, USA1

h i g h l i g h t s

• Zero-inflated Conway–Maxwell–Poisson models dispersed datasets with excess zeroes.
• Hypothesis test detects statistically significant dispersion in light of excess zeroes.
• Data simulations and examples illustrate flexibility in model fit.

a r t i c l e i n f o

Article history:
Received 15 December 2014
Received in revised form 7 January 2016
Accepted 13 January 2016
Available online 22 January 2016

Keywords:
Conway–Maxwell–Poisson
Over-dispersion
Under-dispersion
Excess zeroes

a b s t r a c t

Excess zeroes are often thought of as a cause of data over-dispersion (i.e. when the
variance exceeds the mean); this claim is not entirely accurate. In actuality, excess zeroes
reduce the mean of a dataset, thus inflating the dispersion index (i.e. the variance divided
by the mean). While this results in an increased chance for data over-dispersion, the
implication is not guaranteed. Thus, one should consider a flexible distribution that not only
can account for excess zeroes, but can also address potential over- or under-dispersion.
A zero-inflated Conway–Maxwell–Poisson (ZICMP) regression allows for modeling the
relationship between explanatory and response variables, while capturing the effects
due to excess zeroes and dispersion. This work derives the ZICMP model and illustrates
its flexibility, extrapolates the corresponding likelihood ratio test for the presence of
significant data dispersion, and highlights various statistical properties and model fit
through several examples.

Published by Elsevier B.V.

1. Introduction

Numerous datasets contain excess zeroes, thus limiting their ability to be described via a standard distributional model.
Accordingly, zero-inflated representations of these distributions have been developed to better describe such a random
variable containing excess zeroes. In particular, the zero-inflated Poisson (ZIP) regression (Lambert, 1992; Hall, 2000) is a
popular model to describe the relationship between a count response variable and explanatory variables of interest. The
ZIP model has been used in a variety of applications, including manufacturing (Lambert, 1992), horticulture (Hall, 2000),
zoology (Zipkin et al., 2014), and criminology (Famoye and Singh, 2006). Meanwhile, to address added over-dispersion that
may exist in the data (evenwith accounting for the excess zeroes), the zero-inflated negative binomial (ZINB)model is often
selected to address the matter, of which the zero-inflated geometric (ZIG) distribution (as discussed in Pandya et al., 2012,
for example) is a special case. The ZIG regression is likewise considered as an alternative model in various applications
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such as those noted above. These and other zero-inflated models are available for use in the Vector Generalized Linear and
Additive Models (VGAM) package (Yee, 2014) available for use in R (R Core Team, 2014).

Over-dispersion is a common issue ofmany datasets. Excess zeroes are often thought of as a cause of data over-dispersion,
however excess zeroes do not assure the existence of data over-dispersion. In actuality, excess zeroes reduce the mean of a
dataset, thus inflating the dispersion index (variance divided by themean); however, a severely under-dispersed dataset can
still be under-dispersed evenwith the inclusion of excess zeroes in the data. Through broader examples, Sellers and Shmueli
(2013) (in fact) illustrate that datasets with perceived forms of dispersion can actually stem from probability mixtures with
different dispersion levels, including cases of over- or under-dispersion. One should therefore consider a flexible distribution
that cannot only account for excess zeroes, but also address potential over- or under-dispersion in the distribution mixture.
The Conway–Maxwell–Poisson (COM–Poisson) distribution of Conway and Maxwell (1962) is a flexible, two-parameter
distribution for count data expressing over- or under-dispersion. Thus, a zero-inflated COM–Poisson (ZICMP) regression
model would address the excess zeroes and provide flexibility in modeling data dispersion in a dataset.

This work derives the ZICMP model and illustrates its flexibility and statistical properties. To first further motivate its
use, Section 2 provides more details about the COM–Poisson distribution. Section 3 develops the ZICMP regression model.
Section 4 illustrates the flexibility of this model to capture data dispersion associated with various simulated zero-inflated
structures. Section 5 further demonstrates its adaptability through real and simulated examples. Finally, Section 6 concludes
the manuscript with discussion.

2. The Conway–Maxwell–Poisson (COM–Poisson) distribution

The Conway–Maxwell–Poisson (COM–Poisson) distribution of Conway and Maxwell (1962) has the probability mass
function

P(Y = y) =
λy

(y!)νZ(λ, ν)
y = 0, 1, 2, . . . , (1)

for a random variable Y , where λ = E(Y ν) is the usual rate parameter under the Poisson model, ν ≥ 0 is a dispersion
parameter, and Z(λ, ν) =


∞

j=0
λj

(j!)ν normalizes the distribution. As the dispersion parameter, ν = 1 denotes equi-
dispersion via the Poisson distribution (i.e. ν = 1 implies a Poisson(λ) distribution), while ν < 1 and ν > 1 respectively
denote over- and under-dispersion. The COM–Poisson distribution not only captures the Poisson distribution as a special
case, but also contains two other classical distributions, namely the geometric distribution with success probability p∗ =

1 − λ when ν = 0 and λ < 1, and the Bernoulli distribution with success parameter π =
λ

1+λ
when ν → ∞. Thus,

this distribution not only captures three classical distributions, but further serves as a flexible bridge distribution for count
distributions displaying over- or under-dispersion.

The COM–Poisson distribution has numerous statistical properties, including the ability to be represented as an
exponential family (see Shmueli et al., 2005 and Sellers et al., 2011 for details), and moments of the form,

E(Y r+1) =

λ[E(Y + 1)]1−ν r = 0

λ
∂

∂λ
E(Y r) + E(Y )E(Y r) r > 0.

(2)

In particular, the expected value and variance are

E(Y ) = λ
∂ log Z(λ, ν)

∂λ
≈ λ1/ν

−
ν − 1
2ν

and (3)

Var(Y ) =
∂E(Y )

∂ log λ
≈

1
ν
λ1/ν, (4)

where the approximations are especially good for ν ≤ 1orλ > 10ν (Shmueli et al., 2005). The associatedmoment generating
function of Y is MY (t) =

Z(λet ,ν)

Z(λ,ν)
, and its probability generating function is E(tY ) =

Z(λt,ν)

Z(λ,ν)
.

3. Zero-inflated COM–Poisson (ZICMP) regression

To formulate our ZICMP model, we consider a random sample, Yi, i = 1, 2, . . . , n, of the form,

Yi ∼


0 w.p. pi
COM–Poisson(λi, νi) w.p. 1 − pi,

hence

P(Yi = yi) =


pi + (1 − pi)


1

Z(λi, νi)

ui  (1 − pi)λ
yi
i

(yi!)νiZ(λi, νi)

1−ui

(5)

=


pi (Z(λi, νi) − 1) + 1

Z(λi, νi)

ui  (1 − pi)λ
yi
i

(yi!)νiZ(λi, νi)

1−ui

, (6)
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where ui = 1(0) if yi = (≠)0. The resulting likelihood function then takes the form,

L(λ, ν, p; y) =

n
i=1

P(Yi = yi)

logL(λ, ν, p; y) =

n
i=1


ui log


pi +

1 − pi
Z(λi, νi)


+ (1 − ui)[log(1 − pi) + yi log(λi) − νi log(yi!) − log Z(λi, νi)]


(from Eq. (5)) (7)

=

n
i=1

{ui log (piZ(λi, νi) + (1 − pi))

+ (1 − ui)[log(1 − pi) + yi log(λi) − νi log(yi!)] − log Z(λi, νi)} (from Eq. (6)) (8)

=

n
i=1

{ui log (piZ(λi, νi) + (1 − pi)) + (1 − ui)[log(1 − pi) + yi log(λi) − νi log(yi!)]

− log Z(λi, νi)} , (9)

where we model the parameters λ = (λ1, . . . , λn)
T , and p = (p1, . . . , pn)T via the canonical link generalized linear model

(log(λ) = Xβ, and logit(p) = Wζ) and consider a constant dispersion parameter (i.e., νi ≡ ν for all i). Alternatively, we can
further model ν = (ν1, . . . , νn)

T via the loglinear link, log(ν) = Gγ , to ensure non-negativity in the resulting value for ν.
For such a formulation, we represent the log-likelihood as

logL(β, γ, ζ; y) =

n
i=1

{ui log (pi[Z(exp(Xiβ), exp(Giγ)) − 1] + 1)

+ (1 − ui)[− log(1 + exp(Ziζ)) + yiXiβ − (expGiγ) log(yi!)] − log Z(exp(Xiβ), exp(Giγ))} .

For the special case where equi-dispersion holds (i.e. νi = 1 ∀i), ZICMP modeling reduces to ZIP (zero-inflated Poisson)
modeling. We see this because, for the special case where equi-dispersion holds, Z(λi, νi = 1) = exp(λi) = exp(exp(Xiβ)).
Thus, Eq. (7) becomes

logL(β, γ, ζ; y) =

n
i=1


ui log


exp(Wiζ) + exp(− exp(Xiβ))

1 + exp(Wiζ)


+ (1 − ui) [− log(1 + exp(Wiζ)) + yiXiβ − log(yi!) − exp(Xiβ)]


=

n
i=1

{ui log [exp(Wiζ) + exp(− exp(Xiβ))] − log (1 + exp(Wiζ))

+ (1 − ui) [yiXiβ − log(yi!) − exp(Xiβ)]} ,

which is the log-likelihood function associated with the ZIPmodel; see Lambert (1992) and Hall (2000). Analogously, for the
special case where νi = 0 and λi < 1 ∀i, the ZICMP model reduces to ZIG (zero-inflated geometric) modeling.

3.1. Parameter estimation

We use the method of maximum likelihood for parameter estimation, i.e. maximizing the log-likelihood (Eq. (9)) with
respect to β, ν, and ζ; recall that we use the loglinear relation, log(λ) = Xβ, and the logit model, logit(p) = Wζ, to
capture the probability of a zero-count.While themaximum likelihood estimators (MLEs) do not have a closed form, we can
nonetheless determine their values with great accuracy via the bounded nonlinear minimization/optimization procedure in
R,nlminb.Weusenlminb to determine theMLEs becausewewish to consider the relevant parameter space that constrains
the constant ν ≥ 0; alternative unconstrained optimization functions in R (e.g. nlm and optim) can be used (for example)
if we apply a loglinear model to ν. nlminb applies a Newton-type algorithm to determine the locale of the minimum of
the objective function, therefore we let our objective function equal the negated log-likelihood function. Accordingly, the
parameters thatminimize the negated log-likelihood function,maximize the log-likelihood; hence, the resulting parameters
equal the MLEs. nlminb also requires starting values; for ease, we use the ZIP estimates obtained from the zeroinfl
function in the pscl package in R and the initial dispersion parameter set equal to 1 (which is consistent with the special
case of the ZIPmodel). The resulting nlminb output includes the parameter (par) values, which are theMLEs; the objective
function, which equals the negative of the log-likelihood value evaluated at the MLEs; and a convergence code andmessage
where we can confirm successful algorithm convergence.
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Fig. 1. Power functions for the likelihood ratio test procedure,H0 : ν = 1 versusH1 : ν ≠ 1, where (a) λ = 2.0 and p = 0.01, and (b) λ = 2.0 and p = 0.1.

As demonstrated by the definition of λ as the νth moment of Y (in Section 2), λ and ν are correlated; more generally,
this is true for λ, ν, p, by definition of Y as a zero-inflated COM–Poisson random variable. Given the definitions of λ and
p via their respective link functions, we see that the corresponding Fisher Information matrix for {β̂, ν̂, η̂} is hence a non-
orthogonal, block symmetric matrix of the form provided in Appendix. Its components, however, can be computed via the
form provided, and the corresponding standard errors associated with the parameter estimates can be obtained by isolating
the diagonal components of the inverted resulting Fisher Information matrix; see Appendix.

3.2. Hypothesis testing

Does a statistically significant amount of data dispersion exist so that the ZICMP model is considered more appropriate
than a ZIP model? We can address this question via a hypothesis test of the form, H0 : ν = 1 versus H1 : ν ≠ 1. At this
stage, we are not concerned with whether the data are over- or under-dispersed, which explains the consideration of a
two-sided test. We can, however, infer knowledge of the dispersion type through the resulting ZICMP dispersion parameter
estimate. Because both the zeroinfl and nlminb functions provide information to easily determine the log-likelihood
value evaluated at the MLEs, we can establish a likelihood ratio test of the form, Λ =

L(β̂0,ν̂0=1,ζ̂0)
L(β̂,ν̂,ζ̂)

, where

− 2 logΛ = 2 log L(β̂, ν̂, ζ̂) − 2 log L(β̂0, ν̂0 = 1, ζ̂0) ∼ χ2
1 , (10)

and log L(β̂, ν̂, ζ̂) and log L(β̂0, ν̂0 = 1, ζ̂0) are the respective log-likelihood values associated with the ZICMP and ZIPMLEs,
respectively. The ZIP log-likelihood is obtained via the loglik component in the zeroinfl function, while the ZICMP log-
likelihood is the negated value obtained from the objective component in the nlminb function. Thus, we can compute
the test statistic fromEq. (10) and its corresponding p-value to determine statistical significance. A score-type test is likewise
possible; under either scenario, the ν = 1 null hypothesis considers the special case of the ZIP model. The likelihood ratio
test approach is preferred, however, given the supplied likelihood output provided in zeroinfl and nlminb, respectively.

Fig. 1 illustrates the power associated with the likelihood ratio test of H0 : ν = 1 versus H1 : ν ≠ 1 in a small simulation
study.We draw random samples of size n ∈ {50, 100, 200} from a ZICMP(λ, ν, p) distributionwith λ = 2.0, p ∈ {0.01, 0.1}.
For each of these settings, the empirical power of the test procedure,

Reject H0 if 2 log L(λ̂, ν̂, p̂) − 2 log L(λ̂0, ν̂0 = 1, p̂0) ≥ χ2
1 (1 − α), (11)

is computed, where χ2
1 (1 − α) denotes the 1 − α quantile of the χ2

1 distribution. The test (11) is repeated on 1000 samples
drawn from each distinct (λ, ν, p), and the empirical power at that point is taken to be the proportion of rejections. Fig. 1(a)
plots the power function for λ = 2.0 and p = 0.01 while Fig. 1(b) provides the power function for λ = 2.0 and p = 0.1.
For each case, a significance level of α = 0.1 is assumed. As expected, the power of the test improves as the sample size n
increases. The power also appears to improve for the smaller proportion of systematic zeroes, p. In both settings, the test
appears to approximate the correct size.

4. Data simulations

4.1. Model flexibility

We consider various data simulations where we randomly generate 900 values from a count distribution, and add to
it 100 zeroes to reflect simulated zero-inflation. Thus, each data representation contains 1000 values with at least 100
zeroes, reflecting some form of a zero-inflated distribution. The underlying simulated distributions considered here include
a Poisson, geometric, Bernoulli, and COM–Poisson distribution reflecting over- or under-dispersion, respectively. Table 1
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Table 1
Truemodel parameters versus estimated parameters (and associated standard errors provided in parentheses) for various assumed distributions. Formodel
comparisons, the log-likelihood, Akaike’s Information Criterion (AIC), goodness of fit (GOF) measures (with conservative associated χ2 degrees of freedom
and p-values) are also provided.

Simulated distribution ZIP ZIG ZINB ZICMP

ZIG(p∗ = 0.3) λ̂∗: 3.2720 (2.4028) p̂∗: 0.2940 (0.3123) λ̂: 2.1602 (0.1975) λ̂: 0.7060 (1.4072)
p̂: 0.3493 (0.5067) p̂: 0.1133 (0.7897) p̂: 0.0144 (0.0796) p̂: 0.1133 (1.1301)

κ̂: 1.3585 (0.2652) ν̂: 0.000 (1.1084)
log L −2215.4710 −1950.6386 −1949.2299 −1950.6386
AIC 4434.9420 3905.2772 3904.4598 3907.2772
GOF 370.6324, 6, <0.0001 8.8583, 11, 4.6350 8.6300, 10, 4.5675 8.8583, 10, 4.5456

ZIP(λ = 3) λ̂∗: 3.0544 (1.9840) p̂∗: 0.2637 (0.2637) λ̂: 3.0442 (0.0657) λ̂: 2.9299 (10.0355)
p̂: 0.0859 (0.3631) p̂: 0.0000 (0.6975) p̂: 0.0828 (0.0125) p̂: 0.0832 (0.4302)

κ̂: 0.0121 (0.0185) ν̂: 0.9702 (2.4111)
log L −1990.3578 −2187.6236 −1990.1285 −1990.2819
AIC 3984.7156 4379.2472 3986.2571 3986.5639
GOF 8.8660, 6, 4.1813 392.3392, 12, <0.0001 8.8807, 6, 4.1804 8.9864, 6, 4.1743

‘‘ZIB(π = 0.7)’’ λ̂∗: 0.618 (1.4927) p̂∗: 0.6180 (0.6180) λ̂: 0.618 (0.0249) λ̂: 1.6375 (NA)
= Bern(π = 0.63) p̂: 0.000 (2.0532) p̂: 0.000 (2.0583) p̂: 0.000 (0.0000) p̂: 0.0046 (NA)

κ̂: 0.000 (0.0000) ν̂: 33.3248 (NA)
log L −915.4229 −1075.9896 −915.4229 −665.0347
AIC 1834.8458 2155.9793 1836.8459 1336.0695
GOF 417.2234, 2, <0.0001 853.5954, 3, <0.0001 417.2426, 1, <0.0001 0.0001, 1, 4.9998

ZICMP(λ = 8, ν = 3) λ̂∗: 1.505 (1.6242) p̂∗: 0.3992 (0.3992) λ̂: 1.5051 (0.0388) λ̂: 6.5130 (46.8510)
p̂: 0.000 (0.7073) p̂: 0.0000 (1.0516) p̂: 0.0000 (0.0002) p̂: 0.0895 (0.5853)

κ̂: 0.0000 (0.0003) ν̂: 2.7213 (7.7400)
log L −1410.1430 −1685.0800 −1410.1540 −1347.6022
AIC 2824.2861 3374.1599 2826.3079 2701.2043
GOF 104.0155, 4, <0.0001 624.6849, 8, <0.0001 104.0495, 3, <0.0001 6.5697, 1, 4.0104

ZICMP(λ = 2, ν = 0.25) λ̂∗: 18.0445 (4.4826) p̂∗: 0.0543 (0.0593) λ̂: 18.0408 (0.2793) λ̂: 1.9869 (2.5119)
p̂: 0.1020 (0.3026) p̂: 0.0503 (0.3254) p̂: 0.1018 (0.0096) p̂: 0.1006 (0.3033)

κ̂: 0.1597 (0.0104) ν̂: 0.2454 (0.4278)
log L −4090.7594 −3796.6850 −3462.9147 −3459.1094
AIC 8185.5189 7597.3699 6931.8294 6924.2187
GOF 2902.2830, 21, <0.0001 655.8299, 45, <0.0001 55.3601, 36, 4.0206 46.4302, 34, 4.0758

serves to illustrate the ability of the zero-inflated COM–Poisson distribution to accuratelymodel these classical zero-inflated
models, while maintaining enough flexibility to further model other datasets demonstrating over- or under-dispersion. We
compare the performance of the ZICMP with other common zero-inflated count models, including zero-inflated Poisson
(ZIP), zero-inflated geometric (ZIG), and the zero-inflated negative binomial (ZINB). For ease of illustration, we wish to
estimate the constant form of the underlying parameters for each model (i.e. λ̂∗i = λ̂∗ for Poisson, p̂∗i = p̂∗ for geometric,
µ̂i = µ̂ and κ̂i = κ̂ for negative binomial, and λ̂i = λ̂ and ν̂i = ν̂ for COM–Poisson, and p̂i = p̂ to reflect zero-inflation) in
this exercise. By our construction of these simulated data, we expect to obtain a probability estimate, p̂ ≈ 0.10, to reflect
the amount of zero-inflation in the simulated data.

To comparemodel fits, we consider the log-likelihood, Akaike’s Information Criterion (AIC), and the goodness-of-fit (GOF)
statistic,

GOF(θ) =

K
ℓ=1

[Oℓ − Eℓ(θ)]2/Eℓ(θ),

based on K categories, I1, . . . , IK , where category Iℓ has observed count Oℓ and expected count

Eℓ(θ) = n
∞
y=0

I(y ∈ Iℓ)g(y | θ)

under a givenmodel with density g(· | θ). GOF(θ) can be used to test the null hypothesis that the data are a random sample
from g(· | θ). When θ is left unspecified in the test and estimated bymaximizing the likelihood based on g , GOF(θ̂) follows a
distribution betweenχ2

K−1−q andχ2
K−1 under the null hypothesis (Sutradhar et al., 2008), where q is the number of unknown

parameters to be estimated. A smaller p-value indicates evidence against g , and hence a less adequate fit. Table 1 provides
the p-values stemming from the χ2

K−1−q distribution as a conservative measure for inference regarding goodness of fit. We
merged the possible counts {0, 1, 2, . . .} into K categories I1, . . . , IK so that each Eℓ(θ̂) ≥ 3. An exception is in the ‘‘ZIB’’ row
and ‘‘ZICMP’ column of Table 1, where 0 and 1 contain virtually all mass of the distribution but at least K = 5 categories are
needed to carry out the GOF test with q = 3 estimated parameters.
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For all examples, we see that the zero-inflated COM–Poisson model performs comparably or better than the zero-
inflated classical distributions. The added dispersion parameter provides the zero-inflated COM–Poisson model with the
added flexibility to better capture data dispersion. In all cases, we are able to best capture the representation from the
simulated dataset via the ZICMP model with the maximum likelihood estimates for λ and ν. In particular, for the special
case simulations of the ZIG and the ZIP, we see that the results verify the theoretical points noted in Section 2, namely
that the ν̂ estimates for these data are respectively ν̂ = 0.000 and ν̂ = 0.9702 ≈ 1 for the ZIG and ZIP data. For the ZIG
distribution example, we see that the maximum likelihood estimates obtained via the ZICMP model correspond well with
the true values under the simulated ZIG model because we know that the geometric distribution is a special case of the
COM–Poisson distribution where ν = 0 and p∗ = 1 − λ; further, we obtain p̂ = 0.1133 ≈ 0.10, reasonably capturing
the expected amount of zero-inflation that was simulated. Meanwhile, for the simulated zero-inflated Poisson example,
we verify that the ZICMP distribution captures the ZIP distribution for parameters, ν = 1 and λ. In this case, we see that
λ̂ = 2.9299, ν̂ = 0.9702 produce a mean rate approximately equal to λ̂1/ν̂

= 3.028254 ≈ 3, and p̂ = 0.0832 ≈ 0.10.
The third special case is most intriguing. By developing a ZICMP model, this implies that we are able to capture three

special cases of zero-inflated classical distributions, namely the ZIG, ZIP, and a ‘‘zero-inflated Bernoulli’’ distribution.
However, the Bernoulli distribution is itself a distribution that models counts of zero or one, thus what is reflected via a
‘‘zero-inflated Bernoulli’’ distribution is simply a Bernoulli random variable with a modified success probability. Recalling
how the data are simulated for this example (ZI-Bernoulli(π∗ = 0.7)), we have simulated 900 values from a Bernoulli
distribution with π∗ = 0.7 and added 100 zeroes, for a total of 1000 data values in this example dataset. By definition
of the success probability associated with this Bernoulli model, we expect to have produced a dataset with approximately
0.7×900 = 630 ones and 1000−630 = 370 zeroes (i.e. a Bernoulli(π = 0.63)). In actuality, the simulated dataset produced
618 ones and 1000− 618 = 382 zeroes, i.e. π̂ = 0.618. Meanwhile, maximum likelihood estimation applied via the ZICMP
model produced the estimates, λ̂ = 1.6375, ν̂ = 33.3248, and p̂ = 0.0046. The estimate for ν is consistent with what has
been proven to occur in practice across various applications of the COM–Poissonmodel to various statistical methods.While
theory states that the Bernoulli distribution is captured in the special case where ν → ∞, maximum likelihood estimates
in practice produce ν̂ ≥ 30 (e.g., see examples in Sellers and Shmueli, 2010, Sellers, 2012, and Zhu et al., under review).
Meanwhile, p̂ = 0.0046 implies that approximately 0.46% (i.e. approximately 5 out of 1000 values) of the data contain
zeroes. Of the remaining 995 values, λ̂ = 1.6375 and ν̂ = 33.3248 imply that COM–Poisson distribution recognizes these
data as a Bernoullimodelwith π̂∗ =

1.6375
1.6375+1 ≈ 0.6209, i.e. 0.6209×995 ≈ 618 ones and 1000−618 = 382 zeroes in the full

dataset (precisely the number of zeroes and ones simulated under the Bernoulli model). Thus, these parameter estimates do,
in fact, approximatewell the simulated data in this example. The Bernoulli modelwas also considered formodel comparison
in the case of the ‘‘zero-inflated Bernoulli’’ simulation and produced a resulting estimate of π̂ = 0.618 (with associated
standard error, 0.0154), log L = −665.0347, and AIC = 1332.069. Thus, the ZICMP and Bernoulli procedures produced
equal success probability estimates and log-likelihood values; the difference in AIC values stems from the difference in the
number of associated parameters for the two respective distributions. The standard errors associatedwith the ZICMPmodel,
however, could not be computed because, as ν → ∞, the ZICMP information matrix approaches singularity. Singularity of
the information matrix implies that it cannot be inverted to provide the standard errors associated with the parameter
estimates.

Meanwhile, the individual parameters of the ‘‘zero-inflated Bernoulli’’ distribution (i.e. ZIB(π, p)) cannot be identified,
resulting in singularity of the Fisher information matrix with respect to these parameters (Rothenberg, 1971). In fact, as
noted above, we observe that the ZICMP informationmatrix approaches singularity aswell as ν → ∞. The notion of a ‘‘zero-
inflatedBernoullimodel’’, however, is non-sensical, so thismatter is not a concern. Just as the ‘‘zero-inflatedBernoulli’’model
can be reparametrized as a Bernoulli distribution with a modified success probability, zero-inflation becomes unnecessary
for the COM–Poisson model as it approaches a Bernoulli distribution.

The simulated data examples representing over- or under-dispersion, respectively, produce results as expected. Both
ZICMP simulations are best estimated via the ZICMP model, producing parameter estimates that are each close to their
respective true values. While the under-dispersed example appears to show lacking goodness of fit measures for all
models considered, we are reminded that the reported p-values in Table 1 are conservative statistics based on the χ2

K−1−q
distribution. Considering the full range of possible degrees of freedom between K − 1 − q and K − 1, we find that the
corresponding p-values thus range from 0.0104 with 1 degree of freedom (as reported in Table 1) to 0.1605 with 4 degrees
of freedom for the ZICMP model; meanwhile, the range in p-values under the other models still results in values less than
0.0001. Hence, we see that the zero-inflated COM–Poisson is the only model choice to offer a reasonable distribution fit for
the simulated under-dispersed dataset. Meanwhile, for the simulated over-dispersed example, we see that the zero-inflated
negative binomial and zero-inflated COM–Poisson offer comparable measures; this makes sense, given the ability of each of
these distributions to address data over-dispersion.

4.2. Large sample MLE properties

We carry out a simulation study to assess the large sample properties of the maximum likelihood estimator (MLE),
θ̂ = (λ̂, ν̂, p̂), when drawing a random sample from a ZICMP(λ, ν, p) distribution where λ = 2, p = 0.1, and n ∈

{100, 200, 500, 1000} for various values of ν between 0.25 and 30. For each combination of parameters (λ, ν, p) and each n,
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(a) ν = 0.25. (b) ν = 0.5. (c) ν = 0.75. (d) ν = 1.

(e) ν = 2. (f) ν = 3. (g) ν = 4. (h) ν = 5.

(i) ν = 8. (j) ν = 10. (k) ν = 20. (l) ν = 30.

Fig. 2. Empirical CDF ofWald statistic for simulated data from ZICMP(λ, ν, p) scenarios with λ = 2, p = 0.1, and various values for ν to assess consistency
and asymptotic normality. In each case, the target CDF of χ2

3 is shown for reference.

R = 1000 samples of size n are drawn, and theMLE is computed on each sample yielding θ̂
(r)

for r = 1, . . . , R.Wald statistics
W (r)

= (θ̂
(r)

− θ)TI(θ)(θ̂
(r)

− θ) are then obtained for r = 1, . . . , R. If θ̂ follows the anticipated large sample N(θ, I−1(θ))
distribution, the empirical cumulative distribution function (CDF) of W (1), . . . ,W (R) should approach the CDF of χ2

3 as n
becomes large. Fig. 2 plots the empirical CDF versus χ2

3 for different values of ν. We see that the rate of convergence varies
depending on the values of ν, approaching convergence faster for ν ≤ 1 than for smaller values of ν ≥ 1. In fact, the behavior
of theW (r) is as expected for ν ≤ 2, but changes as ν becomes larger.When ν = 5, the convergence rate slows substantially.
As ν increases beyond 5, the rate of convergence to a χ2

3 distribution appears to increase; in fact, the limiting distribution
appears to change as well to be stochastically smaller than χ2

3 . As discussed in Section 4.1, ZICMP(λ, ν, p) approaches a non-
identifiable ‘‘zero-inflated Bernoulli’’ distributionwith a singular Fisher informationmatrix. This is likelywhat is influencing
the behavior of our Wald statistic, which is a function of the information matrix.

5. Examples

Loeys et al. (2012) investigated the impact of education level and level of anxious attachment on the number of unwanted
pursuit behavior perpetrations in the context of couple separation trajectories. This dataset is clearly over-dispersed as the
mean number of unwanted pursuit behavior perpetrations is 2.284 while the associated variance equals 23.302. Further,
there are 246 of 387 cases where the number of unwanted pursuit behavior perpetrations equals zero, so the dataset
clearly contains an excess number of zeroes. Accordingly, in their work, Loeys et al. (2012) consider various count models,
namely Poisson, negative binomial, and their corresponding zero-inflated models to conduct model selection. This section
expounds on that work to further consider the COM–Poisson (CMP) and zero-inflated COM–Poisson (ZICMP) models in
the model comparison. To allow for reasonable model comparison, a constant dispersion parameter, ν, is estimated. One
can, however, consider a model to describe the relationship between various explanatory variables and ν, as described in
Section 3. Parameter estimation results are provided in Table 2.
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Table 2
Estimated parameters (corresponding standard error in parenthesis; both rounded to three significant digits), log-likelihood, and AIC for various count
models considering association between education level and anxious attachment level with the number of unwanted pursuit behavior perpetrations:
Poisson (P), negative binomial (NB), COM–Poisson (CMP), zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated COM–Poisson
(ZICMP), and zero-inflated geometric (ZIG).

P NB CMP ZIP ZINB ZICMP ZIG

Count component
(intercept) 0.817∗ 0.855∗

−0.385∗ 1.921∗ 1.723∗
−0.160∗ 1.770∗

(0.044) (0.155) (0.055) (0.044) (0.150) (0.077) (0.122)

Education −0.216∗
−0.353 −0.056 −0.350∗

−0.490∗
−0.068∗

−0.476∗

(0.070) (0.250) (0.038) (0.071) (0.206) (0.034) (0.191)

Anxiety 0.422∗ 0.486∗ 0.117∗ 0.133∗ 0.205 0.023 0.199
(0.033) (0.122) (0.021) (0.034) (0.108) (0.015) (0.100)

Zero component
(intercept) 0.673∗ 0.340 0.418∗ 0.422∗

(0.142) (0.210) (0.167) (0.159)

Education −0.232 −0.459 −0.388 −0.416
(0.222) (0.297) (0.268) (0.271)

Anxiety −0.483∗
−0.520∗

−0.524∗
−0.503∗

(0.111) (0.147) (0.133) (0.135)

θ̂ 0.194 0.821
(0.022) (0.226)

ν̂ 0.000 0.000
(0.033) (0.031)

# parameters 3 4 4 6 7 7 6
log L −1388.20 −638.96 −756.92 −802.45 −626.14 −627.17 −626.42
AIC 2782.4 1285.9 1521.84 1616.9 1266.3 1268.3 1264.8

Table 2 identifies those estimated coefficients determined to be statistically significant at the 5% significance level
(denotedwith an asterisk, *). The difference inmodels impacts the perceived statistical significance and inference associated
with the variables of interest (education and anxiety). While anxiety is always perceived to be a statistically significant
variable associating with the number of unwanted pursuit behaviors (UPBs) under a non-zero-inflated model, among
zero-inflated models, it is viewed to have a statistically significant association with UPBs only in the case of a ZIP model.
Meanwhile, when accounting for zero-inflation, education is inferred to be statistically significantly associated with the
number of UPBs under all zero-inflated models (i.e. after accounting for excess zeroes), but only statistically significant in
the Poisson model (among non-zero-inflated models). Finally, anxiety is consistently viewed to statistically significantly
associate with the probability of no UPBs.

In all cases, the zero-inflated models outperform their standard model counterparts. This makes sense, given the zero-
inflatedmodel’s ability to account for the excess zeroes. Further, we see that the negative binomial and COM–Poissonmodels
outperform the Poissonmodel (whether one considers the classical model comparisons or their zero-inflated counterparts).
This is not only supported by the decrease in AIC, but can also be seen through the resulting likelihood ratio test comparing
ZIP to ZICMP (−2 logΛ = 350.56 and p-value < 0.0001); the negative binomial and COM–Poisson models are capturing
the data over-dispersion present in this dataset (the ZICMP model estimate ν̂ < 1), while the Poisson model is restricted to
the constraint of perceived data equi-dispersion.

Given the data over-dispersion in this example, we initially find that the zero-inflated negative binomial and zero-
inflated COM–Poissonmodels perform the best, with the ZINBmodel slightly outperforming the ZICMPmodel, however the
difference in performance appears negligible. In particular, we note that the estimated dispersion parameter for the ZICMP is
ν̂ = 0.000, i.e. we see that the maximum likelihood estimate for ν implies that the best fit for this dataset reduces to a zero-
inflated geometric model because of the significant data over-dispersion present here. In fact, the ZINB and ZICMP models
illustrate a powerful relationship—the ZINB is derived by the sum of ZIG (i.e. ZICMPwith ν = 0) distributions. Accordingly, it
makes sense that the twomodels performed as illustrated because the ZINBmodel has slightly added flexibility not provided
by the ZICMP(ν = 0) model, yet the ZICMP model does a good job trying to compensate for that difference in relation.

Using the ZICMP results as an investigative tool, however, prompts one to consider a zero-inflated geometric (ZIG)
regression from VGAM in order to obtain more precise estimates under this special case and reduce the number of
parameters used in the model (thus reducing the AIC). In fact, we see that the ZIG model outperforms the ZINB and ZICMP
models with regard to AIC because the three models have nearly identical log-likelihood results while the ZIG model uses
one less parameter to obtain this result. Further, the resulting inferences associated with the ZINB, ZICMP, and ZIG models
are consistent across these optimal models.

Fig. 3 provides residual analysis plots for the randomized quantile residuals stemming from the negative binomial (NB),
zero-inflated negative binomial (ZINB), zero-inflated COM–Poisson (ZICMP), and zero-inflated geometric (ZIG) models;
Fig. 3(a)–(d) show the respective fitted versus residual plots, and Fig. 3(e)–(h) contain the corresponding QQ plots for each
of the fourmodels.We consider thesemodels because they have the smallest AIC in comparison to the othermodels initially
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(a) NB. (b) ZINB. (c) ZICMP. (d) ZIG.

(e) NB. (f) ZINB. (g) ZICMP. (h) ZIG.

Fig. 3. Randomized quantile residual plots for the couples data, stemming from considering the negative binomial (NB), zero-inflated negative binomial
(ZINB), zero-inflated COM–Poisson (ZICMP), and zero-inflated geometric (ZIG) models, respectively. (a)–(d) Fitted values versus randomized quantile
residuals; (e)–(h) QQ plots of randomized quantile residuals.

considered for model comparison. Further, we consider residual analysis based on the randomized quantile residuals in lieu
of the raw residuals because raw residuals associated with our data construct (under any of the considered models) would
produce fitted versus residual and QQ plots that contain spurious curves, thus obscuring any meaningful inference (Dunn
and Smyth, 1996). In both the fitted versus residual plots and the QQ plots shown in Fig. 3, we see that these considered
models describe the data in similar fashion. The fitted versus residual plots appear centered around zero, although the ZIG
plot appears to show a slight tendency of association that may deserve further investigation. As well, a few observations
may be identified as outliers, or the fitted versus residual plot may contain some heteroskedasticity. These issues, however,
can be addressed throughmodel consideration associating the dispersion parameter with the explanatory variables (Sellers
and Shmueli, 2009). Meanwhile, the QQ plots associated with each of these model display approximate normality.

To demonstrate the ZICMP’s ability to address dispersion, meanwhile, we inflate two datasets each comprised of 100
data values (10–5s, 88–6s, and 2–7s) with 10 or 20 zeroes, respectively. Dataset 1 (which contains 10 zeroes) is clearly
under-dispersed with a mean equal to 5.382 and variance approximately equal to 3.027, while Dataset 2 (containing 20
zeroes) appears to be either equi- or over-dispersed (mean equals 4.933; variance equals 5.004). Tables 3 and 4 contain
the resulting parameter estimates, log-likelihood and AIC values obtained from modeling these data via Poisson, negative
binomial, COM–Poisson distributions, or their zero-inflated analogs. Tables 3 and 4, in particular, demonstrate the impact
of applying a (zero-inflated or non-zero-inflated) Poisson or negative binomial model to an under-dispersed dataset; notice
that the Poisson andnegative binomialmodels (whether zero-inflated or not, respectively) produce equivalent estimates and
log-likelihood values. The negative binomial model is equipped to only address data over-dispersion in that the parameter
space only allows for the variance to be greater than or equal to the mean. When trying to model under-dispersed data
(i.e. when the variance is less than themean), the parameter space is restricted frommoving into that spacewhich considers
a variance less than the mean therefore, at best, it can only maximize the log-likelihood at those parameter estimates that
produce equi-dispersion (namely, the Poisson estimates). In contrast, the ZICMP model is able to account for the excess
zeroes as well as the data under-dispersion (ν̂ > 1); accordingly, it produces the best log-likelihood and AIC measures.

Table 4 is interesting because, based solely on the dispersion index, one perceives this dataset to be approximately equi-
dispersed (or even slightly over-dispersed). Through exploratory data analysis and statistical modeling, however, we can
actually see and account for the mixture of distributions. In fact, when accounting for the excess zeroes, the dataset is
severely under-dispersed (ν̂ = 38.666). This dataset thus serves as another example illustrating that datasetswith perceived
forms of dispersion can actually stem from probability mixtures with different dispersion levels, as discussed in Sellers and
Shmueli (2013).

For Datasets 1 and 2, the model comparison between the ZIP and ZICMP models both produce a test statistic value of
281.51 and corresponding p-value <0.0001, demonstrating statistically significant data dispersion exists in the respective
datasets. Further, ν̂ > 1 in both cases, recognizing the significant data under-dispersion in each dataset.

6. Discussion

This work develops a zero-inflated COM–Poisson regression to model count data containing some form of dispersion
(i.e. over- or under-dispersion) and an excess number of zeroes. Such data structures appear frequently in various
applications such as psychology, engineering, and business. Excess zeroes are a common cause of data over-dispersion
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Table 3
Estimated parameters (and corresponding standard error in parenthesis; both rounded to three significant digits), log-
likelihood, and AIC for various count models applied to simulated Dataset 1: Poisson (P), negative binomial (NB),
COM–Poisson (CMP), zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), and zero-inflated COM–Poisson
(ZICMP).

P NB CMP ZIP ZINB ZICMP

Count component
(intercept) 1.683 1.683 1.998 1.776 1.776 71.454

(0.041) (0.041) (0.303) (0.041) (0.041) (9.487)

Zero component
(intercept) −2.333 −2.333 −2.303

(0.341) (0.341) (0.332)

log θ̂ 11.179 12.836
(23.371) (37.501)

ν̂ 1.177 38.666
(0.169) (5.207)

# parameters 1 2 2 2 3 3
log L −239.55 −239.55 −238.94 −216.40 −216.40 −75.61
AIC 481.10 483.10 481.89 436.73 438.73 157.22

Table 4
Estimated parameters (and corresponding standard error in parenthesis; both rounded to three significant digits), log-
likelihood, and AIC for various count models applied to simulated Dataset 2: Poisson (P), negative binomial (NB),
COM–Poisson (CMP), zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), and zero-inflated COM–Poisson
(ZICMP).

P NB CMP ZIP ZINB ZICMP

Count component
(intercept) 1.596 1.596 0.948 1.776 1.776 71.455

(0.041) (0.042) (0.173) (0.041) (0.041) (9.487)

Zero component
(intercept) −1.626 −1.626 −1.609

(0.248) (0.248) (0.245)

log θ̂ 5.582 12.243
(11.483) (26.507)

ν̂ 0.621 38.666
(0.099) (5.207)

# parameters 1 2 2 2 3 3
log L −291.06 −291.06 −285.24 −236.92 −236.92 −96.17
AIC 584.12 586.11 574.49 477.84 479.84 198.34

(Hilbe, 2008). For any generated dataset, data outcomes that are zeroes add to the sample size but not to the sum total
of data observations, thus diminishing the mean of the dataset. Meanwhile, these values still contribute to the variance
of the dataset, thus increasing the chance that the variance is greater than the mean. However, it does not necessarily
imply the overall dispersion level of a zero-inflated dataset as being overdispersed. Sellers and Shmueli (2013) provide
data examples where distribution mixtures can impact the overall level of data dispersion. Because such data can be over-
or under-dispersed, the two-parameter COM–Poisson structure allows for more flexibility in describing the relationship
between explanatory variables and the response variable—both in the count component and the zero component. In fact,
we demonstrate the flexibility of the ZICMP in its ability to capture three special case zero-inflated distributions, namely
the ZIP, ZIG, and logistic models. This stems from the distributional structure and statistical properties associated with the
COM–Poisson distribution.

While the ZICMP did not outperform the ZINB with respect to AIC in the real example illustration, the difference is
small and we further found the ZIG model to slightly outperform both the ZINB and ZICMP models. As well, this example
demonstrated our ability to use the ZICMP model as an exploratory tool for model selection. As well, the established
results give rise to considering a more flexible zero-inflated COM–Poisson structure that can encompass the ZINB model,
namely a zero-inflated sum-of-COM–Poissons (ZIsCMP)model. The sCOM–Poisson distribution is derived from the sum of n
independent and identically distributed COM–Poisson randomvariables, and generalizes the Poisson, binomial, and negative
binomial distributions (Sellers, 2015). Accordingly, the development of a zero-inflated sCOM–Poissonmodel would perform
at least as well as the ZINB model and allow for added flexibility in modeling over- or under-dispersion.

This work allows for various extensions, including the inclusion of observation-level dispersion modeling, and
longitudinal and/or clustered data settings where data dispersion exists. Choo-Wosoba et al. (2015) extend ZICMP to
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consider longitudinal data with clustering; their work can further incorporate the approach of Gumedze and Chatora (2014)
to detect outliers in the presence of general data-dispersion.
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Appendix. Fisher information matrix components associated with constant-dispersion ZICMP model coefficients

In order to determine the components of the Fisher information matrix, we decompose the ultimate calculation into
its segments involving the distribution parameters, and (from there) the corresponding regression parameters. First, we
consider the information matrix associated with the parameters λ, ν, p. Letting u = I(y = 0) and 1 − u = I(y > 0), and
allowing the shorthand notation Z and log Z respectively denote the normalizing function Z(λ, ν) and its logarithm, the first
derivatives of the zero-inflated COM–Poisson probability mass function are

∂
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while the second derivatives are
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Thus, the Fisher information matrix for {λ, ν, p} has the form
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for µ = E(y) = (1 − p)λ ∂ log Z
∂λ

.
In working to determine the form of the information matrix associated with our regression model, we first find that
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Finally, supposing that we have a sample with covariate values (xi,wi) for i ∈ {1, . . . , n}, and corresponding pi =
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