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Abstract

This paper presents a new numerical method for solving general equilibrium models with many assets. The

method can be applied to models where there are heterogeneous agents, time-varying investment opportunity

sets, and incomplete markets. It also can be used to study models where time-varying risk premia and optimal

portfolio choices arise endogenously. We illustrate how the method is used by solving one�and two-sector

versions of a two�country general equilibrium model with production and dynamic portfolio choice. We

check the accuracy of our method by comparing the numerical solution to the one-sector model against its

known analytic properties. We then apply the method to the two-sector model where no analytic solution

is available. In both models the standard accuracy tests con�rm the e¤ectiveness of our method.
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Introduction
This paper presents a new numerical method for solving general equilibrium models with many assets. The

method can be applied to models where there are heterogeneous agents, time-varying investment opportunity

sets, and incomplete markets. In this paper we illustrate how the method is used by solving one�and two-

sector versions of a two�country general equilibrium model with production. Formal accuracy tests con�rm

that our technique provides a very accurate solution to both models.

Equilibrium in the one-sector model we study is characterized by complete risk-sharing, constant portfolio

rules and constant risk premia. This model can be solved analytically, so we use it to provide a simple check

of the accuracy of our numerical procedure. Solving for the equilibrium in the two-sector model is much

more complex because markets are incomplete. In this environment portfolio decisions a¤ect real allocation

decisions, and vice-versa. This complex interaction between the real and �nancial sides of the economy

cannot be addressed by existing solution methods. Our method allows for these interactions. Furthermore,

it allows us to �nd the dynamic portfolio rules and time-varying risk premia that arise in equilibrium as a

consequence of market incompleteness. Our ability to compute an accurate numerical solution to a model

with these complex features means that our method has many important applications.

Our technique combines a hybrid projection-perturbation method with continuous-time approximations.

In so doing, we contribute to the literature along several dimensions. First, relative to the �nance literature,

our method delivers optimal portfolios in a discrete-time general equilibrium setting in which returns are

endogenously determined. It also enables us to characterize the dynamics of returns and the stochastic

investment opportunity set as functions of macroeconomic state variables.2 Second, relative to the macro-

economics literature, portfolio decisions are derived without assuming complete asset markets or constant

returns to scale in production.3

Our solution method also relates to the literature on numerical methods. First, it builds on the pertur-

bation methods developed and applied in Judd and Guu (1993, 1997), Judd (1998) and further discussed

in Collard and Juillard (2001), Jin and Judd (2002), Schmitt-Grohe and Uribe (2004) among others. These

methods extend solution techniques relying on linearizations by allowing for second- and higher-order terms

in the approximation of the policy functions. Second, our method builds upon the projection technique

introduced by Judd (1992). This method parametrizes the decision rules using basis functions and chooses

the optimal rules that minimize some residual function. Unfortunately, these methods can only be used in

applications that omit a key feature of models with portfolio choice: namely, the conditional heteroskedastic-

ity of the state vector that captures the time-varying nature of the investment opportunity set. Continuous

time approximations of Campbell, et. al. (2003) can handle such endogenous heteroskedasticity, however

2A number of approximate solution methods have been developed in partial equilibrium frameworks. Kogan and Uppal
(2000) approximate portfolio and consumption allocations around the solution for a log-investor. Barberis (2000), Brennan,
Schwartz, and Lagnado (1997) use discrete-state approximations. Brandt, Goyal, and Santa-Clara (2001) solve for portfolio
policies by applying dynamic programming to an approximated simulated model. Brandt and Santa-Clara (2004) expand the
asset space to include asset portfolios and then solve for the optimal portfolio choice in the resulting static model.

3Solutions to portfolio problems with complete markets are developed in Heathcote and Perri (2004), Serrat (2001), Kollmann
(2005), Baxter, Jermann and King (1998), Uppal (1993), Engel and Matsumoto (2004). Pesenti and van Wincoop (1996) analyze
equilibrium portfolios in a partial equilibrium setting with incomplete markets.
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they are developed only in partial equilibrium. We extend their approach to a general equilibrium setting.

The paper is structured as follows. Section 1 presents the one�sector version of the model we use to

illustrate our solution method. Section 2 describes the method in detail. Section 3 presents and compares

the numerical solution of the model to its analytic counterpart. A formal assessment of the method�s accuracy

is provided in Section 4. Section 5 presents the two�sector version of the model and examines its equilibrium

properties. Section 6 concludes.

1 The One-Sector Model

This section describes the one�sector version of the model we employ to illustrate our solution method. It is

a standard international asset pricing model with portfolio choice and builds upon Danthine and Donaldson�s

(1994) formulation of an asset pricing model with production. We consider a frictionless production world

economy consisting of two symmetric countries, called home (h) and foreign (f). Each country is populated

by a continuum of identical households who consume and invest in di¤erent assets, and �rms who produce a

single good that is freely traded between the two countries. Firms are perfectly competitive and issue equity

that is traded on the world stock market.

1.1 Firms

Our �rms are in�nitely lived. They issue equity claims to the stream of their dividends, and households

can use this equity for their saving needs. Each �rm owns capital and undertakes independent investment

decisions. A representative �rm in the h country starts period t with the stock of �rm-speci�c capital Kt

and an equity liability At equal to 1. Period�t production is ZtK�
t ; with � > 0: Zt denotes the state of

productivity. The output produced by �rms in the f country is given by an identical production function using

�rm-speci�c foreign capital, K̂t; and productivity, Ẑt: (Hereafter we use �^� to denote foreign variables.)

The goods produced by h and f �rms are identical and can be costlessly transported between countries.

Under these conditions, the law of one price must prevail to eliminate arbitrage opportunities.

At the beginning of period t, each �rm observes the productivity realization, produces output, and uses

the proceeds to �nance investment It and to pay dividends to the shareholders. We assume that �rms allocate

output to maximize the value of the �rm to its shareholders every period. Let Pt denote the ex-dividend

price of a share in the representative h �rm at the start of period t; and let Dt be the dividend per share

paid at t:With At = 1; the value of the �rm at the start of period t is Pt+Dt; and the optimization problem

it faces can be summarized as

max
It
(Dt + Pt) ; (1)

subject to
Kt+1 = (1� �)Kt + It; (2)

Dt = ZtK
�
t � It; (3)

where � > 0 is the depreciation rate on physical capital. The representative �rm in the f country solves an

2



analogous problem; that is to say they choose investment Ît to maximize D̂t+ P̂t, where P̂t is the ex-dividend

price of a share and D̂t is the dividend per share paid at t. As before, we normalize the equity liability Ât

to 1:

Let zt � [lnZt; ln Ẑt]0 denote the state of productivity in period t: We assume that zt follows an AR(1)
process:

zt = azt�1 + S
1=2
e et;

where a is a 2� 2 matrix and et is a 2� 1 vector of i.i.d. mean zero, unit variance shocks. S1=2e is a 2� 2
matrix of scaling parameters.

1.2 Households

Each country is populated by a continuum of households who have identical preferences. The preferences of

households in the h country are de�ned in terms of h consumption Ct; and are given by

Et
1X
i=0

�i lnCt+i; (4)

where 0 < � < 1 is the discount factor. Et denotes expectations conditioned on information at the start of
period t: Preferences for households in country f are similarly de�ned in terms of foreign consumption, Ĉt:

Households in our economy can save by holding domestic equity shares, international bonds and equity

issued by foreign �rms. The budget constraint of the representative h household can be written as

Wt+1 = Rwt+1 (Wt � Ct) ; (5)

where Wt is �nancial wealth, and Rwt+1 is the (gross) return on wealth between period t and t + 1. This

return depends on how the household allocates wealth across the available array of �nancial assets, and on

the realized return on those assets. In particular,

Rwt+1 = Rt + �
h
t (R

h
t+1 �Rt) + �ft (Rft+1 �Rt); (6)

where Rt is the return on bonds, and Rht+1 and R
f
t+1 are the returns on h and f equity. The fraction of

wealth that h country households hold in h and f equity are �ht and �
f
t respectively:

The budget constraint for f households is similarly de�ned as

Ŵt+1 = R̂wt+1(Ŵt � Ĉt);

with R̂wt+1 = Rt + �̂
h
t (R

h
t+1 �Rt) + �̂ft (Rft+1 �Rt);

where �̂ht and �̂
f
t denote the shares of wealth allocated by f households into h and f country equities.

Households in country h choose how much to consume and how much wealth to allocate into the equity
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of h and f �rms to maximize expected utility (4) subject to (5) and (6) given current equity prices and the

interest rate on bonds: This problem can be recursively expressed as:

Q (Wt) = max
fCt;�ht ;�ftg

�
lnCt + �Et

�
Q
�
Rwt+1 (Wt � Ct)

��	
; (7)

with Ct � 0 and Wt > 0: Q(:) denotes the household�s value function. The optimization problem facing f

households is analogous.

1.3 Equilibrium

This section summarizes the conditions characterizing the equilibrium in our model. The �rst order condi-

tions for the representative h household�s problem in (7) are

1 = Et
�
Mt+1R

h
t+1

�
; (8a)

1 = Et [Mt+1Rt] ; (8b)

1 = Et
�
Mt+1R

f
t+1

�
; (8c)

where Mt+1 � � (@U=@Ct+1) = (@U=@Ct) is the discounted intertemporal marginal rate of substitution

(IMRS) between consumption in period t and period t + 1: The returns on equity issued by h and f �rms

are de�ned as

Rht+1 = (Pt+1 +Dt+1) =Pt and Rft+1 =
�
P̂t+1 + D̂t+1

�
=P̂t:

With these de�nitions, the Euler equation in (8a) can be rewritten as Pt = Et [Mt+1 (Pt+1 +Dt+1)] : Using

this expression to substitute for Pt in the h �rm�s investment problem (1)-(3) gives the following recursive

formulation:
V(Kt; Zt) = max

It
(Dt + Pt) ;

= max
It
(Dt + �Et [Mt+1(Dt+1 + Pt+1)]) ;

= max
It

�
ZtK

�
t � It + �Et [Mt+1V(Kt+1; Zt+1)]

�
; (9)

where V(:) denotes the value of the �rm. The �rst order condition associated with this optimization problem
is

1 = Et
�
Mt+1R

k
t+1

�
;

where Rkt+1 � �Zt+1 (Kt+1)
��1

+ (1 � �) is the return on capital. This condition determines the optimal

investment of h �rms and thus implicitly identi�es the level of dividends in period t; Dt; via equation (3).

The �rst order conditions for �rms in country f take an analogous form.

It is worth noting that our model has equity home bias built in as �rms use the IMRS of domestic

agents, (e.g. Mt+1 in the case of h �rms) to value the dividend steam in (9). Although the array of assets

available to households is su¢ cient for complete risk-sharing in this version of the model, in the two�sector
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version we present below markets are incomplete. As a result, the IMRS for h and f households will di¤er and

households in the two countries will generally prefer di¤erent dividend streams. In principle, this formulation

of how �rms choose investment/dividends can induce home bias in household equity holdings.

Solving for the equilibrium in this economy requires �nding equity prices fPt; P̂tg; and the interest rate
Rt; such that markets clear when households follow optimal consumption, savings and portfolio strategies,

and �rms make optimal investment decisions. Under the assumption that bonds are in zero net supply,

market clearing in the bond market requires that

0 = Bt + B̂t: (10)

The goods market clears globally. In particular, since h and f �rms produce a single good that can be

costlessly transported between countries, the market clearing condition is

Ct + Ĉt = Yt � It + Ŷt � Ît = Dt + D̂t: (11)

The market clearing conditions in the h and f equity markets are

1 = Aht + Â
h
t and 1 = Aft + Â

f
t : (12)

where Ait (Â
i
t) denotes the number of shares of equity issued by i = {h, f} �rms held by h (f) households.

These share holdings are related to the portfolio shares by the identities, PtAht � �ht (Wt � Ct) and P̂tAft �
�ft (Wt � Ct). The share holdings of f households are Âht and Âft with PtÂht � �̂ht (Ŵt � Ĉt) and P̂tÂft �
�̂ft (Ŵt � Ĉt):

2 Solution Method

2.1 Overview

Our solution method relies on several existing numerical methods for functional problems. In particular, it

borrows some of the features of perturbation and projection methods, and amends them with the continuous

time approximations. We next provide a brief overview of these techniques and highlight the novelty of our

approach.

The goal of both the perturbation and projection methods consists of solving a system of equations that

characterize the equilibrium of the model. This system has the general form

0 = Etf (Yt+1; Yt;Xt+1;Xt; �"t+1) ; (13)

where f is a known function. Xt is a vector of variables that describe the state of the economy at time t:
In our illustrative model, Xt contains the state of productivity, capital stocks and households�wealth. Yt is
a vector of non-predetermined variables at time t: It includes consumption, dividends, asset prices, etc. "t
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are innovations with the scaling parameter (matrix) �: In our model the disturbance terms in "t are i.i.d.

productivity shocks with mean zero and unitary variance; �"t = S
1=2
e et:

Both methods start by conjecturing the form of the solution to the problem summarized in (13). In

particular, the optimal policy functions characterizing competitive equilibria of the model can be presented

as Yt = G(Xt; �) and Xt+1 = H (Xt; �"t+1) : Substituting these conjectures into (13) we get

0 = Etf (G(H (Xt; �"t+1) ; �);G(Xt; �);H (Xt; �"t+1) ;Xt; �"t+1)

� F (Xt; �"t+1) : (14)

Even though the true form of G(:) and H(:) are unknown, we can write their approximations as

bG(Xt; �) =
X

i
 i'i (Xt; �) ; (15)bH(Xt; �"t+1) =

X
i
�i'i (Xt; �) ; (16)

where { i} and {�i} are parameter vectors, and 'i (Xt; �) are some elementary functions. The form of the

approximations varies across the methods which we discuss next.

Perturbation Methods

The perturbation method has become a popular tool in solving stochastic general equilibrium models because

it balances accuracy and computational time. The method, as developed by Collard and Juillard (2001), Jin

and Judd (2002), and Schmitt-Grohe and Uribe (2004), consists of approximating G(Xt; �) and H(Xt; �"t+1)
around a non-stochastic steady state X � and a set of perturbation parameters. The steady state values for

X are obtained from the steady state equation 0 = f (Y �; Y �;X �;X �; 0) : The standard deviations of the

innovations to productivity in � are usually used as perturbation parameters. Policy functions are approxi-

mated using n-th. order Taylor series expansions, which implies that the elementary functions 'i (Xt; �) in
(15) and (16) are n-th. order polynomials of Xt and �:
To obtain the unknown coe¢ cients  and �; the perturbation method relies on the Implicit Function

Theorem. In particular, �rst the system of equilibrium conditions F (Xt; �"t+1) = 0 is approximated up to
the n-th. order around the steady state and � = 0: Since the equilibrium conditions in F (:) must be equal
to zero for any X or �; the system of derivatives of F (:) up to any order must be equal to zero as well.
Namely,

Fxnx�n� (Xt; �) = 0 8Xt; �; nx; n� (17)

where Fxnx�n� (Xt; �) represents the nx-th. derivative of F (:) with respect to Xt; and the n�-th. derivative
with respect to �: The task of �nding the coe¢ cients in (15) and (16) now reduces to solving the system of

restrictions in (17) evaluated at the steady state and � = 0.
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Projection Methods

The projection method was introduced in Economics by Judd (1992). In its general formulation, the technique

consists of choosing basis functions over the space of continuous functions and using them to approximate

G(Xt; �) and H(Xt; �"t+1): In most applications, families of orthogonal polynomials, like Chebyshev�s poly-
nomials, are used to form 'i (Xt; �) :4 Given the chosen order of approximation, n; the problem of solving

the model translates into �nding the coe¢ cient vectors  and � that minimize a residual function. This

function is formed by replacing the true policy functions in (14) by their approximate counterparts, bG(Xt; �)
and bH(Xt; �"t+1) :

R(Xt; �"t+1; bG; bH;  ; �) = Etf �bG( bH (Xt; �"t+1) ; �); bG(Xt; �); bH (Xt; �"t+1) ;Xt; �"t+1� :
The optimal values of  and � minimize this residual function, given some weighting function which deter-

mines the size of approximation error. This procedure creates the �projection�, whose name varies depending

on the choice of the weight. The least squares projection chooses coe¢ cients  and � to minimize the norm

of the residual function. Other alternatives include the Galerkin method and the Collocation method (Judd

1992, 1998). To obtain the conditional expectations that appear in the residual function as well as the

integrals necessary to calculate the projections, the method relies on numerical integration techniques.

Continuous Time Approximations

The use of continuous time approximations is advocated by Campbell (1994), while their application to port-

folio choice problems is described in Campbell, Chan and Viceira (2003), CCV hereafter. The technique uses

a continuous time approximation for portfolio returns which preserves the multiplicative nature of portfolio

weighting. CCV approximations hold exactly in continuous time when asset prices follow di¤usions and re-

main very accurate in discrete time for short time intervals. The method is applicable to partial equilibrium

models in which the process for returns is exogenous. It consists of taking Taylor series expansions of the

model equilibrium conditions, which in combination with approximate budget constraints and exogenous

processes for returns give a system of linear-quadratic equations for portfolio shares and consumption in

terms of state variables. An iterative numerical procedure can then be used to solve this system for optimal

consumption and portfolio rules.

Our Method

Our method draws on all three approaches outlined above. It combines a hybrid projection-perturbation

method with the continuous time approximations in a way that supplements the strengths of each approach.

Our reasoning follows that of Judd (1998). Each method has important advantages. In solving the problem

4Chebyshev�s polynomial method belongs to the family of the spectral projection methods for which the basis functions are
nonzero almost everywhere. Finite element projection methods use basis functions that are nonzero within a small support.
For a comparison of the two see Aruoba et.al. (2005).

7



summarized in (14), the perturbation method �xes the  and � coe¢ cients in (15)-(16) at the values implied

by the derivatives in (17). At the same time, the 'i (Xt; �) functions are �exible, chosen to re�ect the
problem at hand. Projection methods, on the other hand, choose values for { ; �g optimally, given a choice
for the 'i (Xt; �) functions. Thus a researcher who uses either method faces a trade-o¤ between having
'i (Xt; �) or { ; �g set a priori. Our method allows for �exibility in both the 'i (Xt; �) functions and the { ;
�g coe¢ cients. Speci�cally, we start by solving a perturbation problem, which provides us with approximate
policy functions for some vector of coe¢ cients. Given the 'i (Xt; �) functions derived in the �rst step, we
then solve for the coe¢ cients that minimize a residual function. The remainder of this section presents our

procedure in general terms.

The set of equations characterizing the equilibrium of our model can be written in a general form as

0 = Etf
�
Yt+1; Yt;Xt+1;Xt;S

1=2

(Xt) "t+1
�
; (18)

Xt+1 = H
�
Xt;S

1=2

(Xt) "t+1
�
;

where S1=2

(Xt) is a lower triangular matrix or Cholesky factor. As before, Xt is a vector of variables that
describe the state of the economy at time t; while Yt is a vector of non-predetermined variables at time t: The

function f(:) denotes the equations characterizing the equilibrium, while H (:; :) determines how past states
a¤ect the current state. "t+1 is a vector of mean zero i.i.d. innovations with unit variances. The vector of

shocks driving the equilibrium dynamics of the model is Ut+1 � S
1=2

(Xt) "t+1: This vector includes exogenous
shocks, like the productivity shocks, and innovations to endogenous variables, like the shocks to households�

wealth. The shocks have a conditional mean of zero and a conditional covariance equal to S (Xt) ; a function
of the current state vector Xt:

E (Ut+1jXt) = 0; (19)

E
�
Ut+1U

0
t+1jXt

�
= S

1=2

(Xt)S
1=2

(Xt)0 = S (Xt) :

An important aspect of our formulation is that it explicitly allows for the possibility that shocks driving

the equilibrium dynamics are conditionally heteroskedastic. By contrast, standard perturbation methods

assume that Ut+1 follows an i.i.d. process, in which case S (Xt) would be a constant matrix. As we shall see,
it is not possible to characterize the equilibrium of a model with portfolio choice and incomplete markets in

this way. Conditional heteroskedasticity arises as an inherent feature of such models, and must be accounted

for in any solution technique.

Given our formulation in (18) and (19), a solution to the model is characterized by a decision rule for

the non-predetermined variables

Yt = G (Xt;S (Xt)) ; (20)
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that satis�es the equilibrium conditions in (18):

0 = Etf
�
G
�
H
�
Xt;S

1=2

(Xt) "t+1
�
;S
�
H
�
Xt;S

1=2

(Xt) "t+1
���

;

G (Xt;S (Xt)) ;H
�
Xt;S

1=2

(Xt) "t+1
�
;Xt;S

1=2

(Xt) "t+1
�
:

Or in a more compact notation,

0 = F(Xt):

The �rst step in our method follows the perturbation procedure by approximating the policy functions

as

bG =
X

i
 i'i (Xt) ;bH =

X
i
�i'i (Xt) ;bS =

X
i
si'i (Xt) ;

for some unknown coe¢ cient sequences { i}, {�i}, and {si}. 'i (Xt) are ordinary polynomials in Xt: Next
we approximate f; as bf: The equations associated with the real side of the economy are approximated using
Taylor series expansions, while those pertinent to the portfolio side are approximated using continuous time

expansions of CCV. We denote the derivatives in these expansions as {&i}.

Next we apply the projection method that uses 'i (Xt) as basis functions. Substituting bG; bH, and bS intobf and taking expectations analytically gives us an approximation for F :
bF �Xt; bG; bH; bS; �;  ; �; s� =X

i
�i'i (Xt) ;

where {�i} are functions of {&i}, { i}, {�i}, and {si}. This is our residual function R(Xt; bG; bH; bS; �;  ; �; s):
The coe¢ cient vectors �;  ; �; and s are found my minimizing this function in conjunction with a weighting

matrix.

Two features of our method deserve special note. The �rst concerns our treatment of expectations.

In particular, the system of equilibrium conditions F (:) often involves computing conditional expectations
of highly nonlinear functions (e.g., Euler equations). In most cases, such calculations require integration

and are challenging. The projection method addresses the problem by using numerical integration based

on quadrature methods. Our method instead approximates F (:) by combining Taylor series expansions
with continuous time approximations, and then calculates the conditional expectations of the approximated

functions analytically. This is a great computational saving, and makes solving relatively complex models

feasible [see, for example, Evans and Hnatkovska (2005) and Hnatkovska (2005)].

The second feature concerns the function S (Xt) ; which identi�es the covariance of the shocks driving
the state vector Xt: We need to accommodate conditional heteroskedasticy in the dynamics of Xt because
it arises from the structure of models that incorporate portfolio choice with incomplete markets. This is
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true even when the exogenous shocks to the economy (e.g. productivity shocks) are homoskedastic. When

markets are incomplete we need to track the distribution of wealth across the economy to identify the IMRS

for each household and hence compute their portfolio choices.5 This means that Xt must include the wealth
of individual households; elements that will be conditionally heteroskedastic when optimal portfolio shares

vary with the state of the economy (see below). The S (Xt) function is therefore necessary to represent the
general equilibrium implications of time-varying portfolio choice when markets are incomplete.6 An accurate

characterization of the portfolio choice problem facing households also requires the S (Xt) function because
it identi�es how the second and higher-order conditional moments of all the variables vary with Xt. These
moments allow us to compute the equilibrium risk premia and optimal portfolio shares as functions of Xt:
The ability to solve an incomplete markets�model with endogenous time-varying risk premia and portfolios

means that our method has many important applications.

The subsections that follow describe each step of our solution method in detail.

2.2 Log-Approximations

To further clarify why our formulation in (18) and (19) allows for conditional heteroskedasticity in the dy-

namics of the state vector, we return to the model. In particular, let us focus on the log-approximated

equations arising from the households��rst order conditions and budget constraint. Hereafter we use lower-

case letters to denote the log transformation of the corresponding variable, measured as a deviation from its

steady state level or initial value.

Following CCV we use a �rst-order log-approximation to households�budget constraints. In the case of

h households it is given by

�wt+1 = ln (1� Ct=Wt) + r
w
t+1;

= �� �
1�� (ct � wt) + r

w
t+1; (21)

where � is the steady state consumption-wealth ratio and � � ln(1� �): In our model, households have log
preferences so the optimal consumption-wealth ratio is a constant equal to 1 � �: In this case ct � wt = 0

and � = ln�: rwt+1 is the log return on optimally invested wealth which CCV approximate as

rwt+1 = rt +�
0
tert+1 +

1
2�

0
t (diag (�t)��t�t) ; (22)

where �0t � [ �ht �ft ] is the vector of portfolio shares, er
0
t+1 � [ rht+1 � rt rft+1 � rt ] is a vector of excess

equity returns, and �t is the conditional covariance of ert+1: The approximation error associated with this

5When markets are complete we can solve the portfolio problems using the common IMRS that can be identi�ed from real
allocations alone (i.e. without the distribution of wealth). See, for example, Kollmann (2005).

6The S (Xt) function also impacts on real allocation decisions, like consumption and investment. So in general there will
be a feedback between the portfolio decisions of households and the real economy. By contrast, when markets are complete
equilibrium allocations can be computed separately from household�s �nancial decisions (see, for example, Obstfeld and Rogo¤
1996, pp. 302).
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expression disappears in the limit where asset prices follow continuous�time di¤usion processes.

Next, we turn to the �rst-order conditions in (8). Using the standard log-normal approximation, we

obtain
Etr�t+1 � rt + 1

2Vt
�
r�t+1

�
= �CVt

�
mt+1; r

�
t+1

�
; (23a)

rt = �Etmt+1 � 1
2Vt(mt+1); (23b)

where r�t+1 is the log return for equity � = fh, fg ; and mt+1 � lnMt+1 is the log IMRS. Vt (:) and
CVt (:; :) denote the variance and covariance conditioned on period�t information. With log utility mt+1 =

ln� ��ct+1 = ln� ��wt+1; so (23a) can be rewritten in vector form as

Etert+1 = �t�t � 1
2diag (�t) : (24)

Combining this expression with (21) and (22) gives

�wt+1 = �� 1��
� (ct � wt) + rt + 1

2�
0
t�t�t +�

0
t (ert+1 � Etert+1) : (25)

Equation (25) provides us with a log-approximate version of the h household�s budget constraint. It

shows that the growth in household wealth between t and t+1 depends upon the consumption/wealth ratio

in period t (a constant in the case of log utility), the period-t risk free rate, rt; portfolio shares, �t; the

variance-covariance matrix of excess returns, �t; and the unexpected return on assets held between t and

t+ 1; �0t (ert+1 � Etert+1) : Notice that the susceptibility of wealth in t+ 1 to unexpected returns depends
on the period-t portfolio choices, �t. Consequently, the volatility of wealth depends endogenously on the

portfolio choices made by households and the equilibrium behavior of returns. In an equilibrium where

returns have an i.i.d. distribution, �t will be constant,7 and wealth will be conditionally homoskedastic. Of

course in a general equilibrium setting the properties of returns are themselves determined endogenously,

so there is no guarantee that optimally chosen portfolio shares or the second moments of returns will be

constant. Consequently, if wealth is an element in the state vector Xt; our solution method needs to allow
for the presence of conditional heteroskedasticity in Xt: Our (approximate) solution for the S (Xt) function
reveals the extent to which heteroskedasticity arises in the dynamics of wealth given the optimal choice of

�t for a general distribution of equilibrium returns.8

Of course, standard perturbation methods can still be used to solve models where the equilibrium dynam-

ics of the wealth must be homoskedastic, or where wealth can be excluded from Xt: The latter case occurs
when the array of assets available for trading allows for perfect risk-sharing so that markets are complete.

When markets are incomplete, by contrast, it is not possible to characterize the equilibrium dynamics of the

7This can be seen in our case of log utility by inspecting (24). Clearly, if Etert+1 and �t are constant because returns are
i.i.d., �t must also be constant.

8 It is worth emphasizing that heteroskedasticity does not arise here because we are dealing with a log-approximated version
of the household�s budget constraint. It is an inherent feature of the household�s budget constraint because portfolio choices
a¤ect the susceptibility of future wealth to the unexpected returns on individual assets (see equations 5 and 6 above). The
log-approximation in (25) simply illustrates the point in a particularly clear way.
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economy without including household wealth in the state vector Xt:9 As a consequence, in this setting it is
necessary to allow for conditional heteroskedasticity in the dynamics of the state variables as our formulation

in (18) and (19) does.

Equation (24) implicitly identi�es the optimal choice of the h households�portfolio shares, �t: This equa-

tion was derived from the households��rst-order conditions under the assumption that the joint conditional

distribution of log returns is approximately normal. Notice that the approximation method does not require

an assumption about the portfolio shares chosen in the steady state. By contrast, standard perturbation

methods consider Taylor series approximations to the model�s equilibrium conditions with respect to decision

variables around the value they take in the non-stochastic steady state. As Judd and Guu (2000) point out,

this method is inapplicable when the steady-state value of the decision variable is indeterminate. This is an

important observation when solving a model involving portfolio choice. In the non-stochastic steady state

assets are perfect substitutes in household portfolios because returns are identical, so the optimal choice of

portfolio is indeterminate.

While the steady state portfolio shares are absent from equation (24), the problem of indeterminacy still

arises in our one-sector model. In particular, we have to take a stand on the steady state distribution of

asset holdings when log-approximating the market clearing conditions: Consider, for example, the market

clearing condition for h equity in (12). Combining this condition with the portfolio share de�nitions, and

the fact that the consumption-wealth ratio for all households is equal to 1� �; we obtain

Pt
�Wt

= �ht + �̂
h
t

Ŵt

Wt
:

We consider a second-order Taylor series approximation to this expression around the steady state values for

Pt=�Wt and a particular value for Ŵt=Wt: Speci�cally, we parameterize the value of Ŵ=W and then work

out its implications for the value of P=�W: 10 This is particularly simple in the case where wealth is assumed

to be equally distributed (i.e. Ŵ=W = 1). Here symmetry and market clearing in the goods market require

that D = C = (1 � �)W: It follows that P=�W = [(1� �)=�] (P=D) = 1 because the Euler equation for

stock returns implies that the steady state value of P=D equals �=(1 � �): In this case, the second-order

log-approximation embedding goods market clearing becomes

1 + pt � wt + 1
2 (pt � wt)

2
= �ht + �̂

h
t

�
1 + ŵt � wt + 1

2 (ŵt � wt)
2
�
:

Log-approximations implied by the other market clearing conditions are similarly obtained. Speci�cally,

when initial wealth is assumed to be equally distributed, market clearing in f equity, bonds and goods imply,

9Speci�cally, we need to track mt+1 and m̂t+1; which for standard utility speci�cations are functions of �ct+1 and �ĉt+1
respectively. We therefore need to solve the consumption/savings problem of each household to identify �ct+1 and �ĉt+1; a
task that necessitates the inclusion of household wealth in the state vector.
10Our approach of parametrizing the initial wealth distribution across agents is an alternative to the Judd and Guu (2000)

bifurcation procedure for dealing with portfolio indeterminacy.
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correspondingly, that

1 + p̂t � ŵt + 1
2 (p̂t � ŵt)

2
= �̂ft + �

f
t

�
1 + wt � ŵt + 1

2 (wt � ŵt)
2
�
;

pt + p̂t = dt + d̂t; (26)

ct + ĉt = dt + d̂t:

This approach to the indeterminacy problem has another important advantage. In cases where wealth

must be an element of Xt; its presence introduces a nonstationary unit root component in the Xt process:
shocks to returns will generally have permanent e¤ects on wealth.11 As we show below, our procedure

accommodates the presence of a unit root by characterizing the equilibrium dynamics of the model in a

neighborhood of the initial state, X0: To study the equilibrium properties of the model we must therefore

specify the elements of X0: Thus, choosing the initial distribution of wealth not only provides a way to resolve
indeterminacy concerning portfolio shares in the non-stochastic steady state, it also allows us to analyze the

equilibrium dynamics of a model that is inherently nonstationary. Of course, we do have to keep in mind

that the accuracy of the equilibrium dynamics provided by our solution will deteriorate as Xt moves further
from X0:
The remaining equations characterizing the model�s equilibrium are log-approximated in a standard way.

Optimal investment by h and f �rms requires that

Etrkt+1 � rt + 1
2Vt

�
rkt+1

�
= CVt

�
rkt+1; wt+1

�
; (27a)

Etr̂kt+1 � rt + 1
2Vt

�
r̂kt+1

�
= CVt

�
r̂kt+1; ŵt+1

�
; (27b)

where rkt+1 and r̂
k
t+1 are the log returns on capital approximated by

rkt+1
�=  zt+1 � (1� �) kt+1 and r̂kt+1

�=  ẑt+1 � (1� �) k̂t+1; (28)

with  � 1� �(1� �) < 1: The dynamics of the h and f capital stock are approximated by

kt+1 �=
1

�
kt +

 

��
zt �

�
 

��
� �
�
dt and k̂t+1 �=

1

�
k̂t +

 

��
ẑt �

�
 

��
� �
�
d̂t: (29)

Finally, we turn to the relationship between the price of equity, dividends and returns. As in Campbell

and Shiller (1989), we relate the log return on equity to log dividends and the log price of equity by

rht+1 = �pt+1 + (1� �)dt+1 � pt and rft+1 = �̂p̂t+1 + (1� �̂)d̂t+1 � p̂t; (30)

with � � 1=(1 + exp(d� p)) and �̂ � 1=(1 + exp(d̂� p̂)) where d� p and d̂� p̂ are the average log

11For example, when households have log preferences the �rst two terms on the right in (25) are constant. Under these
circumstances, a positive unexpected return will permenantly raise wealth unless the household �nds it optimal to adjust their
future portfolio shares so that �0t+i�t+i�t+i falls and/or rt+i falls by a compensating amount.
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dividend-price ratios in the h and f countries. In the non-stochastic steady state � = �̂ = �: Making

this substitution, iterating forward, taking conditional expectations, and imposing limj!1 Et�jpt+j = 0

and limj!1 Et�j p̂t+j = 0; we obtain

pt =
1X
i=0

�i
�
(1� �)Etdt+1+i � Etrht+1+i

	
; (31a)

p̂t =
1X
i=0

�i
n
(1� �)Etd̂t+1+i � Etrft+1+i

o
: (31b)

These approximations show how log equity prices are related to expected future dividends and returns.

2.3 State Variables Dynamics

The key step in our solution procedure is deriving a general yet tractable set of equations that describe

the equilibrium dynamics of the state variables. One problem we immediately face in this regard is the

dimensionality of the state vector. As we noted above, the distribution of wealth plays an integral role

in determining equilibrium prices and returns when markets are incomplete, so household wealth needs to

be included in the state vector. In models with a continuum of heterogenous households it is obviously

impossible to track the wealth of individuals, so moments of the wealth distribution need to be included in

the state vector. The question of how many moments to include is not easily answered.

Dimensionality is still a problem when heterogeneity across households is limited. In our model there are

only two types of households, so it su¢ ces to keep track of h and f households�wealth. The dimensionality

problem occurs under these circumstances because uncertainty enters multiplicatively into the dynamics of

wealth. (Recall that portfolio shares determine the susceptibility of wealth to unexpected return shocks.)

If wealth is part of the state vector, Xt, and both portfolio shares and realized returns depend on Xt; the
level of wealth will depend on the elements in XtX 0

t : This means that the equilibrium dynamics of wealth

will in general depend on the behavior of the levels, squares and cross-products of the individual state

variables. This dependence between the lower and higher moments of the state variables remains even

after log-approximation. In equation (25) we see that h household wealth depends on the quadratic form

for portfolio shares, which are themselves functions of the state vector, including wealth. As a result, the

state vector needs to be expanded to include squares and cross-products. Of course a similar logic applies

to the equilibrium behavior of squares and cross-products involving wealth. So by induction, a complete

characterization of the equilibrium wealth dynamics could easily require an in�nite number of elements in

X . Our solution procedure uses a �nite subset of state variables X � X that provides a good approximation

to the equilibrium dynamics.

We will use the model presented in Section 1 to illustrate our procedure. Let xt � [zt; kt; k̂t; wt; ŵt]
0

where kt � ln (Kt=K), k̂t � ln
�
K̂t=K

�
; wt � ln(Wt=W0) and ŵt � ln(Ŵt=Ŵ0): More generally, xt will be

an l�1 vector that contains the variables that make up the state vector. We will approximate the equilibrium
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dynamics of the model with the vectors

Xt =

2664
1

xt

~xt

3775 and Ut =

2664
0

ut

~ut

3775 ;
where ~xt � vec (xtx

0
t) : The shock vector Ut is partitioned conformably with Xt and both vectors contain

L = 1 + l + l2 elements.

To determine the dynamics of Xt; we �rst conjecture that xt follows

xt+1 = �0 + (I � �1)xt +�2~xt + ut+1; (32)

where �0 is the l � 1 vector of constants, �1 is the l � l matrix of autoregressive coe¢ cients and �2 is the

l � l2 matrix of coe¢ cients on the second-order terms. ut+1 is a vector of innovations with zero conditional
mean, and conditional covariance that is a function of Xt :

E (ut+1jxt) = 0;

E
�
ut+1u

0
t+1jxt

�
= 
(Xt) = 
0 +
1xtx

0
t


0
1:

Below we shall use the vectorized conditional variance of ut which we write as

vec (
(Xt)) =
h
�0 0 �1

i2664
1

xt

~xt

3775 = �Xt: (33)

The next step is to derive an equation describing the dynamics of ~xt consistent with (32) and (33). For

this purpose we consider the continuous time analogue to (32) and derive the dynamics of ~xt+1 via Ito�s

lemma. As the Appendix shows, the resulting process can be approximated in discrete time by

~xt+1 =
1
2D�0 + (�0 
 I)+ (I 
 �0)xt +

�
I� (�1 
 I)� (I 
 �1)+1

2D�1
�
~xt + ~ut+1 (34)

where ~ut+1 = [(I 
 xt) + (xt 
 I)]ut+1;

D =

�
U
�
@x

@x0

 I

�
+

�
@x

@x0

 I

��
; and U =

X
r

X
s

Ers 
 E0r;s:

Er;s is the elementary matrix which has a unity at the (r; s)th position and zero elsewhere. Equation (34)

approximates the dynamics of ~xt+1 because it ignores the role played by cubic and higher order terms

involving the elements of xt: In this sense, (34) represents a second�order approximation to the dynamics of
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the second�order terms in the state vector.12 Notice that the variance of ut+1 a¤ects the dynamics of ~xt+1

via the D matrix and that ~ut+1 will generally be conditionally heteroskedastic.

We can now combine (32) and (34) into a single equation:2664
1

xt+1

~xt+1

3775=
2664

1 0 0

�0 I � �1 �2
1
2D�0 (�0 
 I)+ (I 
 �0) I� (�1 
 I)� (I 
 �1)+1

2D�1

3775
2664
1

xt

~xt

3775+
2664

0

ut+1

~ut+1

3775 ;
or more compactly

Xt+1 = AXt + Ut+1; (35)

with E (Ut+1jXt) = 0: We also need to determine the conditional covariance of the Ut+1 vector. In the

Appendix we show that

E
�
Ut+1U

0
t+1jXt

�
� S (Xt) =

0BB@
0 0 0

0 
 (Xt) � (Xt)

0 � (Xt)
0
	(Xt)

1CCA ; (36)

where
vec (� (Xt)) = �0 + �1xt + �2~xt;

vec
�
� (Xt)

0�
= �0 + �1xt + �2~xt;

vec (	(Xt)) = 	0 +	1xt +	2~xt:

The �i; �i and 	i matrices are complicated functions of the parameters in (32) and (33); their precise form

is given in the Appendix.

To this point we have shown how to approximate the dynamics of Xt given a conjecture concerning

�0;�1;�2; �0 and �1: We now turn to the issue of how these matrices are determined. For this purpose

we make use of two further results. Let at and bt be two generic endogenous variables related to the state

vector by at = �aXt and bt = �bXt; where �a and �b are 1 � L vectors. Our second-order approximation
for the dynamics of Xt implies that

CVt (at+1; bt+1) = A (�a; �b)Xt; (R1)

and atbt = B (�a; �b)Xt: (R2)

A (:; :) and B (:; :) are 1 � L vectors with elements that depend on �a; �b and the parameters of the Xt

process. The precise form of these vectors is also shown in the Appendix.

12One way to check the accuracy of this approximation is to derive a generalization of (34) involving third�order terms and
then compute the contribution of these terms to the dynamics of xt and ~xt: Since the elements of xt are measured in terms of
percentage deviations from steady state or initial values, third order terms are unlikely to be signi�cant. Nevertheless, as we
note below, we are cognizant of the approximation error in (34) when examining the �solution� to a model.
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To see how these results are used, we return to the model. The dynamics of the state vector depend upon

households�portfolio choices, f�ht ; �ft ; �̂ht ; �̂ftg ; �rms�dividend choices, {dt; d̂tg; equilibrium equity prices,

fpt; p̂tg ; and the risk free rate, rt: Let us assume, for the present, that each of these non-predetermined
variables is linearly related to the state. (We shall verify that this is indeed the case below.) In particular,

let �i be the 1 � L row vector that relates variable i to the state Xt and let hi be the 1 � L vector that
selects the ith element out of Xt: We can now easily derive the restrictions on the dynamics of productivity,

capital and wealth.

Recall that the �rst two rows of xt comprise the vector of productivities that follow an exogenous AR(1)

process. The corresponding elements of �0;�1;�2; �0 and �1 are therefore entirely determined by the

parameters of this process. The next elements in xt are the log capital stocks. If equilibrium dividends

satisfy dt = �dXt and d̂t = �d̂Xt; we can rewrite the log-approximated dynamics for kt and k̂t shown in (29)

as

hkXt+1 =
�
1
�hk +

 
��hz �

�
 
�� � �

�
�d

�
Xt;

hk̂Xt+1 =
�
1
�hk̂ +

 
��hẑ �

�
 
�� � �

�
�d̂

�
Xt:

Notice that these equations must hold for all realizations of Xt: So substituting for Xt+1 with (35) and

equating coe¢ cients we obtain

hkA = 1
�hk +

 
��hz �

�
 
�� � �

�
�d and hk̂A =

1
�hk̂ +

 
��hẑ �

�
 
�� � �

�
�d̂:

These equations place restrictions on the elements of �0;�1; and �2: Furthermore, because kt+1 and k̂t+1

are solely functions of the period�t state, the corresponding element rows and columns of E(ut+1u0t+1jXt) �

(Xt) are vectors of zeros. This observation puts restrictions on the elements of �0 and �1:

Deriving the equilibrium restrictions on the dynamics of wealth in (25) is a little more complicated and

requires the use of R1 and R2. Our starting point is the approximation for log equity returns in (30) which

we now write in terms of the state vector:

rht+1 = �hXt+1 � �pXt and rft+1 = �fXt+1 � �p̂Xt;

where �h � ��p+(1��)�d and �f � ��p̂+(1��)�d̂: Notice that unexpected log returns are r
�
t+1�Etr

�
t+1 =

�� (Xt+1 � EtXt+1) for � = fh, f}, so applying R1 we obtain

Vt(ert+1) � �t =
"
A(�h; �h)Xt A(�h; �f)Xt

A(�h; �f)Xt A(�f; �f)Xt

#
:

Now recall that our log-approximated version of the h household budget constraint contains a quadratic

function of the portfolio shares and �t: To evaluate this component, let us assume that the portfolio shares
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satisfy �ht = �h�Xt and �ft = �f�Xt, so that

�0t�t�t =
h
�h�Xt �f�Xt

i " A(�h; �h)Xt A(�h; �f)Xt

A(�h; �f)Xt A(�f; �f)Xt

#"
�h�Xt

�f�Xt

#
:

Applying R2 to the right hand side gives

�0t�t�t = B (�h�;B(A(�h; �h); �h�) + B(A(�h; �f); �f�))Xt

+B (�f�;B(A(�h; �f); �h�) + B(A(�f; �f); �f�))Xt;

= �Xt:

According to (25), Etwt+1 = wt + ln� + rt +
1
2�

0
t�t�t, while the dynamics of the state vector in (35) imply

that Etwt+1 = hwAXt: Equating these moments for all possible values of Xt requires that

hwA = hw + ln�h1 + �r +
1
2�:

This expression provides us with another set of restrictions on the elements of �0;�1; and �2.

The model also places restrictions on the second moments of the state variables. For example, the

restrictions on the variances and covariances of the productivity vector zt are by assumption homoskedastic:

hzvec(
(Xt)) = vec (CVt(zt+1; zt+1)) = vec(Se):

Second moments involving the capital stock are also straightforward: they are all zero because capital is

chosen one period in advance (see equation (2) above). Next, consider the moments involving wealth. First

note that for any variable at = �aXt;

CVt(wt+1; at+1) = �htCVt(rht+1; at+1) + �ftCVt(rft+1; at+1):

Applying R1 and R2 to the right hand side, gives

CVt(wt+1; at+1) = �h�XtA(�h; �a)Xt + �
f
�XtA(�f; �a)Xt

= (B(�h�;A(�h; �a)) + B(�f�;A(�f; �a)))Xt:

Our conjecture for the conditional covariance of xt in (33) implies that the second moments of wealth depend

only on the constant and second order terms in Xt: This conjecture requires that

havec(
(Xt)) � ha

h
�0 0 �1

i
= B(�h�;A(�h; �a)) + B(�f�;A(�f; �a));

where havec(
(Xt)) = CVt(wt+1; at+1): For a we use the elements of xt � [zt; wt; ŵt]0: An analogous set of
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restrictions applies to the dynamics of f household wealth.

2.4 Non-Predetermined Variable Dynamics

To this point we have shown how the equilibrium conditions of the model impose restrictions on the dy-

namics of the state variables under the assumption that the vector of non-predetermined variables Yt (i.e.,

�ht ; �
f
t ; �̂

h
t ; �̂

f
t ; dt; d̂t; pt; p̂t and rt ) satis�es

Yt = �Xt;

for some matrix � with rows �i:We now turn to the question of how the elements of � are determined from

the equilibrium conditions and the dynamics of the state vector.

We begin with the restrictions on h equity prices. In particular, our aim is to derive a set of restrictions

that will enable us to identify the elements of �p where pt = �pXt in equilibrium. Our derivation starts

with expected returns. Speci�cally, we note from the log�approximated �rst order conditions in (23a) with

� = fhg that

Etrht+1 = rt + CVt(wt+1; rht+1)� 1
2Vt(r

h
t+1);

= rt +
�
B(�h�;A(�h; �h)) + B(�f�;A(�f; �h))� 1

2A(�h; �h)
�
Xt;

= (�r + �
h
er)Xt:

Combining this expression for expected returns with the assumed form for equilibrium dividends, the dy-

namics of the state vector, and (31a) gives

pt =
1X
i=0

�i f(1� �)�dEtXt+1+i � (�r + �her)EtXt+ig ;

= [(1� �)�dA� (�r + �her)] (I � �A)
�1
Xt:

Thus, given our assumption about dividends, the risk free rate, and the optimality of portfolio choices we

�nd that log equity prices satisfy pt = �pXt where

�p = [(1� �)�dA� (�r + �her)] (I � �A)
�1
: (37)

A similar exercise con�rms that p̂t = �p̂Xt where

�p̂ =
�
(1� �)�d̂A� (�r + �

f
er)
�
(I � �A)�1 : (38)

The restrictions in (37) and (38) depend on the form of the dividend policies via the �d and �d̂ vectors.

These vectors are determined by the �rms��rst order conditions. In particular, using the fact that Vt
�
rkt+1

�
=

 2Vt (zt+1) and CVt
�
rkt+1; wt+1

�
=  CVt (zt+1; wt+1) from (28); we can use R1 and R2 to write the log-
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approximated �rst order condition for h �rm in (27a) as

Etrkt+1 = rt + CVt
�
rkt+1; wt+1

�
� 1

2Vt
�
rkt+1

�
;

=
�
�r +  (B(�h�;A(�h; hz)) + B(�f�;A(�f; hz)))� 1

2 
2A(hz; hz)

�
Xt:

At the same time, (28) and (29) imply that

Etrkt+1 =  Etzt+1 � (1� �) 
n
1
�kt +

 
�� zt �

�
 
�� � �

�
dt

o
;

=
h
 hzA� (1� �) 

n
1
�hk +

 
��hz �

�
 
�� � �

�
�d

oi
Xt:

Combining these expressions and equating coe¢ cients gives

�d = ��
(1��) ( ����)

�
�r +  (B(�h�;A(�h; hz)) + B(�f�;A(�f; hz)))� 1

2 
2A(hz; hz)�  hzA

	
+

1

( � ���) f�hk +  hzg :

The �rst order condition for f �rm gives an analogous expression for �d̂:

The behavior of the non-predetermined variables must also be consistent with market clearing. According

to (26), market clearing in the bonds requires that pt + p̂t = dt + d̂t; a condition that implies

�p + �p̂ = �d + �d̂:

In the case of the h and f equity markets we need

1 + pt � wt + 1
2 (pt � wt)

2
= �ht + �̂

h
t

�
1 + ŵt � wt + 1

2 (ŵt � wt)
2
�
;

1 + p̂t � ŵt + 1
2 (p̂t � ŵt)

2
= �̂ft + �

f
t

�
1 + wt � ŵt + 1

2 (wt � ŵt)
2
�
:

Rewriting these equations in terms of Xt; applying R2, and equating coe¢ cients gives

h1 + �p � hw + 1
2B (�p � hw; �p � hw) = �h� + B

�
�h�̂;

�
h1 + hŵ � hw + 1

2B (hŵ � hw; hŵ � hw)
��
;

h1 + �p̂ � hŵ + 1
2B (�p̂ � hŵ; �p̂ � hw) = �f�̂ + B

�
�f�;

�
h1 + hw � hŵ + 1

2B (hw � hŵ; hw � hŵ)
��
:

The remaining market clearing condition comes from the goods market. Walras Law makes this condition

redundant when the restrictions implied by the other market clearing conditions are imposed, so there is no

need to consider its implications directly.

2.5 Numerical Procedure

We have described how the log-approximated equations characterizing the equilibrium of the model are used

to derive a set of restrictions on the behavior of the state vector and the non-predetermined variables. A
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solution to the model requires that we �nd values for all the parameters in process for Xt and Yt that satisfy

these restrictions given values for the exogenous taste and technology parameters. More formally, let �

denote all the elements of the policy matrix �; the coe¢ cient matrices {�0;�1;�2g and the second moment
coe¢ cients in �: Our objective is to �nd the value for � such that the residual function

R(Xt; bG; bH; bS; �;  ; �; s) = bF ��AXt +�Ut+1;�Xt;AXt + Ut+1; Xt; bS(Xt)
�

reaches its minimum. For this purpose we choose � to minimize the least squares projection

jj bF ��AXt +�Ut+1;�Xt;AXt + Ut+1; Xt; bS(Xt)
�
jj2

where jj . jj denotes the Euclidean norm. As before bF(:) consists of the approximate equilibrium conditions,

including the restrictions on the second moments, implied by the model. The matrix A and function bS(Xt)

are speci�ed in terms of � from equations (35) and (36).

3 Results

The one-sector model provides an environment in which we can assess the accuracy of our solution method.

In particular, the structure of the model is su¢ ciently simple for us to analytically determine the equilibrium

portfolio holdings of households. We can therefore compare these holdings to those implied by the numerical

solution to the model.

The analytic solution to the model is based on the observation that the array of assets available to

households (i.e., equity issued by h and f �rms and risk free bonds) permits complete risk-sharing. We

can see why this is so by returning to conditions determining the household portfolio choices. In particular,

combining the log-approximated �rst order conditions with the budget constraint as shown in (24) under

the assumption of log preferences, we obtain

�t = �
�1
t (Etert+1 + 1

2diag(�t)) and �̂t = �
�1
t (Etert+1 + 1

2diag(�t)); (39)

where, as before, �0t � [ �ht �ft ]; �̂
0
t � [ �̂ht �̂ft ]; er

0
t+1 � [ rht+1 � rt rft+1 � rt ]; and �t � Vt(ert+1):

The key point to note here is that all households face the same set of returns and have the same information.

So the right hand side of both expressions in (39) are identical in equilibrium. h and f households will

therefore �nd it optimal to hold the same portfolio shares. This has a number of implications if the initial

distribution of wealth is equal. First, household wealth will be equalized across countries. Second, since

households with log utility consume a constant fraction of wealth, consumption will also be equalized. This

symmetry in household behavior together with the market clearing conditions implies that bond holdings

are zero and wealth is equally split between h and f equities (i.e., �ht = �̂ht = �ft = �̂ft = 1=2): The symmetry

in consumption also implies that mt+1 = m̂t+1 so risk sharing is complete.

Table 1 reports statistics on the simulated portfolio holdings of households computed from the numerical
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solution to the model. For this purpose we used the solution method described above to �nd the parameters

of Xt and Yt processes consistent with the log-approximated equilibrium conditions. These calculations

were performed assuming a discount factor � equal to 0.99, the technology parameter � equal to 0.36 and

a depreciation rate for capital, �; of 0.02. The log of h and f productivity, lnZt and ln Ẑt; are assumed to

follow independent AR(1) processes with the same autocorrelation coe¢ cient, aii; i = fh, fg ; equal to 0.95
and innovation variance Siie ; i = fh, fg ; equal to 0:0001: Once the model is �solved�, we simulate Xt over

500 quarters starting from an equal wealth distribution. We then discard the �rst 100 quarters from each

simulation. The statistics we report in Table 1 are derived from 100 simulations and so are based on 10,000

years of simulated quarterly data in the neighborhood of the initial wealth distribution.13

Table 1: Simulated Portfolio Holdings (One-Sector Model)

Aht Aft Bt
(i) (ii) (iii)

% GDP
mean 0.5000 0.5000 0.00%
stdev 0.0000 0.0000 0.25%
min 0.4999 0.4999 -1.52%
max 0.5001 0.5001 2.53%

Note: Aht and A
f
t correspond, respectively, to h household�s holdings of

equity issued by h and f �rms. Bt refers to h household�s bond holdings
as a share of h GDP.

Columns (i), (ii) and (iii) report statistics on the asset holdings of h households computed from the model

simulations. Theoretically speaking, we should see that Bt = 0 and Aht = Aft = 0:5: (Recall that the supply

of h and f equity are both normalized to unity.) The simulation results conform closely to these predictions.

The equity portfolio holdings show no variation and on average are exactly as theory predicts. Average bond

holdings, measured as a share of model�s GDP are similarly close to zero, but show a little more variation.

Overall, simulations based on our solution technique appear to closely replicate the complete risk sharing

allocation theory predicts.

4 Method Accuracy

To assess the performance of our solution method more formally we compute several tests of model accuracy.

First, we evaluate the importance of the third and higher order terms omitted in the model solution. Second,

we report the size of Euler equation errors. Third, we compute a summary measure of accuracy based on

13The innovations to equilibrium wealth are small enough to keep h and f wealth close to their initial levels over a span of
500 quarters so the approximation error in (32) remains very small.
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the den Haan and Marcet (1994) �2 test. All the results in this section are based on 100 simulations of the

model, each simulation being 3000 quarters long. Throughout we will use j : j to denote the absolute value.

Higher-order Terms

Recall that when deriving the approximate dynamics of the state vector in equation (35) we ignored the

impact of cubic and higher-order terms of xt: In this way we abstracted from the role of skewness, kurtosis, and

higher-order moments of returns for the portfolio decisions of households. We now evaluate the importance

of these terms in model simulations. Using our previous notation (where we used xt to denote linear states

in deviations from steady state or initial distribution and ~xt to denote their quadratic transformation), we

obtain the third-order terms as vec(xt~x0t) and calculate their summary statistics. In particular, we obtain

maximum, average, and standard deviation of long simulations for each element in jvec(xt~x0t)j; and then
compute the distribution of those statistics across all the elements. Table 2 reports the 90th, 95th and

99th percentiles of the corresponding distributions. We �nd that 99% of the largest third-order terms in

jvec(xt~x0t)j are smaller than 5.58E-03. Among the average absolute third-order terms, 99% lie to the left of

1.18E-04, while the standard deviation of third-order terms exceeds 4.28E-03 only 1 % of the time.

Table 2. Accuracy: 3rd Order Terms (One-Sector Model)

90% 95% 99%
(i) (ii) (iii)

max 2.92E-03 3.58E-03 5.58E-03
mean 6.23E-05 8.30E-05 1.18E-04
stdev 2.51E-03 3.31E-03 4.28E-03

Note: max, mean and stdev refer to the corresponding summary statistic calcu-
lated for each element in the absolute vector of third-order terms, jvec(xt~x0t)j.
90%, 95%, and 99% stand for the respective percentiles of the distributions of
these summary statistics across the cross-section of jvec(xt~x0t)j:

Euler Equation Errors

In order to assess the accuracy of model approximations Judd (1992) recommends using the size of the errors

that households and �rms make. Following this approach we use the simulated series for the model variables

to derive these errors as

�t+1 = f(bG � bH�Xt; bS1=2

(Xt) "t+1

�
; bS � bH�Xt; bS1=2

(Xt) "t+1

���
;

bG �Xt; bS (Xt)
�
; bH�Xt; bS1=2

(Xt) "t+1

�
; Xt; bS1=2

(Xt) "t+1); (40)
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where bG; bH; and bS are the approximate decision rules and �t+1 is a g � 1 vector. In our one-sector model
this system corresponds to a set of g = 4 Euler equations in each country: two for equity, one for capital,

and one for bonds. As an illustration, the Euler equation error for h households is given by

�t+1 = 1� [Mt+1 
R{] ;

where R{ = fRht+1; Rft+1; Rkt+1; Rtg and Mt+1 = �Wt=Wt+1. Note that � provides a scale-free measure of

the error. An analogous sequence of Euler equation errors exists for f households. Table 3 reports the upper

percentiles of the distribution of j�j. Columns (i) and (ii) show percentiles for the errors from h households�

Euler equations for h and f equity; column (iii) reports errors for the �rm�s optimality condition; and

column (iv) is for the bond Euler equation errors. The numbers reported in the table are comparable to

those reported in the accuracy checks for standard growth models without portfolio choice [e.g., Arouba et

al. (2005) and Pichler (2005)].

Table 3. Accuracy: EE Errors (One-Sector Model)

Aht Aft Kt Bt
(i) (ii) (iii) (iv)

90th percentile 0.0026 0.0026 0.0029 0.0033
95th percentile 0.0031 0.0031 0.0035 0.0039
99th percentile 0.0040 0.0040 0.0046 0.0051

Note: Aht and A
f
t refer to the absolute errors from the Euler equations

for h household�s holdings of equity issued by h and f �rms; Kt and Bt
correspond to the absolute errors from capital and bond Euler equations
at h.

The Den Haan and Marcet Test

While the summary statistics on Euler equation errors provide a quick assessment of model accuracy, one

may want to construct a more formal metric that simultaneously tests the size of the errors from all the

optimality conditions in the model. Den Haan and Marcet (1994) develop such a metric. Their test of

approximation accuracy consists of checking whether Euler equation errors are orthogonal to any function

of the state variables describing the information set in period t. Consider again the Euler equation errors �

derived in (40) and let !(Xt) denote any function that converts the L�dimensional vector of state variables
Xt into a q�dimensional sequence of instrumental variables, ! : RL �! Rq: Then, if households form their

expectations rationally, the Euler equation errors must satisfy

E[�t+1 
 !(Xt)] = 0: (41)

24



The idea behind the test consists of evaluating how close is equation (41) to being satis�ed for the simulated

series Xt and for any function !(:): In particular, let bars denote simulated data from the model, allowing

us to calculate the sample analog of (41) as

BT =
1

T

TX
��t+1 
 !( �Xt);

where T is a simulated sample size. Den Haan and Marcet (1994) evaluate whether BT is close to zero by

constructing a test-statistic

JT = TB0TA
�1
T BT ; (42)

where AT is a consistent estimate of the matrix

1X
i=�1

E
h�
�t+1 
 !(Xt)

� �
�t+1�i 
 !(Xt�i)

�0i
:

Under the null that the solution is accurate and if Xt is stationary and ergodic, den Haan and Marcet (1994)

show that JT converges in distribution to �2 with qg degrees of freedom. The solution is considered accurate

if JT is in the non-critical region of �2qg distribution.

Table 4. Accuracy: den Haan and Marcet �2 Test (One-Sector Model)

Aht and Kt Aht Aft Kt Bt
(i) (ii) (iii) (iv) (v)

lower 5% 0.05 0.05 0.05 0.04 0.07
upper 5% 0.02 0.03 0.03 0.04 0.06

Note: Aht and A
f
t correspond to the percentiles of the �

2 test statistics calculated
based on the errors from h country Euler equation for h and f equity; Kt and Bt
refer to the percentiles of the �2 test statistics for capital and bond Euler equations
at h.

Implementing the test on our solution to the one-sector model requires care. In this particular case

we know that equilibrium wealth, consumption growth and the two IMRS, mt+1 and m̂t+1; are perfectly

collinear. As a consequence, the errors from the Euler equations for equities, bonds and capital are very highly

correlated. This makes it impossible to invert matrix AT that enters the test statistic in (42) accurately.

Indeed, we �nd that the condition number for matrix AT calculated based on the Euler equations within each

country to be in excess of 106. We therefore focus on two Euler equation errors in our accuracy tests: one from

households�h equity Euler equation; and one from the Euler equation for capital. The results are reported

in column (i) of Table 4. In columns (ii)-(v) we also report tests for each Euler equation in the h country

individually. In all cases the vector of instruments !(Xt) consists of a constant, {Zt; Ẑt;Kt; K̂t;�Wt}, and
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the two lags of {Kt; K̂t;�Wt}.14 We obtain the matrix AT from the standard GMM estimate that allows

for heteroskedasticity but no serial correlation in the errors.

Following den Haan and Marcet (1994) we repeat the test N times for di¤erent realizations of the

stochastic processes and compare the resulting distribution of JT with its true distribution. Table 4 reports

the percentage of realizations of JT in the lower and upper 5% of a �2qg distribution obtained from 100

repetitions of the test. In each repetition we used 3000 quarters from simulations of the approximate solution

to the model. As the table shows, our method is extremely accurate. The distributions of JT statistics for

each Euler equation follow the true �212 very closely as the simulated percentiles almost coincide with the

true ones. This can be seen especially clearly from Figure 1 which plots the cdf of the �224 distribution and

the cdf of the test statistic calculated for the h equity and capital Euler equations jointly.

Figure 1. Distribution of the �2 test statistic

Note: Solid line �Test stat�corresponds to the cdf of the �2 test statistic obtained using

simulated h equity and capital EE errors. Dashed line �True�plots the �224 cdf.

5 The Two-Sector Model

The power of our solution procedure resides in its applicability to models with portfolio choice and incomplete

markets. Analytic solutions are unavailable in these models and existing numerical solution methods are

inapplicable. In this section we consider a two�sector extension of the model in which markets are incomplete.

A detailed analysis of this model is provided in a companion paper, Evans and Hnatkovska (2005). In what

14We did not use lagged productivity shocks to reduce the collinearity across the set of instruments. We include the �rst
di¤erence of wealth to insure that our instruments are stationary.
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follows we highlight the main di¤erences of this model from the one-sector economy described earlier, and

summarize its portfolio implications.

5.1 The Model

In this version of the model households in the two countries have preferences de�ned over the consumption

of two goods: a tradable and nontradable. The preferences of a representative household in the h country

are given by

Et
1X
i=0

�iU(Ctt+i; C
n
t+i);

where 0 < � < 1 is the discount factor, and U(:) is a concave sub-utility function de�ned over the consumption

of traded and non-traded goods, Ctt and C
n
t :

U(Ct; Cn) =
1

�
ln
h
�1��t (Ct)

�
+ �1��n (Cn)

�
i
;

with � < 1: �t and �n are the weights the household assigns to tradable and nontradable consumption

respectively. The elasticity of substitution between tradable and nontradable consumption is (1� �)�1 > 0:
Preferences for households in country f are similarly de�ned in terms of foreign consumption of tradables

and non-tradables, Ĉtt and Ĉ
n
t : Notice that preferences are not separable across the two consumption goods.

The menu of assets available to households now includes the equity issued by h and f �rms producing

tradable goods, risk free bonds, and the equity issued by domestic �rms producing nontradable goods.

Households are not permitted to hold the equity of foreign �rms producing nontradable goods. With the

new array of assets, the budget constraint for h households becomes

Wt+1 = Rwt+1 (Wt � Ctt �QntCnt ) ;

where Rwt+1 = Rt + �
h
t (R

h
t+1 �Rt) + �ft (Rft+1 �Rt) + �nt (Rnt+1 �Rt):

Qnt is the relative price of h nontradables in terms of tradables, and R
h
t+1 and R

f
t+1; as before, are the returns

on equity issued by the �rms producing traded goods at home and abroad:

Rht+1 =
�
P ht+1 +D

h
t+1

�
=P ht and Rft+1 =

�
P ft+1 +D

f
t+1

�
=P ft :

P ht (P
f
t ) is the price of equity issued by h (f) country �rms producing traded goods, while D

h
t (D

f
t ) is

the corresponding �ow of dividends. Rnt+1 is the return on equity issued by domestic �rms producing

nontradables, measured in terms of tradables:

Rnt+1 =
��
P nt+1 +D

n
t+1

�
=P nt

	�
Qnt+1=Q

n
t

	
;

where P nt is the price of equity issued by h �rms producing nontradables and D
n
t is the �ow of dividends,
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both measured in terms of nontradables. The budget constraint and returns on f household wealth are

analogously de�ned.

The production side of the model remains unchanged aside from the addition of the nontradable sector in

each country. For simplicity we assume that the production of nontradables requires no capital. Nontradable

output in countries h and f is given by �Znt and �Ẑ
n
t ; where � > 0 is a constant. Znt and Ẑ

n
t denote the

period�t state of nontradable productivity in countries h and f respectively. The productivity vector is now
zt � [lnZtt ; ln Ẑtt ; lnZnt ; ln Ẑnt ]0: We continue to assume that zt follows an AR(1) process:

zt = azt�1 + S
1=2

e et;

where et is a 4� 1 vector of i.i.d. mean zero, unit variance shocks, and S
1=2

e is the scaling matrix.

5.2 Equilibrium

As in a one-sector model, the equilibrium conditions comprise the �rst-order conditions of households and

�rms and the market clearing conditions. Since the production of nontradable output requires no capital,

�rms in this sector simply pass on their revenues to shareholders in the form of dividends. In the tradable

sector, the �rst-order conditions governing dividends remain unchanged. Optimal household behavior now

covers the choice between di¤erent consumption goods, and a wider array of �nancial assets. The �rst-order

conditions for h households, in addition to (8), now include

Qnt =
@U=@Cnt
@U=@Ctt

;

1 = Et
�
Mt+1R

n
t+1

�
;

where Mt+1 � �(@U=@Ctt+1)=(@U=@C
t
t ): The �rst order conditions for f households are expanded in an

analogous manner.

Solving for an equilibrium now requires �nding equity prices, fP ht ; P ft ; P nt ; P̂ nt g; goods prices, {Qnt ; Q̂nt g;
and the interest rate, Rt, such that markets clear when households follow optimal consumption, saving and

portfolio strategies, and �rms in the tradable sector make optimal investment decisions. As above, we assume

that bonds are in zero net supply so that (10) continues to be the bond market clearing condition. Similarly,

equation (11) is the market clearing condition in tradable goods market. Market clearing in the non-tradable

sector of each country requires that

Cnt = Y nt = Dn
t ; and Ĉnt = Ŷ nt = D̂n

t :

As above, we normalize the number of outstanding shares issued by �rms in each sector to unity so market
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clearing in the equity markets requires that

1 = Aht + Â
h
t ; 1 = Aft + Â

f
t ;

1 = Ant ; 1 = Ânt :

Ant and Â
n
t are the number of shares held by h and f households in domestic nontradable �rms. Asset

holdings are obtained from portfolio shares using the identities:

h households f households

h tradable equity: Aht = �htW
c
t =P

h
t ; Âht = �̂ht Ŵ

c
t =P

h
t ;

f tradable equity: Aft = �ftW
c
t =P

f
t ; Âft = �̂ftŴ

c
t =P

f
t ;

nontradable equity: Ant = �ntW
c
t =Q

n
tP

n
t ; Ânt = �̂nt Ŵ

c
t =Q̂

n
t P̂

n
t ;

bonds Bt = �btW
c
t Rt; B̂t = �̂bt Ŵ

c
t Rt;

(43)

where W c
t � Wt � Ctt � QntC

n
t and Ŵ

c
t � Ŵt � Ĉtt � Q̂nt Ĉ

n
t denote period�t wealth net of consumption

expenditure with �bt � 1� �ht � �ft � �nt and �̂bt � 1� �̂ht � �̂ft � �̂nt :

5.3 Results

Table 5 reports statistics on the simulated portfolio holdings of households computed from our solution to

the two-sector model. The results are based on the same values for �; �; �; and Se: In addition, we set

the share parameters �t and �̂
t
equal 0:5 and the elasticity of substitution 1=(1 � �) equal to 0.74. The

autocorrelation in nontradable and tradable productivity is set to 0.99 and 0.78 respectively. Innovations to

productivity are assumed to be i.i.d. with variance equal to Siie = 0:0001; i = fh, f, n, �ng: As above, the
statistics are computed from model simulations covering 10,000 years of quarterly data.

Table 5: Simulated Portfolio Holdings (Two-Sector Model)

Aht Aft Ant Bt
(i) (ii) (iii) (iv)

% GDP
mean 0.5000 0.5000 1.0000 -0.23%
stdev 0.0019 0.0019 0.0000 12.19%
min 0.4918 0.4925 1.0000 -40.29%
max 0.5076 0.5077 1.0000 71.19%

Note: Aht , A
f
t ; and A

n
t correspond, respectively, to h household�s holdings of

equity issued by h, f traded �rms, and h nontraded �rms. Bt refers to h
household�s bond holdings as a share of h GDP.
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Columns (i) - (iv) report statistics on the asset holdings of h households computed from the model

simulations. As in the one-sector model, households continue to diversify their holdings between the equity

issued by h and f �rms producing tradable goods. (Household holdings of equity issued by domestic �rms

producing nontradable goods must equal unity to clear the market.) While these holdings are split equally on

average, they are far from constant. Both the standard deviation and range of the tradable equity holdings

are orders of magnitude larger than the simulated holdings from the one-sector model. Di¤erences between

the one- and two-sector models are even more pronounced for bond holdings. In the two-sector model shocks

to productivity in the nontradable sector a¤ect h and f households di¤erently and create incentives for

international borrowing and lending. In equilibrium most of this activity takes place via trading in the bond

market, so bond holdings display a good deal of volatility in our simulations.

In section 2 we highlighted one of the main novelties of our approach, the conditional heteroskedasticity

of the state vector, S(Xt). We argued that this feature allowed us to account for time-variability in risk

premium and households�optimal portfolio rules. To further emphasize this point, consider the implications

of setting S(Xt) equal to a constant matrix. In this case our solution method simpli�es to a standard

projection-perturbation routine and produces time-invariant risk premia and portfolio shares. Speci�cally,

let �0t � [ �ht �ft �nt ] and �̂
0
t � [ �̂ht �̂ft �̂nt ] denote the vector of portfolio shares for h and f

households in the two-sector model. Then,

�t = �
�1
t (Etert+1 + 1

2diag(�t)) and �̂t = b��1t (Et bert+1 + 1
2diag(

b�t)); (44)

with �t = Vt(ert+1) and b�t = Vt( bert+1); where er0t+1 � [ rht+1 � rt rft+1 � rt rnt+1 � rt ] and ber0t+1 �
[ rht+1 � rt rft+1 � rt r̂nt+1 � rt ] are the vectors of excess returns. [This equation is analogous to (39) in
the one-sector model.] From the Euler equations we also know that the risk-premium on each asset is given

by the covariance of the return on that asset with wealth:

Etert+1 + 1
2diag(�t) = CVt(wt+1; ert+1) and Et bert+1 + 1

2diag(
b�t)) = CVt(ŵt+1; bert+1): (45)

Hence, the portfolio rules in (44) can be rewritten as

�t = �
�1
t CVt(wt+1; ert+1) and �̂t = b��1t CVt(ŵt+1; bert+1): (46)

When S(Xt) is constant, so too are the second moments of the state vector Xt and linear functions of

Xt: This means that CVt(wt+1; ert+1) and CVt(ŵt+1; bert+1) are constant with the result that both the risk
premia in (45) and the portfolio shares in (46) are time-invariant.
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Restricting S(Xt) to a constant matrix also has implications for portfolio holdings. To illustrate, consider

the �ow of h tradable equity held by h households. From the de�nition of Aht in (43) we can write

P ht �A
h
t = �htW

c
t � �ht�1W c

t�1
P ht
P ht�1

;

= ��htW
c
t +

�
�ht�1�W

c
t �

�
P ht
P ht�1

� 1
�
W c
t�1�

h
t�1

�
: (47)

The �rst term on the right captures the variations in portfolio holdings due to shifts in the risk-premia, ��ht :

The second term identi�es portfolio rebalancing factors arising from changes in wealth or asset valuations.

Clearly, if �t is constant because S(Xt) is restricted to be a constant matrix, only the rebalancing factors

drive portfolio holdings. We can assess the quantitative signi�cance of this restriction by computing the

contribution of the terms in (47) to the variance of P ht �A
h
t from simulations of the model (i.e., using our

solution method where S(Xt) is unrestricted). This calculation reveals that both terms contribute to the

variations in portfolio holdings, but in di¤erent directions [see Evans and Hnatkovska (2005) for details].

In other words, shocks that increase the �rst term, lower the second, but their combined e¤ect increases

P ht �A
h
t : Thus, in this particular case, variations in the risk-premia are the dominating factor driving portfolio

holdings, a feature that could not be captured if we restricted S(Xt) to a constant matrix.

5.4 Accuracy

In this section we conduct the accuracy tests outlined in section 4 for the two-sector model. Table 6 reports

the 90th, 95th and 99th percentiles of the maxima, averages, and standard deviations of the absolute values

of the third-order terms, jvec(xt~x0t)j. As the table shows, the numbers are comparable with those computed
from the one-sector model.

Table 6. Accuracy: 3rd Order Terms (Two-Sector Model)

90% 95% 99%
(i) (ii) (iii)

max 2.30E-03 3.24E-03 8.31E-03
mean 4.87E-05 6.16E-05 2.32E-04
stdev 2.26E-03 2.74E-03 1.03E-02

Note: max, mean and stdev refer to the corresponding summary statistic calcu-
lated for each element in the absolute vector of third-order terms, jvec(xt~x0t)j.
90%, 95%, and 99% stand for the respective percentiles of the distributions of
these summary statistics across the cross-section of jvec(xt~x0t)j:

Table 7 reports the upper percentiles of the absolute errors from each of the �ve Euler equations in the

home country. Columns (i) and (ii) refer to the h household�s investment into h and f traded equity, column
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(iii) summarizes errors for the optimal n equity investments, while (iv) and (v) refer to the capital and bond

Euler equations, respectively. Interestingly, the percentiles of all the Euler equation errors in the two-sector

model are below those found in the one-sector model.

Table 7. Accuracy: EE Errors (Two-Sector Model)

Aht Aft Ant Kt Bt
(i) (ii) (iii) (iv) (v)

90th percentile 0.0016 0.0016 0.0015 0.0023 0.0025
95th percentile 0.0019 0.0019 0.0017 0.0028 0.0030
99th percentile 0.0025 0.0025 0.0023 0.0036 0.0039

Note: Aht ; A
f
t ; and A

n
t refer to the absolute errors from the Euler equations for h

household�s holdings of equity issued by h and f traded �rms, and h nontraded �rms;
Kt and Bt correspond to the absolute errors from capital and bond Euler equations
at h.

Table 8 reports the empirical percentiles of the den Haan and Marcet test statistics. Here we used a

constant, productivity shocks, as well as the levels, �rst and second lags of the capital stock and di¤erenced

wealth in both countries as instruments, !(Xt): As in the one-sector model we �rst implement the test for

each Euler equation individually and report the results in columns (ii)-(vi). We also test the joint signi�cance

of the residuals in the Euler equations pertinent to each country. However, due to collinearity among the

residuals in those equations, we implement the test for a subset of three equations: one tradable equity,

nontradable equity and capital. The results are summarized in column (i).

Table 8. Accuracy: den Haan and Marcet �2 Test (Two-Sector Model)

Aht ; A
f
t ;Kt Aht Aft Ant Kt Bt
(i) (ii) (iii) (iv) (v) (vi)

lower 5% 0.01 0.05 0.03 0.05 0.04 0.06
upper 5% 0.18 0.07 0.08 0.06 0.03 0.03

Note: Aht ; A
f
t ; and A

n
t correspond to the percentiles of the �

2 test statistics calculated based
on the errors from h country Euler equation for h and f tradable equity, and n equity; Kt

and Bt refer to the percentiles of the �2 test statistics for capital and bond Euler equations
at h.

Overall, the results in Table 8 con�rm the accuracy of our solution technique. For each individual Euler

equation we �nd a close correspondence between the empirical distribution of the JT test statistic and its
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true �2qg distribution. The one exception is in column (i) where we consider the three Euler equations

jointly. Here the empirical distribution appears to be too far to the right. We attribute this result to the

near collinearity of the weighting matrix. The average condition number across the 100 simulations used

to compute the empirical distribution was 170,284. By comparison, the average condition number for the

weighting matrix in the individual equations was approximately 24,000.

6 Conclusion

We have presented a numerical method for solving general equilibrium models with many assets, heteroge-

neous agents and incomplete markets. Our method builds on the log-approximations of Campbell, Chan

and Viceira (2003) and the second-order perturbation and projection techniques developed by Judd (1992)

and others. To illustrate its use, we have applied our solution method to one�and two-sector versions of

a two country general equilibrium model with production. The numerical solution to the one-sector model

closely conforms to the predictions of theory and are highly accurate based on a number of standard tests.

This gives us con�dence in the accuracy of our technique. The power of our method is illustrated by solving

the two-sector version of the model. The array of assets in this model is insu¢ cient to permit complete risk

sharing among households, so the equilibrium allocations cannot be found by standard analytic techniques.

To the best of our knowledge, our method provides the only way to analyze general equilibrium models with

portfolio choice and incomplete markets.

In principle, our solution method can be applied to more complicated models than the one- and two-

sector models described above. For example, the method can be applied to solve models with more complex

preferences, capital adjustment costs, or portfolio constraints. The only requirement is that the equilibrium

conditions can be expressed in a log-approximate form. We believe that the solution method presented here

will be useful in the future analysis of such models.
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A Appendix:

A.1 Derivation of (34)

We start with quadratic and cross-product terms, ~xt and approximate their laws of motion using Ito�s lemma.

In continuous time, the discrete process for xt+1 in (32) becomes

dxt = [�0 � �1xt +�2~xt] dt+
(~xt)1=2dWt

Then by Ito�s lemma:

dvec(xtx
0
t) = [(I 
 xt) + (xt 
 I)]

�
[�0 � �1xt +�2~xt] dt+
(~xt)1=2dWt

�
+ 1
2

�
(I 
 U)

�
@x

@x0

 I

�
+

�
@x

@x0

 I

��
d [x; x]t

= [(I 
 xt) + (xt 
 I)]
�
[�0 � �1xt +�2~xt] dt+
(~xt)1=2dWt
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(~xt)g dt

= [(I 
 xt) + (xt 
 I)]
�
[�0 � �1xt +�2~xt] dt+
(~xt)1=2dWt

�
+ 1

2Dvec f
(~xt)g dt; (A1)

where D =

�
U
�
@x

@x0

 I

�
+

�
@x

@x0

 I

��
; U =

X
r

X
s

Ers 
 E0r;s;

and Er;s is the elementary matrix which has a unity at the (r; s)th position and zero elsewhere. The law of

motion for the quadratic states in (A1) can be rewritten in discrete time as

~xt+1 �= ~xt + [(I 
 xt) + (xt 
 I)] [�0 � �1xt +�2~xt] + 1
2Dvec (
(~xt))

+ [(I 
 xt) + (xt 
 I)] "t+1;
�= 1

2D�0 + [(�0 
 I) + (I 
 �0)]xt +
�
I � (�1 
 I)� (I 
 �1) + 1

2D�1
�
~xt + ~"t+1;

where ~"t+1 � [(I 
 xt) + (xt 
 I)] "t+1: The last equality is obtained by using an expression for vec (
(Xt))

in (33), where �0 = vec(
0) and �1 = 
1 
 
1; and by combining together the corresponding coe¢ cients
on a constant, linear and second-order terms.

A.2 Derivation of (36)

Recall that Ut+1 = [ 0 "t+1 ~"t+1 ]
0; so E (Ut+1jXt) = 0 and

E
�
Ut+1U

0
t+1jXt

�
� S (Xt) =

0BB@
0 0 0

0 
 (Xt) � (Xt)

0 � (Xt)
0
	(Xt)

1CCA

A1



To evaluate the covariance matrix, we assume that vec(xt+1~x0t+1) �= 0 and de�ne:

� (Xt) � Et"t+1~"0t+1;

= Etxt+1~x0t+1 � Etxt+1Et~x0t+1;

= Etxt+1~x0t+1 � (�0 + (I � �1)xt +�2~xt)

�
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1
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0D
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Hence
vec (� (Xt)) = �0 + �1xt + �2~xt;

�0 = �1
2
(D�0 
 �0) vec(I);
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Next, consider the variance of ~"t+1 :
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Hence,
vec (	 (Xt)) = 	0 +	1xt +	2~xt;
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A.3 Derivation of Results R1 and R2

Let mt = �mXt and nt = �nXt for two variables mt and nt:We want to �nd the conditional covariance

between the two:
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So, to summarize,
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