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In this paper we consider models of the term structure of default risk and apply them to a sample of risky Brady
bonds issued by the governments of Mexico, Venezuela, and Costa Rica. The first model, which assumes that
at each point in time the probability of default (given no prior default) is equal for every future period, is
straightforward to implement and yields seemingly plausible estimates of default probabilities.  But the
dynamics of the computed default probabilities are not consistent with the model.  Contrary to the model’s
implication that there are no anticipated changes in default probabilities, we find that the computed default
probabilities do not evolve randomly.  The other four models, which treat credit quality as an unobservable
variable, fits the data with varying degrees of success.  The first of these assumes that credit quality follows
a continuous-time diffusion process and yields a closed-form solution for the default probabilities.   In deriving
the remaining three models we work in discrete time. Although we are unable to obtain a closed-form solution
for the default probabilities, this approach affords considerable flexibility for the choice of stochastic process
followed by credit quality.  The results suggest that this greater flexibility is important.  We find that allowing
for both temporary and permanent components to the evolution of credit quality considerably reduces the
estimated size of the drift parameter in the random walk and problems with the specification of the random
walk model disappear. 
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Valuing risky debt requires an assessment of the borrower’s credit quality.  A well-specified model

of credit quality and its impact on the price of risky debt is an essential ingredient in examining the relative

pricing of multiple debt issues from single borrower—whether the goal is to identify mispricing of existing

issues or to value new issues.  And when issues with different maturities or durations are considered, well-

specified models of the dynamics of credit quality are needed to evaluate the relative pricing of debt

instruments.

In this paper we examine alternative methods for making inferences about the value and dynamics

of  credit quality from market prices.  In doing so we ask if the time series behavior of the prices of risky

debt is consistent with five models of the time series behavior of credit risk.  The first model simplifies the

inference problem by assuming that at each point in time, the probability of a borrower defaulting at any

future time (conditional on not having yet defaulted) is a constant.     Although this assumption results in1

attractive simplification, it implies that there is no anticipated change in the creditworthiness of the

borrower.  That is to say, current and anticipated future creditworthiness are assumed to be identical.  That

may not be the case.  

In the other models, creditworthiness is treated as an unobserved variable that follows a specified

stochastic process. Claessens and Pennacchi (1996) derive the first of these models by assuming credit

quality follows a continuous time diffusion process.   They use this model to derive estimates of credit risk2

of Brady bonds and look at economic variables that might explain it’s movements over time.  Although

their model provides scope for anticipated changes in credit quality and yields a closed-form expression for

the bond price, it has the disadvantage of severely constraining the dynamics of credit quality. 

Unfortunately, it is difficult to derive closed-form solutions for stochastic processes that allow for more

general credit quality dynamics.

We avoid this difficulty by moving to discrete time.  Doing so has the advantage of greater

flexibility because it allows us to consider virtually any stochastic process for credit quality.  We consider
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three processes—a random walk with drift, a stationary autoregressive process, and a random walk with

drift and stationary higher-frequency dynamics.  This last process has the advantage of imposing fewer

restrictions on the dynamics of credit quality and can therefore produce a wider range of term structures of

credit risk.

We then implement the models using a sample of Brady bonds issued by the governments of

Mexico, Venezuela, and Costa Rica.  Although the issues we address are of concern for the pricing of risky

debt in general (including corporate debt and swaps), Brady bonds make an ideal vehicle with which to

examine the dynamics of credit quality.  They are risky and, judging from the large fluctuations in their

prices, have experienced large movements in their perceived credit risk.  Moreover, the market for Brady

bonds is a large and highly liquid market—accounting for less than 1/10 of outstanding international bond

issues, but 1/5 of secondary market turnover in the Euroclear system.  Market liquidity for the most

actively-traded Latin American bonds exceeds that for the U.S. corporate and junk bonds and is

comparable to all but the most liquid industrial country government bond markets [see Clark (1993,

1994)].  Brady bonds are also used as a benchmark to price new issues in what has become a booming

market in debt issues. 

We then subject the estimation results to specification tests.  These tests show that the model that

assumes the conditional probability of default to be constant is dynamically inconsistent in that changes in

the computed default probabilities are predictable.  The data are also clearly inconsistent with the model

that assumes credit quality follows a stationary autoregressive process.  The models allowing for

nonstationary dynamics for credit quality provide a better fit.  Of these, the model in which credit quality is

assumed to exhibit stationary dynamics around a random walk provides the best fit for the bonds in our

sample.  The problems we find with the other specifications do not arise in this model.  Moreover, it

produces terms structures of credit risk that differ substantially from those implied by the other models and

these differences lead to significant differences in the pricing of new bond issues.



����� �7KHVH�WHUPV�DUH�GHULYHG�IURP�WKH�EDQN�GHEW�FRQYHUVLRQ�FRQYHQWLRQV�XVHG�ZKHQ�WKH�ERQGV�ZHUH�LVVXHG��

����� �7KH�FROODWHUDO�IRU�WKH�GLVFRXQW�ERQG�LV�VXIILFLHQW�WR�FRYHU�HLJKWHHQ�PRQWKV�RI�FRXSRQV�DW�DQ�DVVXPHG�UDWH�RI�

WHQ�SHUFHQW���$V�/,%25�LV�FXUUHQWO\�ZHOO�EHORZ�WKDW�UDWH��VXEVWDQWLDOO\�PRUH�WKDQ�HLJKWHHQ�PRQWKV�RI�FRXSRQV�DUH
JXDUDQWHHG�E\�WKH�SRRO�

����� �7KH�UROOLQJ�LQWHUHVW�JXDUDQWHH�FRYHUV�IRXUWHHQ�UDWKHU�WKDQ�HLJKWHHQ�PRQWKV�RI�LQWHUHVW��

3

I. The Data

Mexico, Costa Rica, and Venezuela were the first three countries to issue bonds as part of the debt

and debt service reduction (DDSR) agreements.  All three issued a fixed-rate and a floating-rate bond for

debt conversion.  The Mexican and Venezuelan fixed and floating rate issues are referred to as the par and

discount bonds.   The Mexican bonds have the largest amount outstanding, are the most liquid, and have3

the smallest bid/ask spread. 

The Mexican par and discount bonds were issued in March 1990 with an initial maturity of 30

years.  Bank debt could be exchanged for the par bond with principal equal to the original face value of the

debt.  The par bond pays a fixed coupon of 6.25% of principal.  Creditors could also exchange bank debt

for the discount bond at a rate of $65 of principal per $100  of original face value.  The discount bond pays

a coupon of LIBOR plus 13/16.  The principal of both bonds is guaranteed by collateral in the form of

thirty-year U.S. Treasury zero-coupon bonds.  A rolling interest guarantee is provided by a pool of

collateral sufficient to cover eighteen months of coupon payments.  Should the borrower fail to make a

coupon payment, the lender will receive the coupon from the collateral.4

The Venezuelan par and discount bonds were issued in December 1990 with an initial maturity of

thirty years.  The debt conversion terms were similar to those associated with the Mexican bonds, with

conversion of bank debt to discount bonds occurring at 70% of original face value and the par bond

carrying a coupon rate of 6.75%.  The principal guarantee and rolling interest guarantee are also similar to

those attached to the Mexican bonds.5

The Costa Rican fixed-rate Brady bond, called the Principal Series A bond, comes with no

collateral guarantee but has a rolling interest guarantee.  It was issued in May 1990 with an initial maturity

of 20 years, pays a coupon of 6.25% and the rolling interest guarantee covers eighteen months of interest. 

We obtained daily quotes from commercial and investment banks that are active in the market and



����� �7KH�IDOO�LQ�ERQG�SULFHV�DVVRFLDWHG�ZLWK�WKH�HQG������0H[LFDQ�FULVLV�FDQ�EH�VHHQ�RQO\�LQ�WKH�ODVW���

REVHUYDWLRQV�RI�WKH�VDPSOH�

4

sample the data weekly using Wednesday prices.  When Wednesday prices are not available (primarily due

to holidays), the closest available price is used.  

Figures 1- 3 present the prices of the Brady bonds for Mexico, Venezuela, and Costa Rica,

respectively.  The Mexican issues began trading at the end of March 1990 with prices around $40 for the

par bond and $60 for the discount bond.  Both�SULFHV�ULVH�RQ�DYHUDJH�RYHU�WKH�VDPSOH��EXW�WKH�SULFH�RI

WKH�IL[HG�UDWH�ERQG��WKH�3DU�ERQG��ULVHV�PRUH�UDSLGO\�WKDW�WKH�SULFHV�RI�WKH�IORDWLQJ�UDWH�ERQGV��WKH

'LVFRXQW�ERQG��UHIOHFWLQJ�IDOOLQJ�ORQJ�WHUP�LQWHUHVW�UDWHV�RYHU�WKH�VDPSOH�XQWLO�������,Q�������WKH�SULFHV

RI�ERWK�ERQGV�IDOO�VRPHZKDW� ��$V�LQWHUHVW�UDWHV�URVH��WKH�SULFH�RI�WKH�IL[HG�UDWH�ERQG�IHOO�E\�PRUH�WKDQ�

WKH�SULFHV�RI�WKH�IORDWLQJ�UDWH�ERQGV�� Trading in the Venezuelan issues began in December 1990, with the

discount bond priced around $70 and the par bond priced around $50.  Like the Mexican issues, both

prices show a sharp increase in the first quarter of 1991.  Both prices fell in the second half on 1991 and

throughout 1992, recovered in 1993 and then fell sharply in the first quarter of 1994.  As with the Mexican

bonds, the price of the fixed-rate Costa Rican Brady bond rose steadily until early 1994.  After a sharp

drop in March of 1994, the price of the Costa Rican bond declined over the remainder of that year.

In order to value the Brady bond components, we need prices of U.S. Treasury zero-coupon bonds. 

These are obtained by taking estimates of the yield curve of coupon-paying U.S. Treasury securities for

bonds with three and six months and one, two, three, five, seven, ten, and thirty years to maturity.  The

yields are obtained from daily data reported in Barclays de Zoete Wedd’s, The Rate Reference Guide to the

U.S. Treasury Market.  Cubic splines are then used to compute yields to maturity for each (weekly)

maturity from one week to thirty years.  These yields are then used recursively to compute the implied

yields on zero-coupon securities and the corresponding discount factors.  When valuing the floating rate

bonds, we use LIBOR data obtained from the Financial Times.

II.  Modeling the Term Structure of Credit Quality

At each point in time, the probability that a risky bond will default at various future dates may

differ.  Default probabilities may be expected to rise, fall, or vary in some non-monotonic way.  What we
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call the term structure of credit quality is a description of how, at a given point in time, default probabilities

vary (if at all) across horizons.  

Let ( (s) be the probability at t that a payment is missed and therefore the bond is in default at t+s. t

The term structure of credit risk then describes how ( (s) varies as a function of s.  In addition, let D (s) bet t

the probability at t that default will occur at t+s conditional on no default occurring prior to t+s.  This

conditional probability is related to the default probabilities that describe the term structure of credit risk

as, ( (s) = ( (s-1) +D (s)(1-( (s-1)).  Alternatively, t t t t

(1.)

The probability, as of t, that a bond first goes into default at t+s is,

(2.)

We consider the value of the principal, the interest payments, and the interest guarantees

separately.  The principal payment for the Mexican and Venezuelan Brady bonds is guaranteed by U.S.

Treasury zero coupon bonds.  The present value of the principal is therefore simply the face value of the

bond discounted at the appropriate U.S. zero-coupon rate.  Valuing the interest payments is less

straightforward, however, since they are risky.  If the default risk associated with holding the bond is

completely diversifiable or, alternatively, investors are risk neutral, the value of a coupon payment can be

computed by discounting the expected payment (contractual payment multiplied by the probability that the

payment will be made) at a rate given by the yield on a U.S. Treasury zero-coupon bond maturing when

the coupon payment is to be made. Alternatively, we may view the probabilities in (1) and (2) as risk

neutral probabilities. Under this interpretation, the same valuation method for the coupon payments allows

for the presence of non-diversifiable default risk or risk averse investors.

We first consider the coupon payments on a fixed-rate bond and then turn to a floating-rate bond.  

Let F be the face value of the bond and let r be the coupon rate and suppose that the bond is not in default

at time t.  If the bond was riskless, the time-t value of a coupon due at t+s would be rF/(1+r )  = rFp (s)t,s t
s
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where r  is the yield and p (s) is the price at t of a U.S. Treasury zero-coupon bond maturing at t+s.  Sincet,s t

there is a non-zero probability of default, to obtain the expected present value of the payment we must

multiply by 1-( (s), the probability that the bond is not in default at t+s.t

Next, suppose that a pool of collateral is used to guarantee q of the bond’s coupon payments.  If the

bond goes into default at t+s, the coupon payments at t+s, t+s+1, and so on will be met by drawing on the

pool of collateral until the pool is exhausted.  Once the pool has been depleted, no further coupon

payments will be made.   The value at t of a pool first used at t+s is rF[p (s)+p (s+1)+ +p (s+q)].  Again to7 ...
t t t

obtain the expected present (time-t) value of the pool, we need to multiply by 2 (s), the probability thatt

default first occurs at t+s.

The price of the bond, P , should be equal to the expected present value of the individualt

components of the bond.  Adding the expected present values of the coupons, the  rolling interest

guarantee, and the principal (which has value Fp (N), where t+N is the maturity date), we obtain,t

. (3.)

The value of a floating rate bond can be obtained in similar way and used to estimate the default

probability.  The only difference in valuation arises from the adjustment of the interest rate each period. 

Let r (i)F be the coupon to be paid at time t+i on a floating rate bond with face value F.  The coupon ratet

r (i) = L (i) + sp, where L (i) is the one-period LIBO rate determined at t+i-1 for payment at t+i and sp is thet t t

spread over LIBOR that is paid on the bond.  Of course future LIBOR is unknown and cannot be used to

value the bond.  Since the market value of L (i) paid at t+i is the discounted value of rf (i), where rf (i) ist t t

the forward rate, we use the implied forward one-period interest rate computed from the term structure of

zero coupon rates.   The implied one-period U.S. Treasury rate to be paid at t+i is given by p (i-1)/p (i)-1. 8
t t
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U.S. Treasury rates are lower than LIBOR so we add a forecast of the spread of LIBOR over one-period

Treasury rates to obtain the implied forward one-period LIBOR.  We then have rf (i) = p (i-1)/p (i) - 1 +t t t

d (i), where d (i) is the forecast at t of spread of LIBOR over one-period Treasury rates at t+i.   Equation (3)t t
9

then becomes,

(4.)

III. A Geometric Term Structure of Credit Risk

The first method we use to value the risky bonds assumes that D (s) = D .  At each point in time, thet t

conditional probability is assumed to be constant at each horizon, s, but the conditional probability can

change over time.  The term structure of credit risk, which is described by ( (s) = 1 - (1-D ) , is monotonict t
s

and ( (s)  approaches one as the horizon increases.  Although assuming that conditional defaultt

probabilities are constant at each point in time yields a simple and tractable means of making inferences

about credit quality from observed bond prices, it imposes strong restrictions on the behavior of perceived

credit quality.  In particular, the assumption does not allow for anticipated improvements or declines in

creditworthiness  - current and expected future creditworthiness are assumed to be identical. 

Estimates of D  can be obtained by solving (3) and (4) for the value of D  that equates the markett t

price with the expected present value of the payments.   These estimates are plotted in figures 4 through 6. 

The estimated probabilities for the two Mexican bonds, found in figure 4, point to a substantial

improvement in credit quality in the first half of 1991.  Credit quality is relatively stable for the remainder

of the sample except for a significant improvement beginning in late 1993 around the time that the U.S.

Congress approved the NAFTA and ending late in the first quarter of 1994 around the time of the

assassination of presidential candidate Colosio, and sharp increase at the end of 1994 around the time of

the peso crisis.

As can be seen in figure 5, the estimated default probabilities for the Venezuelan bonds also



����� ��.HQQHG\�DQG�*HQWOH���������S��������

8

indicate that perceived credit quality improved in the first half of 1991.  After fluctuating for about 18

months credit quality  fell around the first quarter of 1993 and then fell abruptly in the first quarter of

1994.  Figure 6 contains a plot of the estimated default probabilities for the Costa Rican bond, which bear

a surprising resemblance to those obtained for the Mexican bonds.  Perceived credit quality rises in the first

half of 1991 and fluctuates for the next few years before rising again in late 1993 and early 1994 and then

falling in March of 1994 and again around the time of the Mexican peso crisis.

Is the assumption of constant conditional default probabilities consistent with the data?  If the

assumption is correct, the estimated probabilities should evolve randomly.  If, on the other hand,  it is

possible to predict changes in the default probabilities, the assumption that current and expected future

creditworthiness are identical is inconsistent with the data.  Table 1 contains the results of a runs test,

which is a simple nonparametric test of the hypothesis that the probabilities evolve randomly.  A run

occurs when two or more successive observations in a series are increasing or decreasing.  The number of

runs in repeated samples of size T is distributed asymptotically as a normal random variable with mean

(2T-1)/3 and variance (16T-29)/90.   The table reports the number of runs that occur in each of the10

estimated default probability series along with a standard normal statistic to test the null hypothesis that

each series is random.  As can be seen from the table, we reject the null hypothesis at any reasonable

significance level for all five bonds because there are too few runs in the sample to be consistent with

randomness.  Thus the data appear to be inconsistent with assumption that there is no anticipated change in

credit quality.  We now turn to a series of models of the evolution of credit quality.

IV. Models of Credit Quality as an Unobserved Variable

We consider models in which the evolution over time of creditworthiness determines the evolution

of the default probabilities.  Suppose that the underlying credit quality of the borrower at some time t can

be represented as the realization of an unobservable random variable, x .  If the x falls to zero at some timet

t+s, we assume that the borrower defaults on the payments that are due at t+s.  The four models that we
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consider in this section differ in the stochastic process followed by x .  The first model assumes that x  is at t

continuous-time diffusion process and that the bond is in default if x falls to zero regardless of whether a

payment is due on that date.  This model yields a closed-form solution for the probabilities ( (s) and 2 (s)t t

and therefore for the bond price.  Although this model allows for anticipated changes in credit quality, it

severely restricts those dynamics.  In addition, the assumption that default can occur when no payment is

due is problematic.  We move to discrete time to derive the other three models and assume that default can

only occur when a payment is due.  Although we cannot derive closed-form solutions for the probabilities

and bond prices, the absence of closed-form solutions presents no problems for estimation.  And we gain

considerable flexibility in the choice of stochastic process.

IV.1.  The Claessens-Pennacchi Model

Model 1: Claessens and Pennacchi (1996) assume that x  evolves as a simple Brownian motion,t

(5.)

where dz is a standard Wiener process and treat default as an absorbing barrier at zero.  The drift

parameter, µ, allows one to distinguish between current and future creditworthiness.  A positive value of µ

indicates that creditworthiness is expected to increase while a negative value of µ indicates anticipated

declines in creditworthiness.  When the drift parameter is zero, creditworthiness evolves randomly. 

Given the assumption that of credit quality follows a diffusion process, Claessens and Pennacchi 

derive both the default probabilities and the values of the bonds using standard results for the distribution

of x  with an absorbing barrier at zero and its corresponding first passage distribution.   Suppose the bondt
11

is not currently in default, x  > 0.  The probability that the issuer misses a payment and the bond ist

therefore in default at t+s is the probability that x  # 0 for some n,(t+s-1,t+s).  This probability is,n

(6.)
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Unless a payment is due every period, the Claessens-Pennacchi model therefore assumes that default can

occur even is no payment is due between t+s-1 and t+s. Using the results from Geske (1979), we can

rewrite  (6) as

(7.)

where  N( ) is the standard normal distribution function and N ( ) is the bivariate normal distribution. .
2

function.  The probability that the rolling interest guarantee is used at t+s is then,

(8.)

We can then use these probabilities to value the components of the bonds as in (3) and (4) and

equate  the value of the components to the market price of the bond.

 

IV.2.  Discrete Time Models

Suppose that the K payments on a bond are due at t+m and then every n periods thereafter.  If an

issuer fails to make the Jth payment, the bond is in default and the random variable x  # 0.    Thet+m+(J-1)n
12

probability as of t that the bond issuer will default on the Jth payment, conditional on no prior default is,
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(9.)

Once we specify a stochastic process for x, we can compute these probabilities and use (1) and (2) to

obtain the  probabilities of default at any point in time, ( (s), and first default at any point in time, 2 (s). t t

This approach has the advantage of greater flexibility because we are not confined to distributions that

yield closed-form solutions for the probabilities ( (s) and 2 (s).t t

Model 2: The first of the discrete-time models we consider assumes that credit quality is a random

walk with drift.

. (10.)

This model therefore differs from the Claessens-Pennacchi model in the way default is modeled but not in

the assumed stochastic process followed by credit quality.  The probability as of t that a bond is in default

when the Jth payment is due is given by the product in (1) along with (9) and,

(11.)

Similarly, the probability of first default (and therefore first use of the rolling interest guarantee) is given

by (2) and (9).  The prices of fixed and floating rate bonds can then be computed as in (3) and (4).

Model 3: As with the Claessens-Pennacchi model, this first discrete-time model severely restricts

the dynamics of credit quality.  The next model we examine assumes that credit quality exhibits mean-

reverting dynamics.  In particular we assume that credit quality follows stationary autoregressive process,

, (12.)

where the rate of reversion to mean xG is given by k. 

The probability that the bond is in default is again given by (1), (9), and the probability,



Pr(xt%m%(i&1)n # 0) ' 1
E(m% ( i&1)n)

N
& x̄& (xt& x̄ ) (1&k)m%( i&1)n

E(m% ( i&1)n)
,

E(j)2 '
F2

(1&k)2
1 & (1& k)2j .

)xt ' (1 & " )µ % ")xt&1 % 0t & 8 0t&1 0t-N(0,F2)
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(13.)

where

The probability of first default is then again given by (2) and the prices of fixed and floating rate bonds can

be expressed as the expected present value of the payments as in (3) and (4).

Model 4: The final model we consider allows for both stationary and nonstationary components in

the dynamics of credit quality.  In particular, we assume that credit quality follows an ARIMA(1,1,1)

process.

(14.)

As with the previous two models, the conditional and unconditional default probabilities are

readily derived form the  probability that the continuous random variable, x, is less than zero on some

future payment date.  In appendix II we show how to derive that probability in a way that readily

generalizes to other stochastic processes.

V. Estimation and Specification Testing

Each of the models described in section IV can be combined with data on bond prices and interest

rates to obtain estimates of the key parameters.  Each yields an expression in which the probabilities and

therefore the bond values are functions of  x /F.  We normalize F=1 and write,t

P  = G(x ) + , , (15.)t t t

where the function G( ) is given in (3) and (4) and ,  is a random measurement error.  We assume ,  is.
t t

distributed as N(0,F ).  The equations of motion for x  for the three discrete-time models are given above2
, t



xt ' xt&)t % µ)t %0t 0t-N(0,)t).
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FRQGLWLRQV�DUH�QRW�VDWLVILHG���:KHQ�WKH�PHDVXUHPHQW�HUURU�YDULDQFH�LV�FRQVWUDLQHG�WR�]HUR�ZH�REWDLQ�UHVXOWV
HVVHQWLDOO\�LGHQWLFDO�WR�WKRVH�UHSRUWHG�KHUH�

13

and for the Claessens-Pennacchi model we work with a discrete version of the diffusion process.

. (16.)

For each model we now have a two-equation system involving the unobservable x  written in state spacet

form.  The measurement equation, which relates the unobservable state variable, x , to observable prices, ist

(15).  The evolution of the state variable is given by (10), (12), (14), or (16).  In  appendix 1, we describe

how a Kalman filter may be used to produce maximum-likelihood estimates of the parameters of each

process and of the unobservable variable x .t

Table 2 contains the maximum likelihood estimates of the four models for each of the five bonds. 

The first two models differ in their treatment of default—in the first default occurs when x first reaches

zero even if no payment is due on that date while in the second default can occur only when x # 0 and a

payment is due.  The first row of results for these two models contains estimates of the drift parameter and

its asymptotic standard error.  The estimated drifts are all small but highly significant.   Four of the five

estimated drifts from the first model are negative, indicating a decline in anticipated credit quality.  Two of

these four estimates change sign, however, when the model with a discrete-time random walk is estimate. 

More problematic, the signs on the estimated drifts for the par and discount bonds differ for the

Venezuelan bonds in the first model and the Mexican bonds in the second model.  Differing signs suggest

a problem with the model’s specification—credit quality for two issues from the same borrower should be

similar.  The second row contains estimates of the standard deviation of the measurement error.  The

estimates from both of the first two models are small and insignificantly different from zero for all five

bonds, indicating that the model fits the data exceptionally well.  13

The table also contains the results of two diagnostic tests of the specification.  Both diagnostics

examine the innovations in the filter's estimates of the unobservable state variable representing credit

quality.  The first diagnostic tests for serial correlation in the innovations.  The second diagnostic examines

whether the filter adequately captures the heteroskedasticity in the state variable by looking for serial
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correlation in the squared innovations.  The probability values are presented along with the test statistics. 

There is some evidence of autocorrelation in the residuals for the Venezuelan bonds (model 2).  The test

for heteroskedasticity also points to specification problems for the Venezuelan discount bond (model 2)

and the Costa Rican bond (model 1).

The estimates for model 3, which assumes that credit quality exhibits stationary autoregressive

dynamics, suggest that reversion to the mean is extremely slow.  The estimated rates of convergence are

0.005 or less for the Mexican and Venezuelan bonds and 0.01 for the Costa Rican bond.  The estimates for

the Mexican bonds suggest that the mean of the credit quality variable is about 1.25 standard deviations

above zero.  The estimate for the Costa Rican bond is similar.  The estimated means for the Venezuelan

bonds are a puzzle, one estimate is small and statistically insignificant while the other is large (about 2.7

standard deviations above zero) and highly significant.  Again, these differing estimates suggest

specification problems.  The diagnostics also point to significant specification problems for the Mexican

and Venezuelan bonds.  There is substantial evidence of residual autocorrelation and heteroskedasticity for

all four of these bonds.  The model with stationary autoregressive dynamics appears to fit the Costa Rican

data well.

The final set of estimates in table 2 are for the model in which credit quality is assumed to exhibit

stationary dynamics around a random walk with drift.  This model clearly has the best overall fit.  Adding

stationary dynamics to the random walk with drift reduces the size of the estimated drift substantially.  In

addition, there is no sign of the  problems evident in the first two models where the signs of the estimated

drifts differed for bonds issued by the same borrower.   There appears to be both an autoregressive and a14

moving average component to the stationary dynamics and the autoregressive component generally appears

to be fairly persistent.  The diagnostics also suggest that this model fits the data well.  None of the bonds

show evidence of residual autocorrelation at standard significance levels and only the estimates for the two

Mexican bonds appear to show signs of heteroskedasticity.
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The differences in the models can yield significant differences in the term structures of credit

quality that they imply.  Figure 7 depicts the term structures of credit quality—the survival probabilities, 1

- ( (s), for values of s up to 30 years—implied by three of the models we consider on one date (January 5,t

1994).  As expected, the term structures computed from the constant conditional probability model show a

gradually declining survival probability for each of the five bonds.

In addition, we compute the survival probabilities for the Claessens-Pennacchi model and the

ARIMA(1,1,1) model using the estimated parameters from those models along with estimated value of the

state variable, x , for January 5, 1994.  As is clear from figure 7, the ARIMA model yields a greater varietyt

of term structure shapes than does either of the other two models.  The differences for the two Venezuelan

bonds are the most striking.  The estimated drift for Venezuelan par bond obtained from the Claessens-

Pennacchi model is positive.  Because credit quality is anticipated to improve, the current value of the state

variable estimated to be fairly low.  As a result the survival probability is quite low initially and then rises

substantially over time.  The  ARIMA model yields a term structure that captures key features that appear

in the other two models.  Both models that allow for some credit quality dynamics point to higher long-run

credit quality than does the constant conditional probability model.  But the ARIMA model is able to do so

without the dramatic reduction in near-term credit quality the comes out of the Claessens-Pennacchi model.

The differences in the term structures can lead to substantial differences in the valuation of new

debt instruments.  The Claessens-Pennacchi model undervalues a 30-year straight bond with a coupon rate

of 6.5%  and face value of $100 by about $3.50 relative to the ARIMA model using the term structure

computed from the estimates for the Venezuelan par bond.  The relative undervaluation is even greater

(about $11.50) when we use the term structure estimated from the estimates for the Venezuelan discount

bond.  These valuation differences  indicate the differences in the models are economically meaningful.

V. Concluding Remarks

We have considered several models of the term structure of default risk and then applied them to a

sample of risky Brady bonds issued by the governments of Mexico, Venezuela, and Costa Rica as part of

debt and debt service reduction deals.  The first model, which assumes that at each point in time the

probability of default (given no prior default) is equal for every future period, is straightforward to
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implement and yields seemingly plausible estimates of default probabilities.  But the dynamics of the

computed default probabilities are not consistent with the model.  Contrary to the model’s implication that

there are no anticipated changes in default probabilities, we find that the computed default probabilities do

not evolve randomly.

The other four models, which treat credit quality as an unobservable variable, fits the data with

varying degrees of success.  The first of these, the Claessens-Pennacchi model, assumes that credit quality

follows a continuous-time diffusion process and yields a closed-form solution for the default probabilities. 

Although their model allows for anticipated dynamics for credit quality, it severely limits those dynamics. 

In deriving the remaining three models we work in discrete time. Although we are unable to obtain a

closed-form solution for the default probabilities, this approach affords considerable flexibility for the

choice of stochastic process followed by credit quality.  The results suggest that this greater flexibility is

important.  We find that allowing for both temporary and permanent components to the evolution of credit

quality is important.  When we allow for stationary dynamics around a random walk with drift we find that

the parameters of both parts of the process are statistically significant.  More importantly, we find that

allowing for stationary dynamics considerably reduces the estimated size of the drift parameter in the

random walk and problems with the specification of the random walk model disappear. 
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Appendix 1 

This appendix describes the algorithm used to estimate the unobservable component model of section

III.2. The filtering results presented below are discussed in Harvey (1990).

The model to be estimated comprises equation (15):

P   = G(x ) + , ,  ~ N(0,F )t t t t ,

2

and the equation of motion for one of the processes for x  shown in (10), (12), (14) or (16). For convenience,t

we write these processes in companion form,

The state space form of all the models can now be written as

where V(z ) = G(Cz ). t t

Estimates of µ and F  are obtained by maximizing the likelihood function for this model constructed
,

2

with the use of the non-linear Kalman Filter. The filtering equations are

P   =  V(z )  +  u (A1)t t/t-1 t

R   =  LV(z )E  LV(z )’ +  F (A2)t t/t-1 t/t-1 t/t-1 ,

2

z  = A(x  + k u ) (A3)t+1/t t/t-1 t/t-1 t

E   = A [1 - k  LV(z )]E  A’+ S (A4)t+1/t t/t-1 t/t-1 t/t-1

k   =  E  LV(z )/R (A5)t/t-1 t/t-1 t/t-1 t
-1

 
where z  is the estimate of z  given information at t-1, LV(z ) is the vector gradient of V(.) evaluated at z ,t/t-1 t t/t-1 t/t-1

and E  is the variance of z  given information available at t-1. Notice that the filter effectively replaces V(z )t/t-1 t t

with the linear approximation V(z ) + LV(z )(z )[z -z ].t/t-1 t/t-1 t/t-1 t t/t-1

Estimates of the parameters in the x  process and F  are found by maximizing the likelihood t ,

2
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where u  and R  are derived from (A1) - (A5). t t

Since V(.) is a very complicated non-linear function, the gradients V’(.), are calculated numerically.

To initialize the filter at t=1, we set E  equal to zero, and z  equal to z , a parameter to be estimated. The1/0 1/0 0

likelihood function was maximized with the Downhill Simplex algorithm that does not require the computation

of gradients of the likelihood function.

Once the maximum likelihood estimates are obtained, the filter is used to calculate the estimates of

z  using data up to time t:t

z  = z  + k u . (A6)t/t t/t-1 t/t-1 t

Appendix II

The probability that x # 0 at the future payment date t+m+(I-1)n is,

where  is the expected value of  x  and  the variance both conditioned on ont+m+(I-1)n

time t data.To obtain these means and variances for the ARIMA(1,1,1) model we write in companion form as

shown above:

where C is a row vector with one as its first element and zeros elsewhere so that it selects the first element of

the vector z.   Th exoected value of x  can then be computed as CA z  and  can bet+m+(I-1)n t
m+(I-1)n
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computed from the recursion,

.
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              Table 1         
               Runs Tests
         
Bond Actual # Runs Expected # Runs Test Statistic
  
Mexico Par 126 167 -6.34

Mexico Discount 114 167 -8.26

Venezuela Par 104 140 -6.39

Venezuela Discount 104 140 -6.39

Costa Rica Principal A 109 146 -6.31

Notes: A run  occurs when two or more successive observations are increasing or decreasing.  The test
statistic is distributed asymptotically as standard normal under the null hypothesis that the conditional
probabilities evolve randomly.
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Table 2

Mexico

Par Discount

Model 1 -0.020 (0.002)  -0.038 (0.002)
0.010 (0.010) 0.003 (0.008)
5.177 (0.521) 7.531 (0.274)
8.421 (0.209) 6.999 (0.321)

Model 2 0.009 (0.001) -0.023 (0.001)
0.002 (0.009) 0.001 (0.006)
4.774 (0.573) 7.678 (0.263)
7.427 (0.283) 5.373 (0.497)

Model 3 0.004 (0.001) 0.005 (<0.001)
1.348 (0.045) 1.135 (0.058)
7.243 (0.449) 6.465 (0.438)

33.279 (<0.001) 31.961 (<0.001)
104.642 (<0.001) 157.643 (<0.001)

Model 4 -0.001 (<0.001) -0.001 (0.001)

0.141 (0.013) 0.973 (0.004)

1.042 (0.002) 1.005 (<0.001)

0.005 (0.010) 0.035 (0.005)

6.547 (0.365) 10.173 (0.117)

16.625 (0.011) 10.873 (0.092)
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Table 2 cont

Venezuela Costa Rica

Par Discount

Model 1 0.007 (0.001) -0.004 (0.008) -0.114 (0.001)
0.001 (0.017) 0.002 (0.024) 0.005 (0.001)
 2.887 (0.823)  9.041 (0.171) 6.760 (0.343)
3.615 (0.729) 1.615 (0.952) 46.986 (<0.001)

Model 2 0.007 (<0.001) 0.027 (0.003) -0.067 (0.003)
<0.001 (0.006) 0.001 (0.043) <0.001 (0.012)
53.638 (<0.001) 47.476 (<0.001) 4.809 (0.582)
4.779 (0.573) 14.468 (0.025) 6.558 (0.364)

Model 3 0.004 (<0.001) 0.002 (0.001) 0.010 (0.001)
0.076 (0.266) 2.687 (<0.001) 1.281 (0.122)
4.937 (0.005) 4.194 (<0.001) 3.904 (0.770)

44.064 (<0.001) 83.746 (<0.001) 5.805 (0.445)
143.971 (<0.001) 1.861 (0.932) 2.390 (0.881)

Model 4 0.003 (0.001) 0.006 (0.001) -0.021 (0.004)

0.717 (0.087) 0.822 (0.073) 0.789 (0.002)

1.017 (0.004) 1.010 (0.003) 0.945 (0.056)

0.001 (0.010) 0.003 (0.018) 0.019 (0.023)

10.513 (0.105) 8.854 (0.182) 3.734 (0.713)

1.987 (0.921) 5.555 (0.475) 7.901 (0.245)

Notes: The estimated models have the form:

where V(.) is the pricing function given in (xx), and is the unobserved state variable that
follows one of the following processes:

where .



Figure 1: Mexican Brady Bond Prices
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Figure 2: Venezuelan Brady Bond Prices
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Figure 3: Costa Rican Brady Bond Prices
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Figure 4: Mexican Default Probabilities
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Figure 5: Venezuelan Default Probabilities
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Figure 6: Costa Rican Default Probabilities
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Figure 7
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