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Abstract

The Skellam distribution is a discrete probability distribution whose associated random
variable is defined as the difference of two independént Poisson random variables with different
corresponding expected values, A; and Ag. This manuscript generalizes the aforementioned
framework by instead considering the difference of two independent Conway-Maxwell-Poisson
(COM-Poisson) random variables with differing parameters, A; and A2, and a common associated

dispersion parameter, v. The resulting distribution, which I name the Conway-Maxwell-Skellam
(COM-Skellam) distribution, is then studied, highlighting its associated properties and use as
an alternative means to study differences in count data.

1. Introduction

The Skellam distribution (also known as the Poisson difference distribution)
is a discrete probability distribution that describes the distribution associated
with a difference in counts. Derived from the difference of Poisson random
variables, this distribution has broad applications, e.g. image denoising and
detection [4-7], studying the effect of a treatment (e.g. Karlis and Ntzoufras
[8]), or describing the point spread distribution in certain sports or games
where the amount of points obtained per successful score is the same (e-g.
soccer; see Karlis and Ntzoufras [9]). We describe this distribution in Section
1.1. !
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1.1. The Skellam distribution

Consider two independent Poisson random variables, Y; ~ Poisson (A;),
i=12 andlet S = Y] - Y,. Accordingly, S has the probability mass function

(pmf),
s/2
f(S) = e—(ll'*'lz) (%.1_) II s |(2‘,Xl A-2 )1
2

2m+a

a modified Bessel function of the first kind; see Skellam [12]. This is the pmf
of a Skellam distribution with parameters A; and Ay, and we denote the

Skellam random variable accordingly as S ~ Skellam (A}, Ag)

The Skellam distribution holds numerous properties; see Alzaid and
Omair [1] for a comprehensive listing. Romani [10] showed that all odd
cumulants of a Skellam distribution equal A; — Ay, while all even cumulants

equal A; + Ag. In particular, E(S) = A; - A and Var (S) = A; + Ag. For large
A1 + Ag, the Skellam distribution can be approximated by a normal distribution

[8]. Various statistical computations regarding the Skellam distribution can
be performed via the skellam package in R.

1.2. Motivation and outline of the paper

Because the Skellam distribution is derived from the difference of Poisson
random variables, the associated inference is gained under the constraining
assumption that the underlying count distributions are equi-dispersed. Many
references (e.g., Barron [2]) however note that real data oftentimes exhibit
some form of under- or over-dispersion. Karlis and Ntzoufras [9] note that, for
the case of modeling the difference in football/soccer scoring, while “the
Poisson distribution has been widely used as a simple modelling approach for
describing the number of goals in football, this assumption can be
questionable in certain leagues where over-dispersion (sample variance exceeds
the sample mean) has been observed in the number of goals.” Thus, we must
consider a generalized count distribution that allows for comparing counts in
light of associated dispersion. To date, there does not appear to be an extension
of the Skellam distribution that allows for over- or under-dispersion in the
dataset.
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The Conway-Maxwell-Poisson (COM-Poisson) distribution is a
generalization of the Poisson distribution that can better accommodate data
dispersion. This distribution is described in greater detail in Section 2. We
then introduce (in Section 3) the difference of two COM-Poisson distributions
to derive the Conway-Maxwell-Skellam (COM-Skellam) distribution as a
means for comparing associated counts from two distributions that exhibit
the same level of data dispersion. In particular, Section 3.2 describes how to
determine the associated maximum likelihood estimators for this distribution,
and Section 3.3 considers two hypothesis tests of interest. We apply the
statistical ideas and concepts developed in the previous sections to an example
data set in Section 4, and conclude the manuscript with discussion in Section 5.

2. The Conway-Maxwell-Poisson Distribution

In order to introduce the COM-Skellam distribution, we must first provide
background regarding its associated foundational distribution: the
COM-Poisson distribution. The COM-Poisson distribution (introduced by
Conway and Maxwell [3], and revived by Shmueli et al. [11]) is a viable count
distribution that generalizes the Poisson distribution in light of associated
data dispersion. The COM-Poisson pmf takes the form

;‘J'
PY =yl v)= —2— | 5=, 12 .., (¢))

()2, v)

for a random variable Y, where A = E({"), v is an associated dispersion

parameter, and Z(A, v) = Z is a normalizing constant. The

Jj=0 (J )v
COM:-Poisson distribution includes three well-known distributions as special
cases: Poisson (v = 1), geometric (v = 0, A < 1), and Bernoulli (v > o with

probability ﬁ‘?).

In Shmueli et al. [11], the moments are given in the form

ol A[E(Y + DY, r=0,
B = 2 B(")+ EW)EET), >0 @
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and the expected value is approximated by

_ 2 0logZ(, v) ap_v-1

which particularly holds for v<1 or A > 10. Note that the expected value
and variance can also be written in the form

_dlogZ(», v)
E(Y) - alog ;u ’ (4)
_ 25(Y)

Var (Y) = Fogh.” ®)
Finally, the associated moment generating function of Y is

M Yt Z(ke‘, V) . . . . .
y@) = E(") = Z00V) and its probability generating function is

Z(\t,
E@Y)= ‘Z(lx_\‘:%

3. The Conway-Maxwell-Skellam Probabi]i'ty Distribution
and its Statistical Properties

3.1. The Conway-Maxwell-Skellam (COM-Skellam) probability mass
function

Suppose that, instead of defining S as in Section 1.1, we generalize its
definition such that S =Y; - Yy is the difference of the two independent

COM-Poisson random variables, each containing the same level of dispersion
v but allowing for different values of 4;,i =1, 2. Accordingly, the pmf of the

COM-Skellam random variable, S ~ COM-Skellam (A1, Ag, V), is

1 MY 100 s
P(S=S)=m(—xi‘) I|s|(2 1112), seZ. (6)

1(") . o 1 z 2m+a . .
where ()= Z = is a generalized form of
“ m=0 [F(m + a + Ym]’ 2

the modified Bessel function of the first kind; see the supplementary material
for the derivation of the COM-Skellam distribution. For the special case where

v=1, Ig)(z) = ], (2) is precisely a modified Bessel function of the first kind.
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Just as the COM-Poisson distribution reduces to the special cases of the
Poisson, geometric, and Bernoulli distributions, we can likewise consider
analogous cases associated with the COM-Skellam distribution. For the
special case where v = 1, the COM-Skellam distribution reduces to the Skellam

distribution as described in Section 1.1. When v = 0 and AMi<lfori=1,2
(ie. where S =Y, -Y, is the difference of two independent geometri
distributions),

MO-2)-Ap)
1= A1z

P(S =5) = € Z;

8§
for the special case where A; = A, = A, we have P(S = s) = %ﬁ, seZ

Finally, as v —» o, the COM-Skellam distribution approaches a distributio
whose probability mass function is

A -1 if 5=
T+ A) (A + A =@ p)pe, if s =-1,

1+MA .
PAS =5 M. h) =y (llf,L -P)U-pa)+ ooy, if 5 =0,

T = alt-p e,

which is the difference of twoindependent Bernoulli ( pi=1s A X ) distributions.

Properties of the COM-Skellam distribution include an interesting pseudo-
symmetrical result, P(S =s; 1), A3) = P(S = —5; Ag, A;). The mean of the
COM-Skellam distribution can be determined via

E(S) = E(Y;)-E(Yy) =~ JLII/" - 112/" by Equation (8) for v<1 or A > 10",
while the variance is Var(S) = Var(¥;) + Var (Y,) by independence of Y;,
i =1, 2, where the variance can be computed via Equation (5). For the case
where v =1, the respective results for the expectation and variance simplify
to that for a Skellam distribution. The moment generating function (megf) of S
is

Mg(t) = My, (t)My, (-t) by independence of Y}, Y,

_Z(Mé, v) Z(Aget, v)
Z(r, v)  Z(Ag, V)
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and the probability generating function is
E@¢S) = B¢l )E(t™¥2) by independence of nY

_Z(Mt, v) Z(rgft, v)
- Z(A.l, V) Z(Xz, V) )

3.2. Estimating the Conway-Maxwell-Skellam parameters

Romani [10] considered the properties of the maximum likelihood estimator
of the Skellam expected value, E(S)=A; -A,. Here, we consider the

analogous question, determining the maximum likelihood estimators for the

COM-Skellam parameters. Given the pmf as defined in Equation (6), we can

use maximum likelihood estimation to determine the associated estimates for
A1, Ag and v, respectively. Accordingly, we write the log-likelihood as

n

i=

15
——5—(logA; ~log Ay)

IOg L(Xl, A'2’ VIS) = ‘n[IOg Z(A'l’ V)+ IOg ZO"Z, V)]+ 9

n
v
+ hzllogll o |(2\/3\.112),

and solve it numerically through a computational software tool (in this case,
R via the commands, nlminb or optim), thus determining the maximum
likelihood estimates. Further, we can determine the associated standard errors
via the corresponding Information matrix.

3.3. Hypothesis testing

Two interesting questions (and, therefore, hypothesis tests) arise from
consideration of a COM-Skellam distribution. The first question asks if the
data dispersion existing in the dataset is signficant enough that one must use
the COM-Skellam distribution, as opposed to the Skellam distribution, to model
count differences. The second question compares the resulting means of the
two COM-Poisson distributions, i.e. assessing whether or not the mean of the
COM-Skellam distribution is approximately zero or otherwise.

To address the first question, we perform the hypothesis test about the
dispersion parameter,

Hy:v=1versus H; : v #1.
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This hypothesis test determines whether the amount of data dispersion
warrants the need to use the more general COM-Skellam distribution to
compare differences in the count data, or if the Skellam distribution is sufficient
for such data comparisons. Accordingly, for this hypothesis test, we consider the
likelihood ratio statistic,

_ L(hy, a3 Ao gy v, =1)
L(x'l: xz: 0)

v ’

where -2log A, — x?. Note that this two-sided test does not directly identify
the direction of dispersion (i.e., over or under); however, the test result, along

with the maximum likelihood estimate for v, will provide sufficient information
about the dispersion type.

The COM-Skellam distribution can be used as a tool to compare two count
datasets containing data dispersion. In particular, one can consider a
hypothesis test that compares the respective means from the two groups
modeled by the COM-Poisson-distribution. The expected value of the COM-
Poisson distribution is difficult to describe, given its nonlinear form. We can,
however, compare the expected values of two independent COM-Poisson
distributions in the following manner. We can consider the hypothesis test in
reference to the associated COM-Skellam distribution, namely

Hy : pg = E(S) = 0 versus Hj : pg = E(S) = 0.
Because we assume a common dispersion level (v) for this framework, this

hypothesis test is equivalent to Hy : A1 = Ay versus Hj : A; # Ay. Thus, for
this hypothesis test, we consider the associated likelihood ratio statistic,

A - L(il,Ho = £2,Ho = i‘; oHo)
hs L(hy, Ay, ¥)

where -2log Ayg = %3 While this test is described in a two-sided form, we

can analogously consider one-sided tests to assess directional performance of
the associated data.
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4. Example: Soccer Scoring

Karlis and Ntzoufras [9] used Bayesian modeling of the Skellam
distribution to model the difference in the number of goals in soccer matches.
In this work, they use data from the English Premiership’s 2006-2007 soccer
season; Table 4 provides the team names and their observed points scored
and corresponding goal difference for each of the 20 teams.

The maximum likelihood estimates assuming a Skellam model are

il = 712 = 268.3215, while the COM-Skellam maximum likelihood estimates

are & =1.9480, i, = 1.9213, and ¥ =1.5794. While we cannot directly

compare the estimates associated with the two distributions, we can draw some
interesting inferences from this information. The resulting COM-Skellam
dispersion estimate (ie. ¥ = 1.5794) implies possible data under-dispersion in
this dataset. Performing the associated hypothesis test to'determine if this
level of dispersion is significant, we obtain -2log A = 850.7189 (p-value

= 5.0732 x 107187); thus we see that thé amount of dispersion in this dataset is
statistically significantly under-dispersed. Thus, using a Skellam distribution
to model the data is inappropriate here, because of the constraining
equidispersion assumption of the Poisson distribution. Meanwhile, if we
compare the COM-Skellam parameters, A; and l'z, the associated hypothesis
test concludes that the parameter estimates are not statistically significantly
different —2log A = 0.2119 with associated p-value = 0.6453), implying that

the teams are reasonably matched together as a league.
5. Discussion

The Skellam distribution is a handy distribution to study differences in
count datasets, yet is restricted to the underlying assumption that the respective
datasets contain equal mean and variance. The development of the Conway-
Maxwell-Skellam (COM-Skellam) distribution relaxes this assumption for
broader comparison of count distributions when a common dispersion level is

present among the two datasets.

Advances and Applications in Statistical Sciences, Volume 7, Issue 3, March-April 2012



A DISTRIBUTION DESCRIBING DIFFERENCES IN COUNT... 43

Table 1. Original data from English Premiership’s 2006-2007 soccer season,
reproduced from Karlis and Ntzoufras [9].

Team Name Points  Goal Difference
Man Utd 89 56
Chelsea 83 40
Liverpool 68 30
Arsenal 68 28
Tottenham 60 3
Everton 58 16
Bolton 56 -5
Reading 55

Portsmouth 54

Blackburn 52 -2
Aston Villa 50 2
Middlesbrough 46 -5
Newcastle 43 -9
Man City 42 -15
West Ham 41 -24
Fulham 39 -22
Wigan 38 -22
Sheff Utd 38 -23
Charlton 34 -26
Watford 28 -30

Future work will further generalize these ideas to consider comparing
datasets éontaining differing dispersion levels and this assumption’s impact
on the development of a generalized form of the COM-Skellam distribution.
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A. Derivation of COM-Skellam Probability Mass Function

The probability mass function for the COM-Skellam random variable S, is
derived as follows. For s € Z,

P(S =s)= ZP(S = §lYy = y2)P(Y2 = 32)
2

-]

= Z P(Y; = s+ y2)P(Yz = 52)
yo=max(0,-8)
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For the case where s 2 0, Equation (7) becomes

0

(2 '_7»17\,2 2y3+8
1 A s/2 &2 2,

P S =8)=— (_.1_)

(S =9) Z(g> V)Z(hg, V) Rp y;[r(s + 33+ Dygl]”

_ 1 A s/2 ©
" Z(M, v)Z(Ay, v)(k;) I (2 Ag),

© 1 z 2m+a .
where we define I{')(z) = > m=0Tr( S]” (—2') as a generalized
—I'(m +o +1)m!

form of the modified Bessel function of the first kind. Meanwhile, for the case
where s < 0, Equation (7) becomes

(2 r_klkz )2y2+s

2

1 M) 2
P(S =5)= (—1—) )
Z(Ay, VIZ(Ag, V)\ Ay y;s [(s + y9)y2']"

where shifting the index in the summation (e.g. k£ = y + s) produces

, (@)
1 ARER S 2
PS =) =z w20, ﬁ(ﬁ) ,Z(:, (k! (k- 8)1]"

Advances and Applications in Statistical Sciences, Volume 7, Issue 3, March-April 2012



46 KIMBERLY F. SELLERS

[2 xlxz)zk"’
® 3

_ 1 (}»_1) §/2
Z(M, v)Z(Ag, V)\Ag Tk - s+ R!Y

1 x 8/2
- T E ) e

because -s = 0. Thus, the probability mass function of the COM-Skellam

random variable S, is

1 A )2 v)
P(S = 9) = 2520 (X;‘) I0@VATg) s Z. ®
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