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Abstract 
 

This paper addresses whether currency trades have greater price impact during pe-
riods of rapid public information flow. Central bankers often suggest that expecta-
tions are at times “ripe” for coordinated adjustment, and that periods of rapid infor-
mation flow are such a time. We develop an optimizing model to account for the 
joint behavior of order flow and returns around announcements. Using transaction 
data made available by electronic trading, we estimate the price impact of trades in 
the DM/$ market precisely. We then test whether trades during periods with mac-
roeconomic announcements have higher price impact. They do. We also test for de-
pendence of liquidity on trading volume and return volatility (two other prominent 
state variables in the literature on liquidity variation). We do not find any evidence 
that liquidity depends on these variables. The findings provide policy-makers with 
guidance for the timing and magnitude intervention. 
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Time-Varying Liquidity in Foreign Exchange 
  

 
 
 

This paper addresses time-varying liquidity in the foreign exchange mar-

ket and its relevance for policy. Liquidity is defined by the price impact of trades: 

trades have more price impact when markets are less liquid, other things equal. 

(This usage is standard in theoretical work on trading; see, e.g., Kyle 1985.)  Our 

particular interest is whether currency trades have more price impact during 

periods of rapid public information flow. This is important for policy: if the 

answer is yes, it provides a means of increasing the efficacy of intervention (e.g., 

by selectively timing intervention trades). Central bankers have long suggested 

that market expectations are at times “ripe” for coordinated adjustment, particu-

larly when new public information arrives. Implicit in this view is the idea that 

agents draw different conclusions from common macroeconomic data, making 

transactions at these times especially valuable for measuring expectations.  

 We estimate the price impact of trades using transaction data recently 

made available by electronic trading. These data allow precise tracking of how 

the market absorbs actual trades and any information conveyed by them. Though 

the data represent private trades rather than central bank trades, they are 

relevant for measuring the price impact of central bank trades as long as inter-

ventions are sterilized and convey no monetary policy signal. These conditions 

insure that central bank trades are uncorrelated with current and future mone-

tary policy, which is also a property of private trades (so long as exchange rates 

are floating). Our analysis is relevant to the price impact of these trades per se, 

not to the price impact of accompanying intervention announcements. Incre-

mental effects from intervention announcements are best analyzed using more 

traditional methods and data (see Dominguez and Frankel 1993).1    

We begin by developing a trading model for structural guidance on the 

                                                 
1 Though intervention in practice is often coupled with an intervention announcement, this is not always 
the case; i.e., stealth intervention is definitely a policy option. 
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joint behavior of order flow and returns.2 The model is sufficiently rich to allow 

estimation using the particular type of order flow data available (data on dealer-

to-dealer trades). Two features of the model stand out in terms of testable 

implications. First, it includes macroeconomic announcements whose implica-

tions for exchange rate fundamentals are partially gleaned from order flow. This 

allows order flow to mediate part of these announcements’ price impact and 

provides a structural understanding for why liquidity is reduced. Second, the 

model produces so-called “hot potato” trading, i.e., the passing of positions from 

dealer to dealer for risk management purposes (Flood 1994, Lyons 1997). Hot 

potato trading imposes testable restrictions on the joint behavior of order flow 

and returns that we examine in the data.    

Our estimation strategy has two stages. First, we estimate a linear, con-

stant-coefficient model with two equations, one for returns and one for order 

flow. That the system includes an equation for order flow (signed trades) is 

important: macro announcements may affect the trades process itself (versus 

affecting the size of a given trade’s price impact). Though the constant-coefficient 

model does not allow for state-dependent liquidity, it does allow testing of 

several of our trading model’s predictions. For example, it allows testing of 

predictions about which variables should drive both returns and order flow 

(including the relevance of various lags).  

The second stage of our estimation strategy examines nonparametric (ker-

nel) regressions of our two trading model equations. Kernel estimation allows us 

to address directly the state dependence of liquidity. (Kernel estimation is 

feasible here due to the large quantity of available transaction data; one could not 

effect similar analysis with actual intervention trades due to much smaller 

samples.) The state variable that is our primary focus is the flow of public 

macroeconomic information, measured here from the flow of macro announce-

                                                 
2 Order flow is a term from microstructure finance that refers to the net of buyer- and seller-initiated 
trades. (It is therefore not synonymous with trading volume.) In markets organized like foreign exchange 
(i.e., dealer markets), the initiating side of the trade is the side that decides whether to trade at the 
dealer’s posted quote. (This measure has no counterpart in rational expectations models of trading 
because in that setting all trades are symmetric—there is no “initiator.”) As an empirical matter, order 
flow plays a central role in aggregating dispersed information in many different securities markets (e.g., 
equities, bonds, and foreign exchange; see Lyons 2001). 
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ments. The kernel results (using hourly data from the largest spot market, DM/$) 

show a clear positive impact of announcement flow on market liquidity (i.e., the 

elasticity of price with respect to order flow). Thus, we find that order flow does 

indeed mediate the price impact of announcements, in keeping with our trading 

model. We also test for dependence of liquidity on trading volume and return 

volatility (two other prominent state variables in the literature on liquidity 

variation). We do not find any evidence that liquidity depends on these variables. 

Finally, we find evidence of hot potato trading. Specifically, there is momentum 

in flows (positive flows follow positive flows) and price impact is limited to initial 

flow innovations.     

Our approach to analyzing the price impact of unannounced intervention 

illuminates a promising direction for future research: central banks with precise 

knowledge of their own trades—e.g., time of day, method of execution (e.g., 

brokers versus dealers), stealth level, etc.—can estimate the influence of these 

various parameter settings.  With the types of data now available, central banks 

can learn exactly how trading is affected, including the induced flow of orders on 

each side of the market and the process by which price adjusts. It is something 

like a doctor who determines how a digestive system is functioning by having a 

patient ingest blue dye—the whole process becomes transparent. Such is the 

future of empirical work on this topic.   

The remainder of the paper is in five sections. The next section develops a 

trading model for understanding the joint behavior of dealer-to-dealer order flow 

and exchange rate returns. Section 2 describes the dealer-to-dealer trading data. 

Section 3 presents our empirical results for both the constant-coefficient model 

and the kernel regression model. Section 4 revisits the direction of causality in 

the model. Section 5 concludes. 

1.  Model 

 Our model has two main features that distinguish it from earlier empirical 

models of currency order flow (e.g. Evans and Lyons 1999). First, the model 

includes macroeconomic announcements from which implications for the ex-

change rate are not inferable from the announcement alone. This allows order 

flow to convey incremental information about agents’ changing expectations. 
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Second, the model allows for hot potato trading. If hot potato trading is present in 

the data, failing to account for it at the modeling stage will result in mis-

characterizing the joint behavior of order flow and returns. 

Before introducing specifics, let us provide a brief sketch of the model. At 

the beginning of each day, the public (i.e., non-dealers) place orders in the foreign 

exchange market. These orders are stochastic and are not publicly observed. 

Initially, dealers take the other side of these trades—shifting their portfolios 

accordingly. To compensate the (risk-averse) dealers for the risk they bear, an 

intraday risk premium arises, producing some intraday mean reversion in price. 

At the end of each trading day dealers unload intraday positions back onto the 

public, whose greater risk bearing capacity (in aggregate) gives them comparative 

advantage in holding overnight positions. Because the public’s (non-stochastic) 

demand at the end of the day is not perfectly elastic, the public’s orders at the 

beginning of the day have portfolio-balance effects that persist beyond the day. 

(Think of the public’s orders at the beginning of the day as representing, say, 

shifts in hedging demand, whereas public demand at the end of the day is purely 

speculative, being driven by sufficient expected return per unit risk borne.) The 

portfolio balance effects arise because even when these risky positions are shared 

marketwide, their price impact is not diversified away.3  

Specifics 

Consider an infinitely lived, pure-exchange economy with two assets, one 

riskless and one risky, the latter representing foreign exchange.4 Each day, 

foreign exchange earns a payoff R, publicly observed, which is composed of a 

series of random increments:   

(1)  ∑
=

∆=
t

i
it RR

1

 

The increments ∆R are i.i.d. Normal(0, 2σ R ). We interpret the increments as 

                                                 
3 Note that the size of the order flows the DM/$ spot market needs to absorb are on average more than 
10,000 times those absorbed in a representative U.S. stock (e.g., the average daily volume on individual 
NYSE stocks in 1998 was about $9 million, whereas the average daily volume in DM/$ spot was about 
$300 billion). 
4 Some of the model’s basic structure is shared with the model in Evans and Lyons (1999), so we omit 
some details here where overlap is strongest. 
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interest rate changes. 

The foreign exchange market has two participant types, customers and 

dealers. There is a continuum of customers, indexed by z∈[0,1], each customer 

having constant absolute risk aversion (CARA) and maximizing utility of the 

following form: 

0

exp( )s
t t t s

s

U E cδ θ
∞

+
=

 
= − − 

 
∑  

where Et is the expectations operator conditional on the customers’ information 

at time t, and ct+s is consumption in period t+s. We assume that all customers 

have the same time discount factor δ and risk aversion parameter θ. There are N 

dealers, indexed by i. Dealers also have CARA utility. The problem dealers solve 

is described below, following specification of the trading environment. 

Within each day t there are four rounds of trading: 

 

Round 1:  Dealers trade with customers (the public).  

Round 2:  Dealers trade among themselves (to share inventory risk). 

Round 3:  Rt is realized and dealers trade among themselves a second time. 

Round 4:  Dealers trade again with the public (to share risk more broadly).  

The timing of events within each day is summarized below, along with some 

notation.  

 

Daily Timing 

 

    Round 1     Round 2      Round 3         Round 4 

 

 
Announ.  dealers   public       dealers     inter-       order       dealers   payoff      inter-      order          dealers    trades: 

             quote    trades       quote       dealer       flow         quote    realized    dealer      flow            quote      public 
                                        trade     observed      trade    observed 
 

A         1
iP          1

iC           2
iP            2

iT            2x∆      3
iP    ∆R     3

iT     3x∆           4
iP         4

iC  
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Trading Round 1 

 At the beginning of each day, nature chooses whether to produce a macro 

announcement. We denote this announcement with the indicator variable At, 

which equals 1 if there is an announcement, and 0 if not. To some customers, the 

announcement conveys information about the payoff increment to be realized 

later that day, ∆Rt.5 This is important to the model: it implies that the order flow 

induced by observation of this announcement will be informative of future payoffs 

(and dealers will factor this into their processing of the order flow signals). 

The next event each day is dealer quoting. Each dealer simultaneously and 

independently quotes a scalar price to the public.6 We denote this round-1 price 

of dealer i as iP1 . (We suppress notation for day t; as we shall see, it is the within-

day rounds—the subscripts—that capture the model’s economics.) This price is 

conditioned on all information available to dealer i.  

 The final event each day in round 1 is customer (i.e., public) trading. Each 

of the N dealers receives a customer order 1
iC —unobservable to the rest of the 

market—that has two components. (The dealer sees only his own customer order 

in total, not the components separately.) Both of these components are executed 

at his quoted price 1
iP . (Let 1

iC <0 denote net customer selling—dealer i buying.) 

The second component is non-zero only if a macro announcement has occurred 

(indicator variable At=1): 

 1 1 1̂
i i iC C C= +%        with 1

ˆ 0iC =   if  0=tA  

 

The first component 1
iC%  is distributed Normal(0, 2

Cσ % ). The first component is also 

                                                 
5 It is important that dealers learn about this information from order flow, rather than from the 
announcement itself. The specification is most sensible in an environment where the data-generating 
process is time varying. Note that differing assessments need not be irrational: in a world where the 
true model is not obvious, model formulation will involve costs, leading to rational disagreement in 
equilibrium, despite having observed the same macroeconomic information. To formalize this, consider 
a setting in which agents are able to process a common signal more precisely if they pay a fixed cost to 
observe a better model (in lieu of paying a fixed cost to observe the signal itself, as in Grossman and 
Stiglitz 1980).  
6 While it is true that a bid-ask spread of zero would not induce entry into dealing, introducing a bid-
offer spread (or price schedule) in round one to endogenize the number of dealers is a straightforward—
but distracting—extension of our model. The simultaneous-move nature of the model is in the spirit of 
simultaneous-move games more generally (versus sequential-move games). 
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uncorrelated across dealers and uncorrelated with the payoff increment ∆R at all 

leads and lags. (This first component reflects “portfolio shifts” of the non-dealer 

public; though we leave their precise source unspecified, they could come from 

changing hedging demands, changing transactional demands, or changing risk 

preferences—a la Evans and Lyons 1999.) On announcement days, the second 

component of the customer order 1
ˆ iC  is distributed Normal(0, 2

Ĉ
σ ). It is positively 

correlated with the payoff increment to be realized later that day, ∆Rt, but is 

uncorrelated with the first component of customer order flow 1
iC%  (across all 

dealers). For the analysis below, it is useful to define the aggregate customer 

demand in round 1 as:  

1 1
1

N
i

i

C C
=

= ∑  

 

Trading Round 2 

Round 2 is the first of two interdealer trading rounds. Each dealer simul-

taneously and independently quotes a scalar price to other dealers at which he 

agrees to buy and sell (any amount), denoted iP2 . These interdealer quotes are 

observable and available to all dealers. Dealers then simultaneously and inde-

pendently trade on other dealers’ quotes. If more than one dealer posts a quote at 

which a dealer wants trade, the dealer’s desired trade is allocated to the dealer 

whose index i is the nearest preceding index (letting index 1 wrap to index N).7   

Let iT2  denote the net interdealer trade initiated by dealer i in round two. 

At the close of round 2, all agents observe a noisy signal of interdealer order flow 

from that period: 

(2)     2 2
1

N
i

i

x T ν
=

∆ = +∑  

where ν  is distributed Normal(0, 2
νσ ), independently across days. The model’s 

difference in transparency across trade types corresponds well to institutional 

                                                 
7 This trade allocation rule is important for generating hot potato trading. The hot potato result does 
not require that a dealer’s trade be routed to only one other dealer at the given price; it requires only 
that the dealer’s trade is not evenly split across all other dealers at the given price. 
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reality: customer-dealer trades in major foreign-exchange markets (round 1) are 

not generally observable, whereas interdealer trades do generate signals of order 

flow than can be observed publicly.8 

 

Trading Round 3 

  Round 3 is the second of the two interdealer trading rounds. At the outset 

of round 3 the payoff increment ∆Rt is realized and the daily payoff Rt is paid 

(both observable publicly). Like in round 2, each dealer then simultaneously and 

independently quotes a scalar price to other dealers at which he agrees to buy 

and sell (any amount), denoted iP3 . These interdealer quotes are observable and 

available to all dealers in the market. Each dealer then simultaneously and 

independently trades on other dealers’ quotes. If more than one dealer posts a 

quote at which a dealer wants trade, the allocation rule is the same as that for the 

first interdealer trading round.  

Let iT3  denote the net interdealer trade initiated by dealer i in round 3. At 

the close of round 3, all agents observe interdealer order flow from that period: 

 

(3)     3 3
1

N
i

i

x T
=

∆ = ∑   

 

This specification with noiseless observation of round-three order flow captures 

dealer learning and the increasing precision of their order-flow beliefs. 

 

Trading Round 4 

 In round 4, dealers share overnight risk with the non-dealer public. Unlike 

round 1, the public’s trading in round 4 is non-stochastic. Initially, each dealer 

simultaneously and independently quotes a scalar price iP4  at which he agrees to 

buy and sell any amount. These quotes are observable and available to the public. 

The mass of customers on the interval [0,1] is large (in a convergence 

sense) relative to the N dealers. This implies that the dealers’ capacity for 

                                                 
8 The screens of interdealer brokers (such as EBS) are an important source of these interdealer order-
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bearing overnight risk is small relative to the public’s capacity. With this assump-

tion, dealers set prices optimally such that the public willingly absorbs dealer 

positions, and each dealer ends the day with no position  (which is common 

practice among actual spot foreign-exchange dealers). These round-4 prices are 

conditioned on the interdealer order flow 3x∆ , described in equation (3). We shall 

see that this interdealer order flow informs dealers of the size of the total 

position that the public needs to absorb (to bring the dealers back to a position of 

zero). 

To determine the round-4 price—the price at which the public willingly 

absorbs the dealers’ aggregate position—dealers need to know the risk-bearing 

capacity of the public. We assume it is finite. Specifically, given that customers’ 

intertemporal utility is CARA (coupled with daily returns being i.i.d.), the 

public’s total demand for foreign exchange in round-4 of day t, denoted 4C , is 

proportional to the expected return on foreign exchange conditional on public 

information: 

 

(4)    ( )tttt PRPEC ,4,411,44 ]|[ −Ω+= ++γ  

 

where the positive coefficient γ captures the aggregate risk-bearing capacity of 

the public (γ= ∞ is infinitely elastic demand), and t,4Ω  includes all public informa-

tion available for trading in round 4 of day t. 

  

The Dealer’s Problem 

 The dealer’s problem is defined over six choice variables, the four scalar 

quotes iP1 , iP2 , iP3 , and iP4 , and the two dealer’s interdealer trades iT2  and iT3 . 

The appendix provides the full specification of the dealer’s problem and model’s 

solution. Here we provide some intuition.  

Consider the four quotes iP1 , iP2 , iP3 , and iP4 .  No arbitrage ensures that at 

any given time all dealers quote a common price: quotes are executable by 

                                                                                                                                                 
flow signals. 
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multiple counterparties, so any difference across dealers would provide an 

arbitrage opportunity. Hereafter, we write 1P , 2P , 3P , and 4P  in lieu of iP1 , iP2 , 

iP3 , and iP4 . It must also be the case that if all dealers quote a common price, then 

that price must be conditioned on common information only. Common information 

arises at the end of round 2 (interdealer order flow 2x∆ ), at the beginning of 

round 3 (payoff increment ∆R), and at the end of round 3 (interdealer order flow 

3x∆ ). The price for round-4 trading, 4P , reflects the information in all three of 

these sources. (Recall that the customer orders engendered by macro announce-

ments are not common knowledge.)  

Given our model is analytically similar to that in Evans and Lyons (1999), 

we relegate solution details to the appendix. The resulting price changes and 

interdealer flows (end hour h-1 to end hour h) for a representative hour can be 

written as: 

 

(5)  1 2 3 1( ) p
h h h h hP A x Pβ β β η−∆ = + ∆ − ∆ +   

 

(6)                                   4 1 5 1
x

h h h hx x Pβ β η− −∆ = ∆ + ∆ +  

 

where 6
p
h hRη β= ∆ , 7 8 1( )x

h h hA Cη β β= +  and the constants β1 through β8 are posi-

tive. (The variable 1hC  denotes the aggregate round-one order flow in hour h.) The 

order flow coefficients in the price equation, β1 and β2, depend on γ (the public’s 

aggregate risk-bearing capacity from equation 4), the variances 2σ R , 2
Cσ % , 2

Ĉ
σ , and 

the correlation between announcement engendered order flow 1
ˆ

hC  and ∆Rh.  

 The intuition for each of the terms in equations (5) and (6) is as follows. 

The first term in the return equation is the price impact of order flow. The 

contemporaneous price impact of order flow increases when a macro announce-

ment immediately precedes it (picked up by the indicator variable Ah). The 

second term in the return equation reflects the fact that price effects from order 

flow have a mean reverting component, due to the transitory intraday risk premia 
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that arise in the model. The residual in the return equation reflects the flow of 

unmeasured macroeconomic information (orthogonal to order flow ∆xh). The first 

two terms in the order flow equation capture hot potato trading: interdealer 

order flow in the model is positively autocorrelated as positions are passed from 

dealer to dealer for risk management purposes. Hot potato trading covaries 

positively with lagged returns as well (due to contemporaneous price impact) and 

because order flow is measured with noise. The residual in the order flow 

equation reflects the flow of unmeasured order flow from customers (contempo-

raneous). 

   

2.  Data 

The dataset contains time-stamped, tick-by-tick observations on actual 

transactions for the largest spot market − DM/$ − over a four-month period, May 1 

to August 31, 1996. These data are the same as those used by Evans (2001), and we 

refer readers to that paper for additional detail. The data were collected from the 

Reuters Dealing 2000-1 system via an electronic feed customized for the purpose. 

According to Reuters, over 90 percent of the world's direct interdealer transac-

tions took place through the system.9 All trades on this system take the form of 

bilateral electronic conversations. The conversation is initiated when a dealer 

uses the system to call another dealer to request a quote. Users are expected to 

provide a fast two-way quote with a tight spread, which is in turn dealt or 

declined quickly (i.e., within seconds). To settle disputes, Reuters keeps a 

temporary record of all bilateral conversations. This record is the source of our 

data. (Reuters would not provide the identity of the trading partners for confi-

dentiality reasons.) 

For every trade executed on D2000-1, our data set includes a time-stamped 

record of the transaction price and a bought/sold indicator. The bought/sold 

indicator allows us to sign trades for measuring order flow. This is a major 

                                                 
9  At the time of our sample, interdealer transactions accounted for about 75 percent of total trading in 
major spot markets. This 75 percent from interdealer trading breaks into two transaction types—direct 
and brokered. Direct trading accounted for about 60 percent of interdealer trade and brokered trading 
accounted for about 40 percent. For more detail on the Reuters Dealing 2000-1 System see Lyons (2001) 
and Evans (2001).  
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advantage: we do not have to use the noisy algorithms used elsewhere in the 

literature for signing trades. One drawback is that it is not possible to identify 

the size of individual transactions. For model estimation, order flow ∆xt  is 

therefore measured as the difference between the number of buyer-initiated and 

seller-initiated trades.  

The variables in our empirical model are measured hourly. We take the 

spot rate, as the last purchase-transaction price (DM/$) in hour h, Ph. (With 

roughly 1 million transactions per day, the last purchase transaction is generally 

within a few seconds of the end of the hour. Using purchase transactions elimi-

nates bid-ask bounce.) Order flow, hx∆ , is the difference between the number of 

buyer- and seller-initiated trades (in thousands, negative sign denotes net dollar 

sales) during hour h.   We also make use of three further variables to measure the 

state of the market: the number of macroeconomic announcements ah; trading 

intensity nh, measured by the gross number of trades during hour h; and price 

volatility hσ , measured by the standard deviation of all transactions prices 

during hour h. The macroeconomic announcements comprise all those reported 

over the Reuter’s News service that relate to macroeconomic data for the U.S. or 

Germany (Money Market Headline News). The source is Olsen Associates 

(Zurich); for details, see, e.g., Andersen and Bollerslev (1998). 

Although trading can take place on the D2000-1 system 24 hours a day, 7 

days a week, the vast majority of transactions in the DM/$ take place between 6 

am and 6 pm, London time, Monday to Friday. The results we report below are 

based on this sub-sample. (They are similar to results based on the 24-hour 

trading day.) This sub-sample includes a vast number of trades, providing us with 

considerable power to testing the state dependence of liquidity. 

   

3.  Results 

  

Stage 1: Constant Coefficient Model 

Table 1 presents results for our first-stage estimation, the constant-

coefficient model with two equations, one for returns and one for order flow 
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(hourly data). In the returns equation, both of the variables our model predicts 

should be relevant are significant and correctly signed. The magnitude of the 

coefficient on order flow ∆xh implies that the contemporaneous impact of order 

flow on price is about 60 basis points per $1 billion.10 The coefficient on lagged 

returns implies that about three quarters of order flow’s impact effect persists 

indefinitely.  

Two other important facets of the returns-equation results warrant atten-

tion. First, note from row (iii) that there is no mean reversion in price uncondi-

tionally. This is consistent with the exchange rate following a martingale in 

hourly data. It is only when order flow is included that price exhibits some 

conditional mean reversion. (This conditional mean reversion result is not a 

violation of market efficiency, however, because our data were not available to 

market participants in real time.) Second, note from row (v) that lags beyond 

those predicted by our model are not significant in the returns equation. (This 

holds for further lags of both variables as well; not reported.)  

Estimates for the order flow equation accord with the model as well. Both 

variables predicted to be relevant are significant and properly signed, whereas 

lags beyond those predicted are not significant. In this equation, as in the returns 

equation, there is evidence of heteroskedasticity, so our standard errors are 

adjusted for this. These results indicate that there is momentum in order flows: 

positive flows follow positive flows, which is consistent with the presence of hot 

potato trading.  

 

Stage 2: Kernel Regression Estimates of State Dependent Liquidity 

To test for state dependence in liquidity, we consider nonparametric 

regressions of the form: 

∆ ∆ ∆p x p sh h h h h
p= +− −π η( , , )1 1 , 

 
∆ ∆ ∆x x p sh h h h h

x= +− − −µ η( , , )1 1 1 , 
 

                                                 
10 This is based on an average trade size in our sample of $3.9 million. (This average trade size is 
available despite individual trade sizes not being available.) We use log price change as our dependent 
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where π(.) and µ(.) are arbitrary fixed, unknown, and nonlinear functions of the 

variables shown, and ηt  is a  mean zero i.i.d. error. (The vector 1hs −  is a vector of 

state variables, specified below.) Our strategy here is to estimate these functions 

by kernel regression and then test whether our estimates of order flow’s price 

impact are influenced by the flow of macroeconomic announcements. As noted in 

the introduction, the period following announcements is commonly thought to be 

a time when market expectations are ripe for coordinated adjustment (and our 

trading model provides a structural understanding of how this might work). To 

insure that our estimates for the announcement state variable are robust, we 

consider two additional potential state variables suggested by theory (see, e.g., 

Easley and O’Hara 1992): price volatility and trading volume.11  

 Tables 2 and 3 present our kernel regression results for the returns and 

order flow equations, respectively (hourly data). For the returns equation (Table 

2), $π j  denotes the derivative of the estimated function ˆ(.)π  with respect to j’th 

variable. Thus, the first three rows indicate how the price impact of order flow 

(the first argument in the π̂  function) varies with the variables shown. Note the 

significant effect from the announcements state variable ah-1. This variable is 

defined as the number of macro announcements in hour h-1. Accordingly, it 

implies that the price impact of order flow is about 10 percent higher with each 

macro announcement in the previous hour (0.024/0.26 being about 10 percent, 

where 0.26 comes from the linear price impact estimate in Table 1). Thus, 

liquidity in this market depends on the pace of public information flow The other 

two potential state variables do not appear to matter for the price impact of order 

flow: σh-1 and nh-1 are insignificant. (σh-1 is the standard deviation of all transac-

tion prices in the previous hour and nh-1 is the number of transactions in the 

previous hour.) Note too that the time-of-day dummies are insignificant (see table 

                                                                                                                                                 
variable because this is a more common measure of returns in the empirical literature. Use of the raw 
(unlogged) price change has no qualitative effect on our results. 
11 The announcement and volume state variables are also considered in the empirical analysis of central 
bank intervention by Dominguez (2001). Using intervention trade data, she finds that interventions 
that occur near macro announcements and during heavy trading volume are the most likely to have large 
effects. In her analysis, “heavy volume” means occurring when both London and New York are trading, 
and “near macro announcements” means that the public announcement of interventions occurred near 
the time of the macro announcement. 
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notes for definition); thus, within the 6 am to 6 pm London time period, time does 

not appear to define distinct states once we control for the other variables in our 

specification. Finally, note that there is no evidence of non-linearity in order 

flow’s price effect, once these state variables are included. 

 From the lower panel of Table 2, one sees that all three of the state 

variables influence the persistence of price effects. Higher trading volume 

increases the persistence of hourly price movements, whereas price volatility and 

announcement flow decrease the persistence of hourly price movements. From 

this lower panel, note too the significant non-linearity in the ∆ph-1 variable. This 

implies that larger moves are less persistent (controlling for the other variables).  

  Table 3 presents kernel regression results for the order flow equation. The 

three state variables and the time-of-day dummies are insignificant across the 

board in this case. There is some slight evidence of non-linearity of in the  ∆xh-1 

variable, but the magnitude of the effect is not large economically. Bottom line: 

the order flow process does not appear to be state or time dependent as specified 

here. 

 

Impulse Responses 

 Impulse responses provide an efficient way to summarize the effects of 

announcement flow on the dynamic, two-equation system examined in Tables 2 

and 3. These impulse responses are presented in Figures 1-2. Figure 1 illustrates 

the effect of order flow shocks on both returns and subsequent order flow, 

including how announcement flow influences the dynamics. Figure 2 illustrates 

the effect of return shocks on both returns and subsequent order flow, also 

including how announcement flow influences the dynamics. These figures 

complement the evidence in Tables 2 and 3 in that they provide an illustration of 

the effects of announcements over time. For completeness, Figures 3-6 address 

the effects of the two additional state variables, trading volume and price 

volatility. (See the appendix for computation details.) 

 The strongest state-variable effects are manifest in figures 1 and 2, which 

illustrate the effects of announcement flow. (That these effects should be strong-

est is consistent with the kernel regression results reported above, given their 
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complementarity.) The experiment in figure 1 is the following. Suppose the 

announcement flow in the previous hour is high (one deviation above the sample 

average) and is expected to remain high forever: how does this change the effect 

of an innovation in order flow on price and subsequent order flow? The increased 

price impact from announcement flow is clear from the upper panel of Figure 1. 

Note too that the order flow and return responses persist. (This is conditional on 

the announcement flow persisting, so it should not be viewed as an indication of a 

non-stationary system.) Note too the price shock effect on the next hour’s order 

flow from Figure 2. This is consistent with hot potato trading, i.e., one average 

much of price variation is due to order flow innovations, which on average are 

followed by subsequent flows in the same direction (though the price impact of 

those subsequent flows is indistinguishable from zero). 

 The impulse responses in figures 3-6 are broadly consistent with the 

results on liquidity state dependence from the kernel regressions. The two 

additional state variables of price volatility and trading volume have little effect 

on the price impact of order flow innovations. The order flow process is more 

significantly affected. Figure 3, for example, exhibits differential effects on order 

flow due to high trading volume (number of trades). High trading volume also 

significantly alters the order flow response to price shocks, as shown in figures 4 

and 6. 

 

4.  Bias Analysis 

 Though the direction of causality in our model runs from order flow to 

price (as is true of microstructure theory generally), there is a popular alterna-

tive hypothesis that involves reverse causality, namely feedback trading. This 

section examines whether feedback trading can account for our results. 

 We begin with some perspective. Most models of feedback trading are 

based on non-rational behavior of some kind, making them less appealing to many 

economists on a priori grounds. Models of feedback trading that do not rely on 

non-rational behavior generally require that returns be forecastable using the 

first lag of returns, which is not a property of major floating exchange rates (and 

is not a property of our hourly data either—see Table 1, row iii).  Accordingly, the 
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class of feedback trading models that might be relevant here is the non-rational 

class.12 

  Existing empirical evidence on feedback trading in foreign exchange is 

scant. Valid instruments for identifying returns-chasing order flow have not been 

employed and it is not clear which variables would qualify. One piece of relevant 

evidence is provided by Killeen et al. (2001). Using daily data on foreign exchange 

order flow, they find that order flow Granger causes returns but returns do not 

Granger cause order flow. This evidence is purely statistical, however, and 

applies at the daily frequency, so its message (though suggestive) is not definitive 

for the issue in this paper. 

Our approach here is to pose and address the following question: Suppose 

intra-hour (i.e., contemporaneous in hourly data) positive-feedback trading is 

present, under what conditions could it account for the key moments of our data? 

To address this question, we decompose measured order flow ∆xh  into two 

components: 

 

(7) ∆ ∆ ∆x x xh h h
fb= +*  

 

where ∆xh
*  denotes exogenous order flow from portfolio shifts as identified in our 

model, and ∆xh
fb  denotes contemporaneous order flow due to feedback trading, 

where: 

 

(8) fb
h hx pφ∆ = ∆ . 

 

The sign of the parameter φ  that most people have in mind for explaining our 

results is positive, i.e., positive feedback trading (based on the positive coeffi-

cients on contemporaneous order flow in the price-change equations in Table 1).  

Next, suppose the true structural model can be written as: 

                                                 
12 Whether the non-rational class is intellectually appealing is not an issue we could hope to resolve 
here. We simply offer the fact that immense amounts of money are at stake when dealing in foreign 
exchange at major banks (the source of our data). These banks take the evaluation of traders’ perform-
ance and decision making very seriously. 
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(9) ∆ ∆ ∆p x ph h h h
p= + +−β β η11 12 1

*  

 ∆ ∆ ∆x x ph h h h
x* *= + +− −β β η21 1 22 1  

 

Notice that the equations in (9) are valid reduced-forms from our model that 

could be estimated by OLS if one had data on ∆xh
*

. However, if feedback trading is 

present (i.e., 0φ ≠ ), estimates of (9) using measured order flow, ∆xh , will suffer 

from simultaneity bias.  

 We can evaluate the size of this bias be estimating (7) – (9) as a whole 

system of equations. Specifically, we can combine (7) – (9) into a bivariate system 

for price changes and measured order flow. The dynamics of this system depend 

on seven parameters: 11 12 21 22, , , ,φ β β β β , and the variances of ηh
p  and ηh

x. These 

parameters can be estimated by GMM using sample estimates of the covariance 

matrix for the vector [ 1 1, , ,h h h hp x p x− −∆ ∆ ∆ ∆ ], as described more fully in the appendix. 

In broad terms, the feedback trading alternative predicts that (1) the coefficient 

11β  on exogenous order flow will be smaller than those in Table 1, if not zero, and 

(2) the coefficient on feedback trading φ  will be positive and significant.   

 The GMM estimates are reported in Table 4. The last row of the table 

reports the estimate of the feedback parameter, φ : the estimate is negative and 

statistically insignificant. Thus, insofar as there is any empirical evidence of 

feedback trading in our data, it points to the presence of negative rather than 

positive feedback trading. Moreover, estimates from the price equation show that 

our causal interpretation of the order flow’s impact on price (based on our model) 

remains intact: the estimate of 11β  is slightly larger that those in Table 1 and 

remains highly statistically significant, in contrast to what the feedback trading 

alternative predicts.  

 

5.  Conclusions 

We are, for the first time, at the point where we can measure liquidity in 

the FX market, and why it varies over time. Our results show that liquidity in 
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currency markets depends on the pace of public information flow. Liquidity does 

not, however, appear to depend on trading volume or return volatility (two other 

prominent state variables in the literature on liquidity variation). These results 

provide policymakers with concrete guidance for increasing the efficacy of 

intervention by selectively timing their trades. The trading model we develop 

provides a structural interpretation for why the effect from public information 

flow should be present in the data. In the model, the implications of new macro-

economic data for the exchange rate are not inferable from the macro data alone, 

which allows order flow to convey incremental information about agents’ chang-

ing expectations.  

Our trading model provides testable implications beyond those involving 

public information flow. For example, it provides a structural account for the joint 

behavior of order flow and returns. Empirically, the model accords well with the 

data. The variables the model predicts should be relevant are indeed significant. 

The variables (and lags of variables) the model predicts should be insignificant 

are insignificant. Our estimate of the contemporaneous impact of order flow on 

price is about 60 basis points per $1 billion. Of this 60 basis points, roughly 80 

percent persists indefinitely. Our model also produces hot potato trading, and the 

data accord well with predictions in this respect as well. Specifically, we find 

momentum in order flows (positive flows follow positive flows in hourly data), 

though only the initial innovations in flow appear to have impact on prices.  

Though our policy focus in this paper has been central bank intervention, 

order flow analysis is relevant for other policy issues as well. Consider two 

examples. The first is the liquidity hole that occurred in the dollar-yen market in 

October 1998 (the immediate aftermath of the LTCM crisis). Within about a day, 

the yen/$ rate fell from about 132 to about 117 and bid-ask spreads rose to nearly 

one yen (i.e., rose to about 30 times their typical size in the interbank market). 

This was not a trivial event in terms of resource allocation: the new lower level of 

the exchange rate was persistent. Why market liquidity dried up so fast and so 

drastically is still a puzzle, one that order flow analysis may help to resolve (see, 

e.g., the analysis of Citibank’s customer trades through October 1998 in Lyons 

2001, including those for hedge funds). A second policy area where order flow 
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analysis may prove valuable is currency market design, especially in emerging 

markets. With appropriate data, one could estimate how price impact in these 

markets changes as a function of the market state (devaluation likelihood, etc.). 

Also, one could determine whether customer forward trades have the same price 

impact as customer spot trades of similar size. If not, one could quantify the 

difference. (Many developing countries restrict or even forbid forward trading on 

the belief that such trading is more “speculative” in nature than spot trading and 

is therefore more destabilizing.) One might also compare price impact across 

countries, in an effort to determine which institutional structures are better at 

promoting liquidity.13  

The issue of price impact is related to the issue of market stability. Poli-

cymakers in some developing countries appear to believe that additional liquidity 

is destabilizing. In theory, it is less liquidity that is destabilizing, not more 

liquidity: the less the liquidity, the larger the price impact, and the more prices 

move (other things equal). To make the case that other things are not equal, in a 

way that might reverse the relationship between liquidity and stability, one could 

use the discipline of microstructure trading models to identify the countervailing 

forces. 

 
 

 

                                                 
13 One paper that addresses speculative attacks in Mexico using a microstructure approach is Carrera 
(1999). For theoretical work on the design of currency markets in developing countries see Kirilenko 
(1997). 
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Appendix A:  Kernel Regressions 

 

We consider nonparametric regressions of the form: 

( )t t ty m z η= +  

where m(.) is an arbitrary fixed but unknown nonlinear function of the variables 

in the vector zt, and ηt  is a  mean zero i.i.d. error. An estimate of the m(.) function 

is estimated by kernel regression as: 

 0,

0,

( )
( )

( )

T

b t j jj j t
t T

b t jj j t

K z z y
m z

K z z
= ≠

= ≠

−
=

−

∑
∑

)  

 

where Kb(u)=b-1K(u/b) with 0)( ≥uK  and ∫ =1)( duuK . In this application, we use 

the multivariate Gaussian kernel / 2( ) (2 ) exp( ' /2)dK u u uπ −= − where dim( )d u= . 

The bandwidth parameter, b, is chosen by cross-validation. That is to say, b 

minimizes: 

( )21
( )

T

t t tt
y m z w

T
−∑  

where wt is a weighting function that cuts off 5% of the data at each end of the 

data interval as in Hardle (1990), p. 162. We follow the common practice of 

including the standardized value of each of these variables in the Gaussian kernel 

(i.e., each element of zt is divided by its sample standard deviation).  

Asymptotic theory for kernel regressions in the time series context appear 

in Bierens (1983) and Robinson (1983). Robinson shows that consistency and 

asymptotic normality of the estimator can be established when the data satisfy α-

mixing with mixing coefficients α(k) that obey the condition )1()( /21 OkT
t

=∑∞ − δα  

and ∞<δ|| tyE , with δ > 2.   
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Appendix B:  Impulse Response Functions 

 

We use our kernel estimates of the price change and order flow equations  

 

∆ ∆ ∆p x p sh h h h h
p= +− −π η( , , )1 1 , 

 
∆ ∆ ∆x x p sh h h h h

x= +− − −µ η( , , )1 1 1 , 
 

where 1 1 1 1[ , , ]h h h hs a nσ− − − −=  is the vector of state variables, to compute two sets of 
impulse responses as follows. 

 

Responses to order flow shocks 

The impulse response to an order flow shock of δ  in hour h, is defined as 

     I E p x E p xp h h h h h h∆ ∆ Ω ∆ ∆ Ω ∆( ) [ | , ] [ | , ]τ δτ τ= = − =+ − + −1 1 0 ,                       

                            I E x x E x xx h h h h h h∆ ∆ Ω ∆ ∆ Ω ∆( ) [ | , ] [ | , ]τ δτ τ= = − =+ − + −1 1 0 ,      

where Ωh−1  is the information set containing the history of price changes, order 
flows, and the state variables until the start of hour h: 

Ω ∆ ∆ ∆ ∆h h h h h h hx x p p s s− − − − − − −=1 1 2 1 2 1 2{ , ,.. ., , .... .., , , ....}. 

I p∆ ( )τ identifies the change in expectations regarding ∆ph+τ  if order flow in hour h 

changes from zero to δ , given the particular history of past order flow, price  
changes, and the state variables in Ωh−1 . Similarly I x∆ ( )τ  identifies the change in 
expectations regarding ∆xh +τ  if order flow in hour h changes from zero to δ , given 
Ωh−1 . Notice that given the specification of the price and order flow equations, 
I x∆ ( )0 =δ  and I p s p sp h h h h∆ ∆ ∆( ) ( , , ) ( , , )0 01 1 1 1= −− − − −π δ π  so the impact of the order flow 

shock can be directly calculated from the kernel regression estimates.  

Calculating the change in expectations for τ > 0  is much more complicated 
because current price changes and order flow depend nonlinearly on past prices 
and order flow. Specifically, consider the one-period-ahead price change forecast. 
By iterated expectations, this forecast can be expressed as 

E p xh h h[ | , ]∆ Ω ∆+ − =1 1 δ =E E p x x p xh h h h h h h[ | , , , ] ,∆ Ω ∆ ∆ ∆ Ω ∆+ − + −= =1 1 1 1δ δ . 

The inner conditional expectation can be calculated from the kernel estimates of 
1( , , )h h hx p sπ +∆ ∆  given realizations of 1, ,andh h hx p s+∆ ∆ . To compute 1[ |hE p +∆  

1, ]h hx δ−Ω ∆ =  we therefore have to calculate the expected value of 1( , , )h h hx p sπ +∆ ∆  
using the joint distribution of 1, ,andh h hx p s+∆ ∆  conditional on 1{ , }h hx δ−Ω ∆ = . When 

(.)π  is linear, this is a straightforward calculation. When (.)π  is nonlinear, the 
expectation must be calculated by numerical simulation (described below).  
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History dependency also complicates the calculation of impulse response 
functions in nonlinear models. Notice that the impulse responses specify both the 
shock and history Ωh−1 . In linear models, the affect of a shock does not depend on 
the history of past shocks so it is unnecessary to specify Ωh−1 . Here we must 
specify Ωh−1  because the price impact of order flow in hour h may (in principle) 
vary according to the value of ∆ph −1 , and the state variables, z h−1. The results 
presented in the paper assume a particular history Ωh−1

0 , where ∆ph − =1
0 0 , ∆xh− =1

0 0  
and sh−1  equals a vector of constants, s 0  (specified below). With this history, 
E p xh h h[ | , ]∆ Ω ∆+ − =τ 1

0 0  = E x xh h h[ | , ]∆ Ω ∆+ − = =τ 1
0 0 0 . 

 

The Impulse Responses are computed as follows: 

1. Compute the vector of price and order flow residuals from the kernel re-
gressions: η πh

p
h h h hp x p s= − − −∆ ∆ ∆( , , )1 1 , and η µh

x
h h h hx x p s= − − − −∆ ∆ ∆( , , )1 1 1 . These 

residual vectors have mean zero. 

2. Set ∆xh = δ , and compute E p x sh h h[ | , ] ( , , )∆ Ω ∆− = =1
0 00δ π δ  from the kernel es-

timates and I x∆ ( )0 =δ . Compute ∆ ∆ Ω ∆~ [ | , ] ~p E p xh h k h h
p= = +−1

0 δ η  where ~ηh
p  is a 

random drawing from the vector of price residuals.  

3. Add the realizations { ~ , }∆ph δ  to the data set and compute new kernel esti-
mates of  the π (.) and µ (.)  functions using the optimized bandwidth pa-
rameters calculated in the data sample, ~ (.)π h  and ~ (.)µh . 

4. Compute E x x p zh h h h h[ | ] ~ ( ~ , ~ , )∆ Ω ∆ ∆+ =1
0 0µ  and ∆ ∆ Ω~ [ | ] ~x E xh h h h

x
+ + += +1 1

0
1η  where ~ηh

x 

is a random drawing from the vector of order flow residuals, and 
Ω Ω ∆h h hp0

1
0= ∪− { ~ , }δ .  

5. Compute E p x x p zh h h h h h[ | , ~ ] ~ ( ~ , ~ , )∆ Ω ∆ ∆ ∆+ + +=1
0

1 1
0π  and ∆ ∆ Ω ∆~ [ | , ~ ] ~p E p xh h h h h

p
+ + + += +1 1

0
1 1η  

where ~ηh
p
+1 is a random drawing from the vector of price residuals.  

6. Add the realizations { ~ , ~ }∆ ∆p xh h+ +1 1  to the data set and compute new kernel 
estimates of  the π (.) and µ (.)  functions using the optimized bandwidth pa-
rameters calculated in the data sample, ~ (.)π h+1  and ~ (.)µh +1 . 

7. Repeat steps 4, 5, and 6, τ  times. We now have a  τ -period history of price 
changes and order flow driven by the δ  shock to order flow in period h and 
subsequent random price and order flow shocks. We also have the sets of 
forecasts E p xh i h i h i[ | , ~ ]∆ Ω ∆+ + − +1

0  and E xh i h i[ | ]∆ Ω+ + −1
0 . 

8. Calculate 1000  τ -period histories of price changes and order flow using 
the steps 1 - 7 above and save the forecasts as E p xh i h i h i

j[ | , ~ ]∆ Ω ∆+ + − +1
0  and 

E xh i h i
j[ | ]∆ Ω+ + −1

0  together with the residuals [~ ]ηh i
p j

+ −1  and [~ ]ηh i
x j

+ −1  for j = 1,2 ,.. 
1000.  

9. Compute  

   E p xh i h
j

h[ | , ]∆ Ω ∆+ − =1 δ =E E p x xh i h i h i h h[ | , ] ,∆ Ω ∆ Ω ∆+ + − + − =1
0

1
0 δ            
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     E x xh i h
j

h[ | , ]∆ Ω ∆+ − =1 δ =E E x xh i h i h h[ | ] ,∆ Ω Ω ∆+ + − − =1
0

1
0 δ                      

for i = 1,2,…τ . An estimate of the expectation in the first equation of step 9 
is found as the constant in a regression of E p xh i h i h i

j[ | , ~ ]∆ Ω ∆+ + − +1
0  on [~ ]ηh i

p j
+ −1  

for j=1,2,..1000. An estimate of the expectation in the second equation of 
step 9 is similarly found as the constant in a regression of E xh i h i

j[ | ]∆ Ω+ + −1
0  on 

[~ ]ηh i
x j

+ −1 . In both regressions, realizations of residuals are used as control 
variates to obtain more precise estimates of the expectations than would 
be obtained by simply averaging over E p xh i h i h i

j[ | , ~ ]∆ Ω ∆+ + − +1
0  or E xh i h i

j[ | ]∆ Ω+ + −1
0 . 

(For a discussion of the use of control variates, see Davidson and 
MacKinnon 1993, chapter 21.) The OLS standard error for the constant es-
timates the standard error of the simulated expectation.  

 The procedure described above allows us to calculate the impulse response 
and a confidence band (i.e., ± 1.96 standard errors) for an order flow shock of δ  
given a particular set of values for the state variables, s0. In our baseline case, we 
set s0 equal to the sample average for sh. We compare this baseline case against 
alternatives in which one element of s0 is changed. 

 

Responses to price shocks 

The impulse response to a price shock of δ  in hour h, is defined as 

I E p x p E p x pp h h h h h h h h∆ ∆ Ω ∆ ∆ ∆ Ω ∆ ∆( ) [ | , , ] [ | , , ]τ δτ τ= = = − = =+ − +1 0 0 0 , 

 I E x p E x px h h h h h h∆ ∆ Ω ∆ ∆ Ω ∆( ) [ | , ] [ | , ]τ δτ τ= = − =+ − + −1 1 0 , 

Given the timing of order flow and price changes in our model, I x∆ ( )0 0=  and 
I p∆ ( )0 = δ . The impulse responses for τ > 0  are calculated by simulation in the 

same manner as the order flow responses. 
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Appendix C:  Bias Analysis Estimates 
 
 

Let α  represent the vector of parameters to be estimated (i.e., 11 12, , ,φ β β  

21 22,β β , and the variances of ηh
p  and ηh

x). Combining equations (7) – (9), we can 

write the dynamics of returns and measured order flow as  

 

Y AY Bh h h= +−1 η  

 

where  Y p xh h h= [ , ]'∆ ∆ , η η ηh h
p

h
x= [ , ]' , 

 

11 11 22 11 21 11 21
2

11 11 22 22 11 21 21 11 21 21( )
A

β β β φβ β β β
φ β β β β φ β β φβ φβ β β

+ − 
=  + + − − + 

, 11

11

1
1

B
β

φ φβ
 

=  + 
, 

 

and Θ = Cov h h( , ' )η η , a diagonal matrix.  

We can therefore compute the covariance of returns and measured order 

flow, as a function of the model parameters α ; Γ( ; ) ( , ' )k Cov Y Yh h kα = − Yh , as  

 

Γ Γ( ; ) ( ; )k A kα α= − 1  

with  

Γ Θ( ; ) ) ( )0 11 1α = − ⊗− −vec A A vecc he j. 
 

The GMM estimates of α  are based on orthogonality conditions of the form   

 

E m kh[ ( ; )]α = 0  

where  

m k D k vec Y Y kh h h k( ; ) ( ) ( ; )α α= −− Γb g 
and D k( ) is a vector of ones and zeros that selects the unique elements in Γ( ; )k α . 

The results in Table 4 use k = 0 and 1, for a total of seven moments.  
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Appendix D:  The Dealer’s Problem and Model Solution (Incomplete) 

 

 
Within a given day t, let i

jW  denote the end-of-round j wealth of dealer i, 

using the convention that iW0  denotes wealth at the end of day t-1. (We suppress 

notation to reflect the day t where clarity permits.) With this notation, and 
normalizing the gross return on the riskless asset to one, we can define the 
dealers’ problem over the six choice variables described in section 2, namely, the 
four scalar quotes i

jP , one for each round j, and the two outgoing interdealer 

trades, iT2  and iT3 : 

 

(A1)  
1 2 3 4 2 3

4

{ , , , }

exp( | )

, ,

θ − − Ω 
i i i i i i

i i

P P P P T T

Max E W
   

 
s.t. 

 

( ) ( )
( )( ) ( )( )

4 0 1 1 2 2 2 3 3 3 4

2 1 3 2 3 2 1 2 4 3

( )= + − + − + −

+ − − + + − − −

% % % %
% % % %

i i i i i i i i i i i

i i i i i i i i i i

W W C P P T P P T P P

T C P P T T C T P P
 

 
Dealer i’s wealth over the four-round trading day is affected by positions taken 
two ways: incoming random orders and outgoing (deliberate) orders. The incom-
ing random orders include the public order iC1  and the incoming interdealer 

orders iT2
~  and iT3

~
 (tilde distinguishes incoming interdealer orders and prices 

from outgoing). The outgoing orders are the two interdealer trades iT2  and iT3 . % i
jP  

denotes an incoming interdealer quote received by dealer i in round j. As an 
example, the second term in the budget constraint reflects the position from the 
public order iC1  received in round one at dealer i’s own quote iP1  and subse-

quently unwound at the incoming interdealer quote iP2
~  in round-two. (Recall that 

the sign of dealer i’s position is opposite that of iC1 , so a falling price is good for 

dealer i if the public order iC1  is a buy, i.e., positive. The dealer’s speculative 

positioning based on information in iC1  is reflected in the final two terms of the 
budget constraint.) Terms three and four reflecting the incoming (random) dealer 
orders are analogous.     

Terms five and six of the budget constraint reflect the dealer’s speculative 
and hedging demands. The outgoing interdealer trade in round 2 has three 
components: 
 
(A2) 2 1 2 2 2[ | ]= + + Ω%i i i i i

TT C D E T  
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where 2
iD  is dealer i’s speculative demand in round 2, and 2 2[ | ]Ω% i i

TE T  is the 
dealer’s hedge against incoming orders from other dealers (this term is zero in 
equilibrium given the distribution of the 1

iC ’s). The dealer‘s total demand (specu-
lative plus hedging) can be written as follows: 
 

2 2 2 2 1[ | ]i i i i i
TD E T T C+ Ω = −%  

 
which corresponds to the position in term five of the budget constraint. The sixth 
term in the budget constraint is analogous: the dealer’s total demand in round 
three is his total trade in round three ( 3

iT ) plus his total demand in round two 

( 2 1−i iT C ) less the random interdealer order he received in round two ( 2
% iT ). 

The conditioning information Ωi at each decision node (4 quotes and 2 out-
going orders) is summarized below (see also the daily timing in the text).  
 

 { }{ }1
1 2 3 1 2 3 41

, , , , , , , ,
ti

P k k k k k k k k tk
R x x P P P P A A

−

=
Ω = ∆ ∆ ∆  

 { }2 1 1 1, ,Ω = Ωi i i
P P tP C  

 { }2 2 2,Ω = Ωi i
T P tP  

{ }3 2 2,i i
P T txΩ = Ω ∆  

{ }3 3 3, ,Ω = Ω ∆i i
T P t tP R  

{ }4 3 3,i i
P T txΩ = Ω ∆  

 
At this stage it is necessary to treat each of the prices in these information sets as 
a vector that contains the price of each individual dealer i (though in equilibrium 
each of these prices is a scalar, as shown below).  
 
Equilibrium 
 The equilibrium concept we use is Bayesian-Nash Equilibrium, or BNE. 
Under BNE, Bayes rule is used to update beliefs and strategies are sequentially 
rational given beliefs. 

To solve for the symmetric BNE, first consider optimal quoting strategies.  
 
PROPOSITION A1:  A quoting strategy is consistent with symmetric BNE only if 
quotes within any single trading round are common across dealers.  
 
PROPOSITION A2:  A quoting strategy is consistent with symmetric BNE only if 
P1=P2 and these prices are equal to the final round price P4 from the previous 
day. 
   
PROPOSITION A3:  A quoting strategy is consistent with symmetric BNE only if 
the common round-three quote is: 

3 2 2 2P P xλ= + ∆  
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if there is no announcement (At=0) and  
*

3 2 2 2P P xλ= + ∆  

if there is an announcement (At=1), where the constants *
2 2λ λ<  are strictly 

positive and ∆x2 denotes the signal of round-two interdealer order flow. 
 
PROPOSITION A4:  A quoting strategy is consistent with symmetric BNE only if 
the common round-four quote is:    

( )4 3 3 3 3 2P P x R P Pλ δ ψ= + ∆ + ∆ − −  

if there is no announcement (At=0) and  
( )*

4 3 3 3 3 2P P x R P Pλ δ ψ= + ∆ + ∆ − −  

if there is an announcement (At=1), where the constants *
3 3λ λ< , δ, and ψ are 

strictly positive and ∆x3 denotes round-three interdealer order flow. 
 
Propositions A1 through A4 
 The proof of proposition A1 is straightforward: That all dealers post the 
same quote in any given trading round is required to eliminate risk-free arbi-
trage. (Recall from section 2 that all quotes are scalar prices at which the dealer 
agrees to buy/sell any amount, and trading with multiple partners is feasible.)  

The proof of proposition A2 is straightforward as well: Common prices re-
quire that quotes depend only on information that is commonly observed. In 
round one, this includes the previous day’s round-four price. Because there is no 
new information that is commonly observed between round four and round two 
quoting the following day, the round-four price is not updated. (Recall that public 
trading in round four is a deterministic function of round-four prices and there-
fore conveys no information. Recall too that the occurrence of an announcement 
At=1 at the beginning of the day provides no price-relevant information that is 
common to dealers by itself.) Thus, dealers’ round-two quotes are not conditioned 
on individual realizations of 1

iC .  
 Propositions A3 and A4 require equations that pin down the levels of the 
four prices. Per above, these equations are necessarily functions of public infor-
mation. Naturally, they also embed the equilibrium trading rules of dealers and 
customers. The equations are the following: 
 
(A3) ( )1 1 2 1 1 0i

P PE C E ND P  Ω + Ω =     

 
(A4) ( )1 2 2 2 2 0i

P PE C E ND P  Ω + Ω =     

 
(A5) ( )1 3 3 3 3 0i

P PE C E ND P  Ω + Ω =     

 
(A6) ( )1 4 4 4 4 0P PE C E C P  Ω + Ω =     

  
where 1C  denotes the sum of 1

iC  over all N dealers. The first three equations 
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state that for each round j (j=1,2,3), at price Pj dealers willingly absorb the 
estimated demand from customers (realized at the beginning of the day, but not 
observed publicly). The fourth equation states that at price P4 the public willingly 
absorbs the estimated beginning-of-day customer portfolio shift 1C . These 
equations pin down equilibrium prices because any price other than that which 
satisfies each generates irreconcilable demands in interdealer trading in rounds 
two and three (e.g., if price is too low, all dealers know that on average dealers 
are trying to buy from other dealers, which is inconsistent with rational expecta-
tions; see Lyons 1997 for a detailed treatment in another model within the 
simultaneous trade approach).  
 From these equations, P2–P1=0 follows directly from two facts: (1) the 
expected value of 1C  conditional on public information Ω1P or Ω2P is zero and (2) 

expected dealer demand 2
iD  is also zero at this public-information-unbiased price. 

To be more precise, this statement postulates that the dealer’s demand 2
iD  has 

this property; derivation of the optimal trading rule shows that this is the case.  
 That P3–P2=λ2∆x2 if there is no announcement (with λ2>0) follows from two 
facts: (1) interdealer order flow ∆x2 is the only public information revealed in this 
interval and (2) ∆x2 is positively correlated with—and therefore provides infor-
mation about—the morning portfolio shift 1C . The positive correlation arises 

because each of the dealer orders 2
iT  of which ∆x2 is composed is proportional to 

the 1
iC  received by that dealer. A positive expected 1C  induces an increase in 

price because it implies that dealers—having taken the other side of these 
trades—are short and need to be induced to hold this short position with an 
expected downward drift (intraday) in price. In addition, when an announcement 
occurs, the customer order flow 1C  is especially “rich” in the sense that it 
contains flow positively correlated with that day’s payoff increment ∆R. This 
increases the price impact of subsequent interdealer order flow, dollar for dollar.  
 The exact size of this downward drift in price depends on where price is 
expected to settle at the end of the day. Per proposition A4, P4–P3 = λ3∆x3 + δ∆R – 
ψ(P3–P2) when there is no announcement. This price change depends positively 
on the two pieces of public information revealed in this interval, ∆x3 and ∆R.14 
The logic behind the positive ∆x3 effect is the same as that behind the positive ∆x2 
effect in round two: a positive average 3

iT  implies that the market’s estimate of 

1C  from ∆x2 was too low; absorption of the additional short position requires a 

price increase. (That a positive average 3
iT  implies this is clear from the deriva-

tion of 3
iT .) The term δ∆R is the perpetuity value of the change in the daily payoff 

Rt. Finally, the drift term –ψ(P3–P2) is the equilibrium compensation to dealers 
for having to absorb the morning portfolio shift through the interval in which ∆R 
(and the associated price risk) is realized. This is an intraday price effect that 
dissipates by the end of the day.  

                                                 
14 Interdealer order flow ∆x3 is observed without noise, which means it reveals the value of C1 fully. The 
price in round four must therefore adjust such that equation (A6) is satisfied exactly. 
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Equilibrium Trading Strategies 
 An implication of common interdealer quotes is that in rounds two and 
three each dealer i receives an order from exactly one other dealer, namely 
dealer i+1  (recall the trade allocation rule in section 2). These orders correspond 
to the position disturbances iT2

~  and iT3
~

 in the dealer's problem in equation (A1). 

Given the quoting strategy described in propositions 1-4, the following 
dealer trading strategy is optimal and corresponds to symmetric linear equilib-
rium: 
 
 
PROPOSITION A5:  The trading strategy profile: 

2 1α=i iT C  
if there is no announcement (At=0) and  

*
2 1
i iT Cα=  

if there is an announcement (At=1), with *0 α α< < , conforms to Bayesian-Nash 
equilibrium. 
 
 
 
PROPOSITION A6:  The dealer trading strategy: 

3 1 1 2 2 3 2
i i iT C x Tκ κ κ= + ∆ + %  

if there is no announcement (At=0) and  
* * *

3 1 1 2 2 3 2
i i iT C x Tκ κ κ= + ∆ + %  

if there is an announcement (At=1), conforms to Bayesian-Nash equilibrium. 
 
Sketch of Proofs for Propositions A5 and A6 
 

Because returns are independent across periods, with an unchanging sto-
chastic structure, the dealers’ problem collapses to a series of independent 
trading problems, one for each day. Because there are only N dealers, however, 
each dealer acts strategically in the sense that his speculative demand depends 
on the impact his trade will have on subsequent prices. 

Propositions A5 and A6 are special cases of the analysis in Lyons (1997), 
which is also set in the context of a simultaneous-trade game with two inter-
dealer trading rounds. Accordingly, we refer readers to that analysis for details 
on the derivation of optimal trading rules in this setting. One difference warrants 
note here: the Lyons (1997) analysis also includes private and public signals 
(denoted si and s in that paper) beyond any signals gleaned from order flow. 
Signals of this kind are not present in the specification here (i.e., one sets them 
equal to zero when applies the results of that paper to this model).  
 
 
From Model Solution to Estimable Equation 
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 The model above is split into 4 distinct trading rounds. Actual currency 
markets obviously do not map directly into this four-round structure. Our 
empirical implementation needs to apply to the “representative” trading interval, 
that interval being in our case one hour. From the model, we know that the 
distribution of price changes in any given hour depends on which “round” of 
trading the market is in and the probability of transitioning to a later round. 
Based on these transition probabilities, and the determinants of price within any 
given round, one can derive a conditional distribution of hourly price changes. We 
have done this in an earlier paper, based on a model that does not include 
announcements or hot potato trading. That same analysis applies to the setting 
here, however, so we refer people to that earlier paper for details (Evans and 
Lyons 2001, pages 13-14). Application of that analysis to the present model yields 
the estimating equations presented in the text, equations (5) and (6): 

(5)  1 2 3 1( ) p
h h h h hP A x Pβ β β η−∆ = + ∆ − ∆ +   

(6)                                   4 1 5 1
x

h h h hx x Pβ β η− −∆ = ∆ + ∆ +  

where the subscript h denotes hour, the residual 6
p
h hRη β= ∆ , the residual 

7 8 1( )x
h h hA Cη β β= + , and the constants β1 through β8 are positive. 
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Table 1:  Linear Models  

∆ ∆ ∆p x ph h h h
p= + +−β β η11 12 1  

∆ ∆ ∆x x ph h h h
x= + +− −β β η21 1 22 1  

 
 

Regressors Diagnostics 

Equation hx∆  1hp −∆  1hx −∆  2hp −∆  2hx −∆  R2 SEE Serial Hetero 
∆ph           

(i) 0.258 -0.203    0.212 0.001 0.437 0.071 

 (12.93) (-4.82)      0.238 0.000 
          

(ii) 0.225     0.173 0.002 0.000 0.070 

 (11.51)       0.000 0.000 
          

(iii)  -0.061    0.003 0.002 0.150 0.271 

  (-1.47)      0.218 0.000 
          

(iv) 0.234  -0.041   0.180 0.002 0.000 0.067 

 (11.61)  (-2.63)     0.000 0.000 
          

(v) 0.258 -0.202 -0.001   0.212 0.001 0.205 0.071 

 (12.74) (-4.56) (-0.08)     0.235 0.000 

          
∆xh           

(i)  0.477 0.098   0.095 0.003 0.759 0.000 

  (5.11) (2.42)     0.209 0.000 
          

(ii)   0.205   0.042 0.003 0.520 0.000 

   (5.08)     0.161 0.000 
          

(iii)  0.553    0.087 0.003 0.009 0.000 

  (5.97)      0.019 0.006 
          

(iv)  0.479 0.097  -0.008 0.095 0.003 0.369 0.000 

  (5.08) (2.34)   (-0.23)   0.397 0.000 
          

(v)  0.486 0.091 0.028  0.096 0.003 0.516 0.000 

  
(4.83) 

 
(2.04) 

 
(0.45) 

    
0.394 

 
0.000 

 
* T-statistics in parentheses are calculated with asymptotic standard errors corrected for the presence 
of heteroskedasticity. OLS estimates are based on hourly observations from 6:00 to 18:00 BST from 
May 1 to August 31, 1996, excluding weekends. ∆ph  is the hourly change in the log spot exchange rate 
(DM/$) times 10,000.  ∆xh  is the hourly interdealer order flow, measured contemporaneously with ∆ph  
(negative for net dollar sales, in thousands). The Serial column presents the p-value of a chi-squared 
LM test for first-order (top row) and sixth-order (bottom row) serial correlation in the residuals. The 
Hetero column presents the p-value of a chi-squared LM test for first-order (top row) and sixth–order 
(bottom row) ARCH in the residuals. 
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* T-statistics in parentheses are calculated with standard errors corrected for heteroskedasticity.  ∆ph is the hourly change in the log spot exchange 
rate (DM/$) times 10,000. ∆xh is the hourly interdealer order flow, measured contemporaneously with ∆ph (negative for net dollar sales, in 
thousands). ah is the number of macroeconomic announcements, σh is the standard deviation of all the transactions prices, and nh is the number 
of transactions, all during hour h. τ is a vector of three dummy variables, [τ1 τ2 τ3]. τ1 equals one for hours between 6:00 am and 7:59 am, zero 
otherwise; τ2 equals one for hours between 8:00am and 11:59am, zero otherwise; and τ3 equals one for hours between 12:00 pm and 1:59 pm, zero 
otherwise. $π j  is the derivative of the estimated function ˆ(.)π  with respect to j’th variable.  The nonlinear function (.)π  is estimated non-parametrically by 
Kernel regression (estimated by OLS). The Serial column presents the p-value of a chi-squared LM test for first-order (top row) and fifth-order (bottom row) 
serial correlation in the residuals. The Hetero column presents the p-value of a chi-squared LM test for first-order  (top row) and fifth–order (bottom row) 
ARCH in the residuals. 

Table 2:  Nonparametric (Kernel) Regression of Price Change Equation 

∆ ∆ ∆p x p n ah h h h h h h
p= +− − − −π σ η( , , , , )1 1 1 1  

  

Dependent   
 

  
Diagnostics 

Variable Const. ∆xh  ∆ph −1  ah−1 nh −1 σ h−1  hτ  2
hτ  R2 Serial Hetero 

 
$π 1  0.134 <0.001  

 
<0.001 0.024 0.001 -0.014   0.071 0.866 0.556 

 (15.25) (0.34) (1.00) (3.79) (0.26) (-1.23)    0.231 0.315 

 
 

0.077  
 

0.023 -0.001 -0.013 0.010 <0.001 0.071 0.943 0.531 
 (1.99)   (3.56) (-0.26) (-0.98) (1.49) (1.37)  0.198 0.323 

 
 

0.136  
 

0.024 0.001 -0.018   0.069 0.968 0.536 

 
(14.72) 

  
 (3.80) 

 
(0.35) 

 
(-1.43) 

    
0.225 

 
0.313 

 

 
$π 2  -0.050 0.001 

 
-0.002 -0.028 0.016 -0.072   0.066 0.116 <0.001 

 (-3.12) (1.55) (2.85) (-2.63) (2.56) (-3.29)    0.230 <0.001 

 
 

-0.005  
 

-0.026 0.018 -0.055 -0.007 <0.001 0.044 0.294 <0.001 
 (-0.07)   (-2.34) (2.49) (-1.92) (-0.55) (0.20)  0.147 <0.001 

 
 

-0.061  
 

-0.027 0.014 -0.052   0.038 0.279 <0.001 

 
(-3.66) 

  
 (-2.53) 

 
(2.22) 

 
(-1.96) 

    
0.195 

 
<0.001 
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* T-statistics in parentheses are calculated with standard errors corrected for heteroskedasticity.  ∆ph is the hourly change in the log spot exchange 
rate (DM/$) times 10,000. ∆xh is the hourly interdealer order flow, measured contemporaneously with ∆ph (negative for net dollar sales, in 
thousands). ah is the number of macroeconomic announcements, σh is the standard deviation of all the transactions prices, and nh is the number 
of transactions, all during hour h. τ is a vector of three dummy variables, [τ1 τ2 τ3], see Table 2 for definition. $µ j  is the derivative of the estimated 
function $ (.)µ  with respect to j’th variable.  The nonlinear function µ (.)  is estimated non-parametrically by Kernel regression (estimated by OLS). The 
Serial column presents the p-value of a chi-squared LM test for first-order (top row) and fifth-order (bottom row) serial correlation in the residuals. The 
Hetero column presents the p-value of a chi-squared LM test for first-order  (top row) and fifth–order (bottom row) ARCH in the residuals. 

Table 3:  Nonparametric (Kernel) Regression of Order Flow Equation 

∆ ∆ ∆x x p n ah h h h h h h
x= +− − − − −µ σ η( , , , , )1 1 1 1 1  

  

Dependent   
 

  
Diagnostics 

Variable Const. ∆xh−1  ∆ph −1  ah−1 nh −1 σ h−1  hτ  2
hτ  R2 Serial Hetero 

 
$µ1  0.146 0.001 -0.001 0.003 -0.008 -0.045   0.022 0.521 0.459 

 (6.06) (2.14) (-1.30) (0.26) (-0.69) (-1.65)    0.007 0.806 

 
 

-0.001   0.003 -0.013 -0.023 -0.009 0.028 0.013 0.543 0.417 
 (-1.96)   (0.21) (-0.96) (-0.92) (-0.11) (1.89)  0.009 0.749 

 
 

0.139   0.005 -0.009 -0.035   0.010 0.593 0.408 

 
(6.56) 

   
(0.38) 

 
(-0.78) 

 
(-1.50) 

    
0.007 

 
0.738 

 

 
$µ2  0.326 0.001 0.002 -0.029 0.019 -0.013   0.032 0.704 0.361 

 (8.13) (1.51) (1.86) (-1.78) (1.18) (-0.28)    0.178 0.943 

 
 

0.287   -0.029 0.021 -0.037 0.013 -0.001 0.011 0.437 0.443 
 (2.36)   (-1.72) (1.09) (-0.86) (0.61) (-0.80)  0.154 0.951 

 
 

0.340   -0.029 0.020 -0.042   0.009 0.460 0.431 

 
(9.32) 

   
(-1.74) 

 
(1.28) 

 
(-1.10) 

    
0.156 

 
0.951 
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Table 4 

Feedback Trading Model 
 
                                         *

h h hx x pφ∆ = ∆ + ∆  

 ∆ ∆ ∆p x ph h h h
p= + +−β β η11 12 1

*  

    ∆ ∆ ∆x x ph h h h
x* *= + +− −β β η21 1 22 1  

 
 

Price Change Equation Order Flow Equation 
   
 
Coefficient on 
 

∆xh
*  

 

 
 
 

0.262 
(14.93) 

 

 

∆ph −1  -0.232 
(-3.73) 

0.190 
(0.37) 

      

∆xh−1
*   0.147 

(2.00) 
     

Var h( ) /η 1 2  13.604 
(14.64) 

 

24.163 
(30.52) 

 
Feedback 
Parameter: φ  

 
-0.563 
(-0.37) 

 

 

* T-statistics in parentheses. Estimated using GMM (see appendix for details).  
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Figure 1 

Order Flow Shocks:  High verses Average Announcement Flow 
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A: Price change responses 
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B: Order flow responses 

 
Notes: Average impulse response patterns and 95% confidence bands for a one standard deviation order 
flow shock when the number of announcements is one standard deviation above the average sample 
level (solid plot) and at the sample average (dashed plot). Vertical axis units are variable standard 
deviations. Based on two-equation system examined in Tables 2 and 3 (hourly data). See appendix for 
computation details.  
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Figure 2 

Price Shocks:  High verses Average Announcement Flow 
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A: Price change responses 
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B: Order flow responses 
Notes: Average impulse response patterns and 95% confidence bands for a one standard deviation price 
shock when the number of announcements is one standard deviation above the average sample level 
(solid plot) and at the sample average (dashed plot). No confidence band is shown for the high 
transaction case in panel A. Based on two-equation system examined in Tables 2 and 3 (hourly data). 
See appendix for computation details. 
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Figure 3 

Order Flow Shocks:  High verses Average Volume (# Trades) 
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A: Price change responses 
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B: Order flow responses 
Notes: Average impulse response patterns and 95% confidence bands for a one standard deviation order 
flow shock when the number of transactions is one standard deviation above the average sample level 
(solid plot) and at the sample average (dashed plot). No confidence band for the high transaction case is 
shown in panel A for clarity. Based on two-equation system examined in Tables 2 and 3 (hourly data). 
See appendix for computation details. 
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Figure 4 

Price Shocks:  High verses Average Volume (# Trades) 
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A: Price change responses 
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B: Order flow responses 
Notes: Average impulse response patterns and 95% confidence bands for a one standard deviation price 
shock when the number of transactions is one standard deviation above the average sample level (solid 
plot) and at the sample average (dashed plot). No confidence band is shown for the high transaction case 
in panel A. Based on two-equation system examined in Tables 2 and 3 (hourly data). See appendix for 
computation details. 
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Figure 5 

Order Flow Shocks:  High verses Average Price Volatility 
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A: Price change responses 
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B: Order flow responses 
Notes: Average impulse response patterns and 95% confidence bands for a one standard deviation order 
flow shock when price volatility is one standard deviation above the average sample level (solid plot) 
and at the sample average (dashed plot). No confidence band for the high transaction case is shown for 
clarity. Based on two-equation system examined in Tables 2 and 3 (hourly data). See appendix for 
computation details. 
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Figure 6 

Price Shocks:  High verses Average Price Volatility 
 
 

-0.200

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4 5 6 7 8 9 10 11 12

 

A: Price change responses 
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B: Order flow responses 
Notes: Average impulse response patterns and 95% confidence bands for a one standard deviation price 
shock when price volatility is one standard deviation above the average sample level (solid plot) and at 
the sample average (dashed plot). No confidence band for the high dispersion case is shown in panel A. 
Based on two-equation system examined in Tables 2 and 3 (hourly data). See appendix for computation 
details. 
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