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1 Introduction

In this paper, we construct an equilibrium model of directed search in a large
labor market in which unemployed workers make multiple job applications.
Specifically, we consider a matching process in which job seekers, observing
the wages posted at all vacancies, send their applications to the vacancies
that they find most attractive. At the same time, each vacancy, when it
chooses its wage posting, takes into account that its posted wage influences
the number of applicants it can expect to attract. We assume that each
unemployed worker makes a fixed number of applications, a. Each vacancy
(among those receiving applications) then chooses one applicant to whom it
offers its job. When a > 1, there is a possibility that more than one vacancy
wants to hire the same worker. In this case, we assume that the vacancies in
question can compete for this worker’s services. The introduction of multiple
applications adds realism to the directed search model, and, in addition, af-
fects the efficiency properties of equilibrium. In the benchmark competitive
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search equilibrium model (Moen 1997), equilibrium is constrained efficient.
We show that changing the basic directed search model to allow workers to
make more than one application results in equilibria that are not constrained
efficient. This means there is a role for labor market policy in the directed
search framework.

When a = 1, our model is essentially the limiting version of Burdett, Shi,
and Wright (2001) (hereafter BSW) translated to a labor market setting.
BSW derive a unique symmetric equilibrium in which (in the labor market
version) all vacancies post a wage between zero (the monopsony wage) and
one (the competitive wage). The value of this common posted wage depends
on the number of unemployed, u, and the number of vacancies, v, in the
market. Letting u, v →∞ with v/u = θ, the equilibrium posted wage is an
increasing function of θ. BSW do not consider normative questions. Moen’s
result is that in a large labor market, directed search implements what
he calls competitive search equilibrium. Competitive search equilibrium
is constrained efficient in the following sense. Assume there is a cost per
vacancy created. A social planner would choose a level of vacancy creation
— or, in a large labor market, a level of labor market tightness, θ, — to trade
off the cost of vacancy creation against the benefit of making it easier for
workers to match. Moen shows that the θ the social planner would choose
is the same as the one that arises in competitive search equilibrium. Using
a different approach, we also show that equilibrium in a directed search
model is constrained efficient in a large labor market when a = 1. More
importantly, however, we show that if each worker makes a finite number
of multiple applications, that is, if a ∈ {2, ...,A}, where A is any arbitrary,
finite integer, then equilibrium in a directed search model is not constrained
efficient. Specifically, too many vacancies are posted (θ is too high) in free-
entry equilibrium relative to the constrained efficient level. Equivalently,
vacancies pay the workers who take their jobs too low a wage on average.

Our model is also related to Julien, Kennes, and King (2000) (hereafter
JKK). JKK assume that each unemployed worker posts a minimum wage
at which he or she is willing to work, i.e., a “reserve wage,” and that each
vacancy, observing all posted reserve wages, then makes an offer to one
worker. If more than one vacancy wants to hire the same worker, then, as
in our model, there is ex post competition for that worker’s services. This
is equivalent to a model in which each worker applies to every vacancy, i.e.,
a = v, sending the same reserve wage in each application. Each vacancy
then chooses one worker at random to whom it offers a job. If a worker
has more than one offer, then there is competition for his or her services.
In a finite labor market, JKK show that the unique, symmetric equilibrium
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reserve wage lies between the monopsony and competitive levels. There is
thus equilibrium wage dispersion in their model. Those workers who receive
only one offer are employed at the reserve wage, while those who receive
multiple offers are employed at the competitive wage. In the limiting labor
market version of JKK, the symmetric equilibrium reserve wage converges
to zero, and free-entry equilibrium is again constrained efficient.

In our model, when a ∈ {2, ...,A}, all vacancies post the monopsony wage
in the unique symmetric equilibrium. As in JKK, this leads to equilibrium
wage dispersion. Some workers (those who receive exactly one offer) are
employed at the monopsony wage, and some workers (those who receive
multiple offers) have their wages bid up to the competitive level. The key
difference between our model and both BSW and JKK, however, is that
free-entry equilibrium is inefficient. When a ∈ {2, ...,A}, there is excessive
vacancy creation.

The inefficiency arises because when a ∈ {2, ...,A}, two coordination
frictions operate simultaneously. The first is the well-known urn-ball friction;
some vacancies receive no applications while others receive more than one.
In addition, a new friction is introduced by multiple applications. Some
workers receive multiple offers while others receive none. As a result, some
vacancies with applicants fail to hire a worker. In BSW, only the urn-ball
friction is present; in JKK, only the multiple-application friction applies.
The market cannot correct both frictions at the same time. In our model,
competition among vacancies, once applications have been made, can solve
the multiple-application friction. This leads, however, to a posted wage that
is too low to correct the urn-ball friction and that consequently generates
too many vacancies.

The outline of the rest of the paper is as follows. In the next section, we
derive our basic positive results in a single-period framework. Specifically,
treating θ as given, we derive the matching function and the symmetric
equilibrium posted wage. In Section 3, we endogenize θ by allowing for free
entry of vacancies. This lets us compare the free-entry equilibrium level
of θ to the constrained efficient level (the two values of θ are the same
when a = 1, different when a ∈ {2, ...,A}, and the same once again as
a → ∞). In Section 4, we present a steady-state version of our model for
the case of a ∈ {2, .., A}. The key to the steady-state analysis is that a
worker who receives only one offer in the current period has the option to
reject that offer in favor of waiting for a future period in which more than one
vacancy bids for his or her services. This leads to a tractable model in which
labor market tightness and the equilibrium wage distribution are determined
simultaneously. The normative results that we derived in the single-period
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model continue to hold in the steady-state setting. In Section 5, we consider
three extensions. Specifically, (i) we allow workers to choose how many
applications to make, (ii) we relax the assumption that each vacancy can
consider only one worker’s application, and (iii) we allow vacancies to follow
strategies that rule out Bertrand competition. These extensions, while of
interest in their own right, also serve as robustness checks — our basic result
that the free-entry equilibrium value of θ is constrained inefficient when
a ∈ {2, ...,A} continues to hold. Finally, we conclude in Section 6.

2 The Basic Model

We consider a game played by u homogeneous unemployed workers and (the
owners of) v homogeneous vacancies. This game has several stages:

1. Each vacancy posts a wage.

2. Each unemployed worker observes all posted wages and then submits
a applications with no more than one application going to any one
vacancy.

3. Each vacancy that receives at least 1 application randomly selects one
to process. Any excess applications are returned as rejections.

4. A vacancy with a processed application offers the applicant the posted
wage. If more than one vacancy makes an offer to a particular worker,
then each vacancy can increase its bid for that worker’s services.

5. A worker with one offer can accept or reject that offer. A worker with
more than one offer can accept one of the offers or reject all of them.

Workers who fail to match with a vacancy and vacancies that fail to match
with a worker receive payoffs of zero. The payoff for a worker who matches
with a vacancy is w, where w is the wage that he or she is paid. A vacancy
that hires a worker at a wage of w receives a payoff of 1−w. This is a model
of directed search in the sense that workers observe all wage postings and
direct their applications to vacancies with attractive wages and/or where
relatively little competition is expected. We assume that vacancies cannot
pay less than their posted wages.

Before we analyze this game, some comments on the underlying assump-
tions are in order. First, we are treating a as a parameter of the search
technology; that is, the number of applications is taken as given. In general,
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a ∈ {1, 2, ..., A}. Second, we assume that it takes a period for a vacancy to
process an application. This is why vacancies return excess applications as
rejections. This processing-time assumption captures the idea that when
workers apply for several jobs at the same time, firms can waste time and
effort pursuing applicants who ultimately go elsewhere. Finally, we assume
that a vacancy that faces competition for its selected applicant always has
the option to increase its offer. This means that workers who receive more
than one offer have their wages bid up via Bertrand competition to w = 1,
the competitive wage.1 In Section 5, we consider the implications of relaxing
each of these assumptions. We show that endogenizing a, allowing vacan-
cies to process more than one application, and allowing vacancies that are
competing for an applicant to pursue a different tie-breaking strategy do not
reverse our main results.

We consider symmetric equilibria in which all vacancies post the same
wage and all workers use the same mixed strategy to direct their applica-
tions.2 We do not consider equilibria in which workers follow asymmetric
application strategies since this would require unrealistic implicit coordina-
tion. We do our analysis in a large labor market in which we let u, v →∞
with v/u = θ keeping a ∈ {1, 2, ...,A} fixed. We show that for each (θ, a)
combination there is a unique symmetric equilibrium, and we derive the cor-
responding equilibrium matching probability and posted wage. Assuming
(for the moment) the existence of a symmetric equilibrium, we begin with
the matching probability.

1One might think of ruling out ex post bidding by assumption, but then there would
be no common equilibrium posted wage. To see this, suppose all vacancies post a wage
of w. Then, assuming that a worker who has multiple offers accepts the highest one, it
is in the interest of any vacancy to post a slightly higher wage so long as w is not too
close to one. The reason is that if a vacancy posts a wage ε above the common wage, its
probability of hiring a worker jumps discontinuously since it “wins” whenver the worker
has multiple ofers. Once w is sufficiently close to one, a vacancy can profit by lowering its
wage to the minimum level consistent with attracting one or more applicants with some
positive probability. This is similar to the argument given in Burdett and Judd (1983) for
nonexistence of a single-price equilibrium.

2One could alternatively consider symmetric equilibria in which vacancies follow mixed
strategies, so that more than one wage is posted in equilibrium. This approach is taken in
Galenianos and Kircher (2005), which combines elements of our paper and that of Chade
and Smith (2004). In Galenianos and Kircher (2005), a vacancy whose chosen applicant
has other offer(s) is precluded by assumption from increasing its initial offer, even though
it would be in its interest to do so, given that other vacancies have committed to not
changing their offers. The assumption that vacancies cannot engage in ex post bidding
is restrictive, but without it, equilibrium in Galenianos and Kircher (2005) would not be
subgame perfect.
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LetM(u, v; a) be the expected number of matches in a labor market with

u unemployed workers and v vacancies when each unemployed worker sub-

mits a applications. Then m(θ;a) = lim
u,v→∞,v/u=θ

M(u, v; a)

u
is the matching

probability for an unemployed worker in a large labor market.

Proposition 1 Let u, v → ∞ with v/u = θ and a ∈ {1, ...,A} fixed. The

probability that a worker finds a job converges to

m(θ;a) = 1− (1−
θ

a
(1− e−a/θ))a. (1)

The proof is given in Albrecht et. al. (2004); see also Philip (2003).
In Appendix A, we sketch the idea of the proof to clarify the relationship
between our matching probability and the finite-market matching functions
presented in BSW (the standard urn-ball matching function) and JKK (the
urn-ball matching function with the roles of u and v reversed).

For use below, we note the following properties of m(θ;a):
(i) m(θ;a) is increasing and concave in θ,

lim
θ→0

m(θ;a) = 0, and lim
θ→∞

m(θ;a) = 1;

(ii)
m(θ; a)

θ
is decreasing in θ, 3

lim
θ→0

m(θ;a)

θ
= 1, and lim

θ→∞

m(θ;a)

θ
= 0.

The effect of a on m(θ; a) is less clearcut. Treating a as a continuous

variable, we find that ma(θ; a) ≷ 0 as
a

1− q

∂q

∂a
− ln(1 − q) ≷ 0 where

q =
θ

a
(1 − e−a/θ) is the probability that any one application leads to an

offer. For moderately large values of θ (θ > 1

2
, approximately), m(θ; a)

first increases and then decreases with a. This nonmonotonicity reflects the
double coordination problem that arises when workers apply to more than
one but not all vacancies. The first coordination problem is the standard
one associated with urn-ball matching, namely, that some vacancies can
receive applications from more than one worker, while others receive none.

3 Interestingly,
m(θ; a)

θ
is not convex in θ, as can be seen immediately by considering

the case of a = 1. The properties of m(θ; a) and
m(θ; a)

θ
given in (i) and (ii) are the

minimal ones required for our normative results in Sections 3 and 4 below.
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With multiple applications, there is a second coordination problem, this

time among vacancies. When workers apply for more than one job at a

time, some workers can receive offers from more than one vacancy, while

others receive none. Ultimately, a worker can only take one job, and the

vacancies that “lose the race” for a worker will have wasted time and effort

while considering his or her application. The matching function derived

in BSW captures only the urn-ball friction, while the one derived in JKK

captures only the multiple-application friction. Our matching probability

incorporates both these frictions, and the interaction between these two

frictions provides new insights.

Proposition 1 and its implications are only interesting if a symmetric

equilibrium exists. We now turn to the existence question.

Proposition 2 Consider a large labor market in which u, v → ∞ with

v/u = θ. There is a unique symmetric equilibrium to the wage-posting game.

When a = 1, all vacancies post a wage of

w(θ; 1) =
1

θe
−1/θ

(1− e−1/θ)
. (2)

When a ∈ {2, ...,A}, all vacancies post a wage of w(θ; a) = 0, and the

fraction of wages paid that are equal to one is

γ(θ;a) =
1− (1− θ

a(1− e−a/θ))a − θ(1− e−a/θ)(1− θ
a(1− e−a/θ))a−1

1− (1− θ
a(1− e−a/θ))a

.

(3)

The proof is given in Appendix B. The basic idea is as follows. To
prove the existence of a symmetric equilibrium, we show that w(θ; 1) has
the property that if all vacancies, with the possible exception of a “potential
deviant,” post that wage, then it is also in the interest of the deviant to
post that wage. When a ∈ {2, ...,A}, however, no matter what the common
wage posted by other vacancies, it is always in the interest of the deviant to
undercut that common wage. This forces the wage down to the monopsony
level, which in our single-period model is w = 0.

The equilibrium wage for the case of a = 1 is equal to one minus the
price given in Proposition 3 in BSW — again with the appropriate notational
change. The tradeoff that leads to a well-behaved equilibrium wage, w ∈
(0, 1), when a = 1 is the standard one in equilibrium search theory. To see
this, note that the profit for a deviant (D) from offering w′ rather than the
common posted wage, w, can be written as:

π(w′;w) = (1−w′)P [D gets at least one application]P [selected applicant has no other offer],
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where the third term equals 1 when a = 1. As any particular vacancy
increases its posted wage, holding the wages posted at other vacancies con-
stant, the profit that this vacancy generates conditional on attracting an
applicant, (1 − w′), decreases. At the same time, however, the probabil-
ity that it attracts at least one applicant increases. This tradeoff varies
smoothly with θ; so the equilibrium wage varies smoothly between zero and
one. Thus, as emphasized in BSW (p. 1069), there is a sense in which
frictions “smooth” the operation of the labor market.

When a ∈ {2, ...,A}, the posted wage collapses to the monopsony level
(as in Diamond (1971)). The intuition for this result is based on the change
in the tradeoff underlying equilibrium wage determination. This change —
to be described below — has two implications. First, the equilibrium wage is
lower than when a = 1. Second, when a ∈ {2, ...,A}, the lower is the putative
common equilibrium wage w, the stronger is the incentive to deviate by
posting w′ < w. This second implication is what drives the wage down to
the monopsony level.

Why is the equilibrium wage lower when workers make more than one
application? Note first that the incentive to deviate from a common posted
wage w comes from the first two terms in π(w′;w) since the third term is
unaffected by changes in w′ when the labor market is large. That is, the
incentive to deviate comes from the effect of w′ on 1−w′ and on the proba-
bility that the deviant receives at least one application. The effect of offering
w′ on 1 − w′ is obviously the same whether workers make one or multiple
applications. However, a deviation has less effect on the probability that
the deviant gets at least one applicant when workers make multiple appli-
cations. Consider a deviation w′ > w. The higher wage makes the vacancy
more attractive to a worker if w′ is the only offer received. However, when
a ∈ {2, ..., A}, workers have an interest in getting multiple offers in order
to generate Bertrand competition for their services, and since the deviant
vacancy is more attractive to all workers, applying to the deviant decreases
the probability that this occurs. Thus, a deviation w′ > w increases the
probability that the deviant receives at least one application by less when
workers make multiple applications than when a = 1. Similarly, a deviation
w′ < w decreases the probability that the deviant receives at least one ap-
plication by less than when a = 1. In this case, a worker who applies to the
deviant gets a lower wage if this is the only offer received. Just as when
a = 1, this makes the deviant less attractive. However, when a ∈ {2, ...,A},
to increase the chance of getting multiple offers, workers have an incentive
to apply to a “safe” job where others are less likely to apply. Relative to the
case of a = 1, this reduces the decrease in the probability that the deviant
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attracts at least one applicant. The fact that upward deviations are less
attractive and downward deviations are more attractive explains why the
equilibrium wage is lower when a ∈ {2, ...,A} than when a = 1.

Why does the equilibrium wage fall to the monopsony level when workers
make multiple applications? The potential benefit to a deviant of posting
a wage that is ε below a common wage w is the same for all w, but the
cost in terms of the reduction in the probability of receiving at least one
application falls as the common wage falls. The probability that the deviant
receives at least one application depends on the chance that workers are
willing to take to try to generate multiple offers. The closer w is to zero,
the greater is the benefit to a worker of receiving multiple offers; i.e., the
greater is the difference between the competitive wage and w. Thus, the
incentive for workers to apply to a vacancy offering ε below the common
wage, w, rises as w falls, and the probability that a vacancy offering ε less
than w receives at least one application rises as w falls. Thus, as w falls,
the potential benefit of a downward deviation is constant, but the cost of
such a deviation decreases. This is what drives the common wage to the
monopsony level.

Interestingly, when a ∈ {2, ...,A}, the equilibrium outcome in our di-
rected search model is the same as the outcome one would find in a random
search model in which workers make multiple applications and vacancies
engage in Bertrand competition when their candidates have multiple offers.
If workers do not observe posted wages, they apply at random to a va-
cancies in symmetric equilibrium, and the matching rate is the same as in
our model. In addition, vacancies pay the monopsony wage in this random
search model, unless a worker has multiple offers, in which case Bertrand
competition drives the wage to the competitive level. Thus, allowing for
multiple applications in our model erases the difference between directed
and random search in terms of outcomes in contrast to the case of a = 1.
To the best of our knowledge, no random search model with multiple appli-
cations and Bertrand competition exists in the literature, but it would be
straightforward to construct such a model. Postel-Vinay and Robin (2002) is
the most closely related model. In their model, wage offers arrive at Poisson
rates to both the unemployed and the employed. If a worker who is already
employed receives another offer, then that worker’s current employer and
prospective new employer engage in Bertrand competition for his or her ser-
vices. In the homogeneous worker/homogeneous firm version of their model,
this leads to a two-point distribution of wages paid, namely, the monopsony
wage and the competitive wage, as in our model.
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Finally, despite the fact that the posted equilibrium wage in our model
is zero when a ∈ {2, ..., A}, there is still a sense in which “the wage” varies
smoothly with θ. The expected fraction of wages paid that are equal to one,
γ(θ;a), has the following properties:
(i) γ(θ; a) is increasing in θ and in a;
(ii) lim

θ→0

γ(θ; a) = 0 and lim
θ→∞

γ(θ; a) = 1.

The fact that γ is increasing in θ is exactly as one would expect — as the
labor market gets tighter, the chance that an individual worker gets multiple
offers increases. To understand why γ is also increasing in a, it is important
to remember that γ(θ;a) is the expected wage for those workers who match
with a vacancy; in particular, those workers who fail to match are not treated
as receiving a wage of zero. Finally, defining γ(θ) = lim

a→∞
γ(θ; a), we can show

γ(θ) =
1− e−θ − θe−θ

1− e−θ
. (4)

This is the expected wage in a large labor market when each worker sends
out an arbitrarily large number of applications.

3 Efficiency

We now turn to the question of constrained efficiency. The result suggested
by the efficiency of competitive search equilibrium holds in our setting when
a = 1; however, when workers make a fixed number of multiple applications,
this result breaks down.

Suppose vacancies are set up at the beginning of the period and that each
vacancy is created at cost cv. The efficient level of labor market tightness4

is determined as the solution to

max
θ≥0

m(θ;a)− cvθ.

The first-order condition for this maximization is

cv =mθ(θ
∗; a). (5)

4 In a finite labor market with u given, the social planner chooses v to maximize

M (u, v; a) − cv, i.e., expected output (equal to the expected number of matches since
each match produces an output of 1) minus the vacancy creation costs. Dividing the
maximand by u and letting u, v →∞ with v/u = θ gives the maximand in the text.
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The equilibrium level of labor market tightness is determined by free entry.

When a = 1, this means

cv =
m(θ∗∗; 1)

θ∗∗
(1−w(θ∗∗; 1)), (6)

whereas for a ∈ {2, ...,A}, the condition is

cv =
m(θ∗∗; a)

θ∗∗
(1− γ(θ∗∗; a)). (7)

Equations (6) and (7) reflect the condition that entry (vacancy creation)
occurs up to the point that the cost of vacancy creation is just offset by
the value of owning a vacancy. This value equals the probability of hiring
a worker times the expected surplus generated by a hire — equal to 1 minus
the posted wage when a = 1 and to 1 minus the expected wage when a ∈
{2, ..., A}.

Note that θ∗ denotes the constrained efficient level of labor market tight-
ness and θ∗∗ denotes the equilibrium level of labor market tightness. At issue
is the relationship between θ∗ and θ∗∗.

Proposition 3 Let u, v → ∞ with v/u = θ and a ∈ {1, ...,A} fixed. For

a = 1, θ∗ = θ∗∗. For a ∈ {2, ..., A}, θ∗∗ > θ∗.

Proof. Differentiating equation (1) with respect to θ gives

mθ(θ; a) = (1−
θ

a
(1− e−a/θ))a−1(1− e−a/θ −

a

θ
e−a/θ). (8)

For the case of a = 1, substituting this into equation (5) gives an implicit
expression for θ∗,

cv = 1− e−1/θ
∗

−

1

θ∗
e−1/θ

∗

.

Using equations (1) and (2) in equation (6) gives an implicit expression for
θ∗∗,

m(θ∗∗; 1)

θ∗∗
(1−w(θ∗∗; 1)) = 1− e−1/θ

∗∗

−

1

θ∗∗
e−1/θ

∗∗

.

Thus, equations (5) and (6) imply θ∗ = θ∗∗ when a = 1.
When a ∈ {2, ...,A}, substituting equation (8) into equation (5) implies

that θ∗ solves

cv = (1−
θ∗

a
(1− e−a/θ

∗

))a−1(1− e−a/θ
∗

−
a

θ∗
e−a/θ

∗

), (9)
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whereas, using equations (1) and (3), θ∗∗ (equation (7)) solves

cv = (1−
θ∗∗

a
(1− e−a/θ

∗∗

))a−1(1− e−a/θ
∗∗

). (10)

The right-hand sides of both (9) and (10) are decreasing in θ. Since the
right-hand side of (10) is greater than that of (9) for all θ > 0, it follows
that θ∗∗ > θ∗.

Posting a vacancy has the standard congestion and thick-market effects
in our model — adding one more vacancy makes it more difficult for the in-
cumbent vacancies to find workers but makes it easier for the unemployed to
generate offers. A striking result of the competitive search equilibrium lit-
erature is that adding one more vacancy causes the wage to adjust in such a
way as to balance these external effects correctly. One way to interpret this
result is that competition leads to a wage that satisfies the Hosios (1990)
condition in a Nash bargaining model. Equivalently, one can say (Moen,
1997, p. 387) that the competitive search equilibrium wage has the prop-
erty that the marginal rate of substitution between labor market tightness
and the wage is the same for vacancies as for workers. The first part of
Proposition 3 shows that this result holds when one uses an explicit urn-ball
(a = 1) microfoundation for the matching function. When workers make
multiple applications, however, the result that θ∗∗ > θ∗ indicates that the
equilibrium level of vacancy creation is too high. Equivalently, the equilib-
rium expected wage is below the level that would be indicated by the Hosios
condition.

A first intuition for why we find constrained efficiency with a = 1 but not
with a fixed, finite number of multiple applications is that with a = 1, only
one coordination problem affects the operation of the labor market, whereas
with a fixed a ∈ {2, ..., A}, the urn-ball and the multiple-applications coor-
dination problems operate simultaneously. Adding a vacancy increases the
number of matches by reducing the first coordination friction, the one that
workers impose on each other, but at the same time increases the second co-
ordination friction, the one that vacancies impose on each other. When each
worker applies to only one vacancy, the second friction is absent, but with
multiple applications there are two coordination problems that cannot be
solved simultaneously. This intuition does not, however, address the ques-
tion of why there is too much vacancy creation, as opposed to not enough.
Accordingly, we now give a more detailed explanation of our inefficiency
result.

The social planner opens vacancies as long as the marginal social benefit
exceeds cv, while the market opens vacancies as long as the marginal (=
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average) private benefit exceeds cv. When a = 1, the private benefit of a new
vacancy equals the social benefit. When a ∈ {2, ..., A}, the private benefit
exceeds the social benefit. The social benefit of a new vacancy is simply

mθ(θ;a); the private benefit is
m(θ;a)

θ
(1−γ(θ;a)). The key to understanding

the discrepancy between the private and social benefits of a new vacancy
when a ∈ {2, ...,A} is to note that mθ(θ;a) can be expressed as

mθ(θ; a) =
m(θ;a)

θ
(1− γ(θ;a))p(θ; a). (11)

where

• m(θ;a)/θ is the probability that a vacancy receives at least one appli-
cation

• 1−γ(θ;a) is the probability that the worker who has been offered the
job has no other offers

• p(θ;a) =
1− e−a/θ − a

θe
−a/θ

1− e−a/θ
is the probability that a vacancy receives

two or more applications conditional on receiving at least one.

One can derive equation (11) by differentiating m(θ;a), but this ex-
pression can also be derived using a straightforward economic argument. A
vacancy has value to the social planner if it leads to an otherwise idle worker

being employed and producing output. With probability
m(θ; a)

θ
, a vacancy

is filled and produces one unit of output. However, with probability γ(θ;a),
the worker who matches with the vacancy also receives another offer. In this
case, the social benefit of the vacancy is zero; if it had not been opened, the
number of matches would have been the same. The private benefit in this
case is also zero — a vacancy receives nothing if it makes its offer to a worker
who has other offer(s) since the wage is bid up to the competitive level.
Social and private incentives are thus aligned with respect to the first two
terms on the right-hand side of equation (11). The social planner considers
an additional factor, which is given by p(θ;a). Consider the creation of a
new vacancy. If p(θ;a) = 0, then all vacancies have at most one applicant.
Opening a new vacancy creates no social benefit because any applicant that
it might attract would leave another vacancy unfilled. On the other hand, if
p(θ;a) = 1, a new vacancy, if it is filled, does not leave another vacancy with
no applicants. In general, the lower is p(θ;a), the more likely it is that a new
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vacancy will cause an incumbent vacancy to fail to attract any applicants
and hence the lower the social benefit.

To further understand our inefficiency result, we ask what wage, w∗,
should have been posted in the first stage of the game in order to achieve
efficiency? In other words, if the social planner could only determine the
wage and not θ, what wage would she post? The efficient wage has to satisfy

mθ(θ; a) =
m(θ;a)

θ
(1− γ(θ;a))(1−w∗);

that is,

w∗(θ; a) = 1− p(θ;a) =
a
θe
−(a/θ)

1− e−(a/θ)
.

When a = 1, w∗ equals the posted wage given in equation (2) in Proposition
2. The fact that the posted wage is zero when a ∈ {2, ..., A} is what leads to
an inefficient outcome. The inefficiency problem when workers make multi-
ple applications could thus be solved by an appropriately chosen minimum
wage.

According to the Hosios condition, efficiency requires that the expected
private benefit of opening a vacancy equals the marginal contribution of
that vacancy to the matching process and that the expected wage equals the
worker’s marginal contribution to the matching process. The efficient wage
w∗ equals the probability that a vacancy receives exactly one application
conditional on receiving at least one. This conditional probability is the
marginal contribution of a worker to the matching process because output
is only increased if the worker applies to a vacancy with no other applicants.
When workers apply to more than one vacancy and there is ex post Bertrand
competition among vacancies, workers apply to vacancies even if they post a
zero wage, and vacancies receive more surplus than their contribution to the
matching process warrants. This is why there is excessive vacancy creation
in equilibrium.

It is interesting to note that the equilibrium outcome is again Pareto
efficient when we let a→∞. To see this, note that

m(θ) = lim
a→∞

m(θ;a) = 1− e−θ

and

γ(θ) = lim
a→∞

γ(θ;a) =
1− e−θ − θe−θ

1− e−θ

and substitute these into the efficiency and equilibrium conditions as in
the proof of Proposition 3. Alternatively, following the route suggested by
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equation (11), note that as a→∞, p(θ; a)→ 1, thus aligning the social and
private benefits of vacancy creation.5 This result is Proposition 2.5 in JKK.

In a companion paper, Julien, Kennes, and King (2006) show that equi-
librium in a finite labor market with a = v is also constrained efficient if
one assumes a particular wage determination mechanism; namely, vacancies
offering jobs to workers who have no other offers receive all of the surplus
(w = 0) but vacancies offering jobs to workers who do have other offers re-
ceive none of the surplus (w = 1). Julien, Kennes, and King (2006) interpret
this result in terms of what they call the Mortensen rule (Mortensen 1982)
— that efficiency in matching is attained if the “initiator” of the match gets
the total surplus. By mimicking our proof of Proposition 2, we can show
that this assumed wage determination mechanism is in fact the symmetric
equilibrium outcome in a directed search model with wage posting when
a = v in a finite labor market.6

Could an adaptation of the Julien, Kennes, and King (2006) wage deter-
mination mechanism to a large labor market with a ∈ {2, ..., A} deliver the
constrained efficient outcome? In order to do this, we would have to assume
that a worker receives w = 1 if he or she (i) has multiple offers or (ii) has
only one offer and is the only applicant to the vacancy making that offer but
receives w = 0 if he or she has only one offer but the vacancy making that
offer has other applicants. The extra twist in the mechanism (setting w = 1
in case (ii) above) is required because p(θ; a) < 1 when a �= v. This mecha-
nism delivers an expected payoff to vacancy creation equal to the right-hand
side of equation (11); thus, it implements the constrained efficient outcome.

We argue, however, that this wage determination protocol cannot be
sustained as an equilibrium outcome in a large labor market. One reason
is that it requires that when a worker is the sole applicant for a job, the
vacancy has to reveal this, even though it is not in the vacancy’s interest to

5The fact that the social planner cannot improve on the equilibrium outcome in this

case does not mean that welfare increases as a → ∞. To the contrary, γ(θ; a) increases

and m(θ; a) decreases in a as a → ∞. Increasing a makes the planner’s problem more

difficult. Similarly, even though equilibrium is constrained efficient when a = 1, welfare
may increase by moving to a > 1.

6The intuition for constrained efficiency in a large labor market when a = 1 is quite

different from the intuition for the finite labor market case when a = v. In the former,

constrained efficiency is a result of competition, and competition requires a labor market

sufficiently large that individual vacancies have negligible market power. When a = v,

constrained efficiency is a result of perfect monopoly power — the entire surplus goes to

the vacancy if there is no competition for the applicant it selects and to the worker if he

or she winds up having the monopoly power. The monopoly intuition does not require

that the labor market be large.
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do so. More fundamentally, even if a worker somehow knew that he or she

was the only candidate for a job, this wage determination protocol would not

survive if one allowed for competing mechanisms. The proposed mechanism

gives an applicant an expected payoff of

γ(θ;a) + (1− γ(θ; a))(1− p(θ;a)) = γ(θ;a) + (1− γ(θ; a))w∗(θ;a).7

Note, however, that the proposed mechanism is equivalent in terms of ex-
pected payoff to one in which each vacancy posts w∗(θ; a) and pays that
wage to its selected applicant unless that applicant has multiple offers, in
which case the wage is bid up to one by Bertrand competition. However,
Proposition 2 tells us that the proposed mechanism is not an equilibrium.
If all vacancies were “in effect” posting w∗(θ; a), it would be in the inter-
est of individual vacancies to post a slightly lower wage. Although we do
not want to claim that it is “impossible” to find a mechanism that could
implement the efficient outcome, the above argument suggests that Propo-
sition 3 is more general than one might suspect at first glance. Specifically,
this argument rules out any alternative mechanism that (i) has full ex post

competition (and, by equation (11), full ex post competition is required for
efficiency) and (ii) yields a positive expected payoff when a worker receives
only one offer.

4 Steady State

We now turn to steady-state analysis for a labor market with directed search
and multiple applications. We work with the limiting case in which u, v →∞
with v/u = θ and a ∈ {2, ..., A} fixed. Since only the ratio of v to u matters
in the limiting case, we normalize the labor force to 1; thus, u is interpreted
as the unemployment rate.

In steady-state, workers flow into employment with probability m(θ; a)
per period. We assume that matches break up exogenously with probability
δ, giving the countervailing flow back into unemployment. Similarly, jobs

move from vacant to filled with probability
m(θ; a)

θ
and back again with

probability δ. Steady-state analysis thus allows us to endogenize vacancies
and unemployment. More importantly, moving to the steady state means

7An applicant with multiple offers gets the full surplus (this occurs with probability
γ(θ; a)) as does an applicant who receives only one offer but does so from a vacancy that
has no other applicants (this occurs with probability (1− γ(θ; a))(1− p(θ; a)). Otherwise,
the applicant gets nothing.
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that those unemployed who fail to find an acceptable job in the current
period can wait and apply again in the future. In the case of a = 1, this is
not particularly interesting since, in equilibrium, there is no gain to waiting.
However, with multiple applications, the ability of the unemployed to hold
out for a situation in which vacancies engage in Bertrand competition for
their services, albeit at the cost of delay, implies a positive reservation wage.
This leads to a simple and appealing model in which labor market tightness
and the reservation wage are simultaneously determined. On the one hand,
the lower is the reservation wage of the unemployed, the more vacancies firms
want to create. On the other hand, as the labor market becomes tighter, i.e.,
as θ increases, the unemployed respond by increasing their reservation wage.
The steady-state equilibrium reservation wage is positive, thus suggesting
that moving to the steady-state might restore efficiency. Our final result in
this section shows that this is not the case — there is still excessive vacancy
creation.

The analysis proceeds as follows. Suppose the unemployed set a reser-
vation wage R. With multiple applications, the wage-posting problem for a
vacancy is qualitatively the same as in the one-period game. Whatever com-
mon wage might be posted at other vacancies, each individual vacancy has
the incentive to undercut. In the one-period game, this implies a monop-
sony wage of w = 0; in the steady state, this same mechanism implies a
dynamic monopsony wage of w = R.8 To avoid complicated dynamics, we
assume that a vacancy that fails to hire its candidate in period t cannot
carry its queue of remaining applicants (if any) over to the next period. As
a consequence, workers start with a new application round in each period
since their earlier applications are no longer on file. This implies that the
probability that an unemployed worker finds a job in any period and the
probability that he or she is hired at the competitive wage, conditional on
finding a job, are the same as in the single-period model; i.e., equations (1)
and (3) for m(θ;a) and γ(θ; a) continue to apply.

We begin by examining the value functions for jobs and for workers. A
job can be in one of three states — vacant, filled paying the competitive wage,
and filled paying R. Let V, J(1), and J(R) be the corresponding values. The

8We restrict our attention to stationary strategies (as do JKK in their dynamic exten-
sion). That is, we rule out reputation mechanisms that might avert bidding wars. Since
any two vacancies that might consider avoiding a bidding war today interact directly in
any future period with probability zero, this seems reasonable. We consider a mechanism
that rules out Bertrand competition in a static setting in Section 5.3 below.
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value of a vacancy is

V = −cv+
1

1 + r
{
m(θ;a)

θ
[γ(θ; a)J(1)+(1−γ(θ;a))J(R)]+(1−

m(θ;a)

θ
)V }.

Maintaining a vacancy entails a cost cv, which is incurred at the start of
each period. Moving to the end of the period, and thus discounting at

rate r, the vacancy has hired a worker with probability
m(θ;a)

θ
. With

probability γ(θ;a), the worker who was hired had his or her wage bid up
to the competitive level, thus implying a value of J(1). With probability
1 − γ(θ; a) the worker was hired at w = R, thus implying a value of J(R).

Finally, with probability 1 −
m(θ;a)

θ
, the vacancy failed to hire, in which

case the value V is retained.
Free entry implies V = 0 so the analysis for vacancies remains the same;

that is, free entry turns the dynamic game into one that is essentially static
for vacancies. Given V = 0, there is no incentive for vacancies competing
for a worker to drop out of the Bertrand competition before the wage is
bid up to w = 1 (thus justifying the notation J(1)). This in turn implies
that we also have J(1) = 0. Inserting these equilibrium conditions into the
expression for V gives

m(θ;a)

θ
(1− γ(θ;a))J(R) = cv(1 + r).

At the same time, the value of employing a worker at w = R is

J(R) = (1−R) +
1

1 + r
[(1− δ)J(R) + δV ].

Again using V = 0, we have

J(R) =
1 + r

r+ δ
(1−R).

Combining these equations gives the first steady-state equilibrium condition,

cv =
m(θ; a)

θ
(1− γ(θ; a))

1−R

r + δ
. (12)

A worker also passes through three states — unemployed, employed at
the competitive wage, and employed at R. The value of unemployment is
defined by

U =
1

1 + r
{m(θ;a)[γ(θ; a)N(1) + (1− γ(θ;a))N(R)] + (1−m(θ; a))U},
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where N(1) and N(R) are the values of employment at w = 1 and w = R,

respectively. These latter two values are in turn defined by

N(1) = 1 +
1

1 + r
{(1− δ)N(1) + δU}

N(R) = R+
1

1 + r
{(1− δ)N(R) + δU}.

The reservation wage property, i.e., N(R) = U, then implies

U =
1 + r

r
R

N(1) =
(1 + r)

r(r + δ)
(r + δR).

Inserting these expressions into the expression for U and rearranging gives
the second steady-state equilibrium condition,

R =
m(θ;a)γ(θ;a)

r + δ +m(θ; a)γ(θ;a)
. (13)

The final equation for the steady-state equilibrium is the standard flow
(Beveridge curve) condition for unemployment. Since the labor force is
normalized to 1, this is

u =
δ

δ +m(θ; a)
. (14)

Equations (13) and (14) show that, as is common in this class of models,
once labor market tightness (θ) is determined, the other endogenous vari-
ables — in this case, R and u — are easily determined. Using equation (13)
to eliminate R from equation (12) gives the equation that determines the
steady-state equilibrium value of θ, namely,

cv =
m(θ∗∗;a)

θ∗∗
1− γ(θ∗∗; a)

r + δ +m(θ∗∗;a)γ(θ∗∗; a)
. (15)

Using our results on the properties of m(θ; a) and γ(θ;a), we can show that

the right-hand side of equation (15) equals
1

r + δ
as θ → 0, that it goes to

zero as θ → ∞, and that its derivative with respect to θ is negative for all

θ > 0. Equation (15) thus has a unique solution for each cv ∈ (0,
1

r + δ
].

The natural next step is to compare equilibrium steady-state labor mar-
ket tightness with the constrained efficient value of θ. The planner’s problem
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is to choose the level of labor market tightness that maximizes the discounted
value of output net of vacancy costs for an infinitely-lived economy.9 That
is, the planner’s problem is to maximize

∞∑
s=0

(
1

1 + r

)s

(1− us − cvθsus)

subject to
us+1 − us = δ(1− us)−m(θs;a)us

with u0 given.
The Lagrangean for this problem is

∞∑
s=0

(
1

1 + r

)s

[(1− us − cvθsus) + λs(us+1 − us − δ(1− us) +m(θs; a)us)]

The necessary conditions for this problem evaluated at the steady state are

−cvu+ λmθ(θ; a)u = 0

−1− cvθ + λ[r + δ +m(θ; a)] = 0

Eliminating λ gives

cv =
(1 + cvθ

∗)mθ(θ
∗; a)

r + δ +m(θ∗;a)
. (16)

Now we can compare the levels of labor market tightness implied by
equations (15) and (16). Using equations (1) and (3), equation (15) can be
rewritten as

cv(r+δ+m(θ∗∗; a)) = (1+cvθ
∗∗)(1−

θ
∗∗

a
(1−e

−a/θ∗∗))a−1(1−e
−a/θ∗∗). (17)

Using equation (8), equation (16) can be rewritten as

cv (r + δ +m(θ∗; a)) = (1+cvθ
∗)(1−

θ
∗

a
(1−e−a/θ

∗

))a−1(1−e−a/θ
∗

−

a

θ
∗
e
−a/θ∗).

(18)
As in the single-period analysis, θ∗ is the constrained efficient level of labor
market tightness, i.e., the value of θ that solves equation (16), and θ

∗∗ is the
equilibrium level of labor market tightness, i.e., the value of θ that solves
equation (15). Comparing equations (17) and (18) yields the following:

9
We consider only stationary solutions, but this is not likely to be restrictive in our

model. There are two standard reasons why a nonstationary solution might be optimal.
First, as shown in Shimer and Smith (2001), a nonstationary solution can be optimal in
a matching model with two-sided heterogeneity when agents’ characteristics are comple-
ments in production. A nonstationary solution may also be optimal if there are increasing
returns to scale in the matching function. Neither of these features is present in our model.
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Proposition 4 Let u, v → ∞ with v/u = θ and a ∈ {2, ...,A} fixed. Then

in steady state, θ∗∗ > θ∗.

Proposition 4 indicates that, as in the single-period analysis, when the
unemployed make a fixed number of multiple applications per period (a ∈
{2, ..., A}), equilibrium is constrained inefficient. Specifically, there is too
much vacancy creation. This result holds even though the ability of the
unemployed to reject offers in favor of waiting for a more favorable outcome
in some future period implies a dynamic monopsony wage above the single-
period monopsony wage of zero. The intuition for the inefficiency result is
the same as in the static model. As before, the social benefit of opening an
additional vacancy, the right-hand side of equation (18), is p(θ;a) times the
private benefit, the right-hand side of equation (17).

5 Extensions and Robustness Checks

In this section, we focus on three simplifying assumptions that we made
in our basic model. These assumptions are: (i) that the number of appli-
cations sent out by each worker is a parameter of the search technology,
(ii) that each vacancy can process at most one applicant per period, and
(iii) that two or more vacancies competing for the same worker engage in
Bertrand competition for that worker’s services. Accordingly, we examine
what happens to our results if (i) the number of applications per worker is a
choice variable, (ii) each vacancy can process more than one applicant, and
(iii) vacancies pursue strategies that rule out Bertrand competition. In all
three robustness exercises, we confirm our result that equilibria in models
of directed search with multiple applications are inefficient.

5.1 Endogenous a

We have assumed that each worker makes a applications, where a ∈ {1, 2, ..., A}
is exogenously given. Since the equilibrium level of labor market tightness
is efficient when a = 1 but inefficient when a ∈ {2, ...,A}, it is natural to
ask whether — and under what circumstances — workers would choose to
make only one application or more than one. In addressing this question,
we consider only pure-strategy symmetric equilibria in application strate-
gies. That is, assuming that all other workers make a applications, under
what conditions (taking into account how firms react to all workers choosing
a) is it in the individual worker’s interest also to choose a?
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To make endogenizing a an interesting problem, there must be a cost
associated with applications, so we assume that each application costs ca to
submit. In the one-shot game, there are then only 2 exogenous parameters,
the cost of posting a vacancy, cv, and the cost of submitting an application,
ca. We need only consider 0 ≤ cv ≤ 1 and 0 ≤ ca ≤ 1 since worker output
equals 1 and if cv > 1, no firm would post a vacancy, and if ca > 1, no
worker would make an application. Thus for each (cv, ca) in the unit square
we can ask (i) what are the free-entry equilibrium values of θ and a and (ii)
what values of θ and a would a social planner choose?

We start with the equilibrium problem and ask: For what values of
(cv, ca) is a = 1 consistent with equilibrium? For what values of (cv, ca) is
a = 2 consistent with equilibrium? Etc. We address this problem numeri-
cally as follows.

Consider a candidate equilibrium in which all workers make a applica-
tions. Then, for each θ, we know what wage vacancies choose to post (from
equation (2) if a = 1; zero if a ∈ {2, ..., A}), and we know m(θ;a). We pick
a value of cv from a grid over (0, 1). From the free-entry condition (equation
(6) if a = 1; equation (7) otherwise), there is a corresponding implied value
of θ. We then ask, using the value of θ implied by the free-entry condition,
for what values of ca is an individual worker’s expected payoff maximized by
choosing to send out the same number of applications as all other workers
do? We answer this numerically by comparing the expected payoff associated
with choosing a when all other workers also choose a with those associated
with choosing a − 1, a − 2, ... and a + 1, a + 2, ..., etc.10 For the particular
cv that we chose, this gives us a range of values for ca. We then repeat for
the next value of cv, etc. The outcome of this algorithm is the set of (cv, ca)
combinations in the unit square that are consistent with a pure-strategy
symmetric equilibrium in which all workers make a applications. We carry
out this process for a wide range of values for a.

Next, we address the social planner’s problem. Given (cv, ca), the natural
social planner’s problem is

max
θ,a

m(θ;a)− cvθ − caa,

where θ ≥ 0 and a ∈ {0, 1, 2, ...}. We know this problem is concave in θ for a
given a. Thus, if (θ∗, a∗) solves the social planner’s problem, we must have

cv =mθ(θ
∗;a∗),

10This comparison can be carried out in a finite number of steps since the maximum

number of applications a worker might make is limited by the requirement that the total

cost of submitting applications be less than one.
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and θ∗ = θ∗(a∗; cv) has a unique solution. We can plug this back into
the social planner’s objective and maximize numerically with respect to a.

This gives a∗ (and θ∗) as functions of (cv, ca). We can then compare the
equilibrium unit square with the social planner unit square.

The qualitative results of this exercise are as follows. First, although
there are many parameter configurations for which the equilibrium number
of applications, a∗∗, equals 1, this outcome requires relatively high values of
ca. Second, the equilibrium number of applications increases as ca falls (as
one would expect). Third, there are parameter configurations that admit
multiple equilibria. This reflects a complementarity between workers’ and
firms’ strategies. For example, if all workers choose a = 1, then vacancies
post a positive wage, w(θ; 1) > 0. For some values of θ (equivalently, for some
values of cv) it is not worthwhile for workers to submit a second application.
On the other hand, if all workers choose a = 2, then w = 0, and it cannot
be worthwhile for a worker to deviate to a = 1. Fourth, there are many
parameter configurations for which no symmetric pure-strategy equilibrium
exists. One parameter region in which this is the case is the set of (cv, ca)
combinations in which individual workers would prefer not to send out any
applications when all other workers choose a = 1. This occurs when both cv
and ca are relatively high. There are, however, other (cv, ca) combinations
for which no symmetric pure-strategy equilibrium exists. Fifth, for relatively
low values of ca, there are parameter regions with unique equilibria at a∗∗ =
2, a∗∗ = 3, etc.

In the parameter regions in which a symmetric pure-strategy equilibrium
(or equilibria) exists, we find a∗∗ ≥ a∗. Specifically, there are parameter
configurations for which a∗ = a∗∗ = 1 (where a∗∗ = 1 may either be unique
or one of two or more equilibrium possibilities). However, when a∗∗ ≥ 2,
we find a∗∗ > a∗. This occurs when cv and ca are low relative to the output
produced by a match. That is, for what we view as reasonable values of cv
and ca, the equilibrium number of applications exceeds the socially optimal
value. The reason is simply that individual workers, when deciding how
many applications to submit, fail to take into account the externality they
impose on other workers. The countervailing effect that one might expect —
that an increase in worker applications should make it easier for firms to fill
their vacancies — is not sufficient to offset this externality and, indeed, may
even be negative because of the coordination failure among vacancies.

Finally, endogenizing a does not affect our basic result that, while di-
rected search with one application always leads to the efficient level of labor
market tightness, this is not the case with multiple applications. For (cv, ca)
combinations such that a∗ = a∗∗ = 1, we, of course, have θ∗ = θ∗∗. For
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almost all parameter configurations for which a∗∗ > a∗, we find θ∗∗ > θ∗ as
we did before. There is a small set of parameter configurations, however,
for which θ∗∗ < θ∗.11 This appears at first glance to be inconsistent with
Proposition 3, but note that in that Proposition, we imposed the restriction
that a∗ = a∗∗.

The bottom line of this robustness exercise is that when a is endoge-
nous and when workers choose a > 1, equilibrium may be inefficient in two
ways. There are always too many applications per worker and labor mar-
ket tightness is generally not at the level the social planner would choose.
The assumption that a is an exogenous parameter of the search technology,
which we made in order to make our basic model as transparent as possible,
is not driving our results on the inefficiency effects of multiple applications.

5.2 Shortlisting

Our inefficiency result is based on a double coordination failure. Not only are

workers unable to coordinate in terms of where they send their applications,

but vacancies are unable to coordinate in terms of which applicants they try

to hire. In our basic model, we represented the coordination failure among

vacancies in a clean but extreme way. A natural question is the extent to

which our results depend on our assumption that each vacancy can pursue

at most one applicant.

To address this question, we now consider a version of the basic one-shot

model in which each vacancy can make up to two offers. Specifically, we

assume that vacancies form “short lists” as follows. If two or more workers

apply to a vacancy, the vacancy selects two applicants at random and rejects

the others. It selects one of its chosen applicants to receive its first-round

offer. The other applicant, if she is not hired by another vacancy in the

first round, gets a second-round offer in the event that the vacancy doesn’t

hire in the first round. If only one worker applies to a vacancy, then that

worker gets the vacancy’s first-round offer. To keep the algebra as simple as

possible, we analyze this model for the case of a = 2.

This extension makes our model far more difficult. The basic reason

is that when a worker thinks about applying to a vacancy that is deviat-

11To understand why this can happen, recall that m(θ; a) is decreasing in a for suf-

ficiently high a. Reducing the matching rate hurts both workers and vacancies. When

workers choose a∗∗ > 1, the planner can improve on the equilibrium allocation by reduc-

ing a. When m(θ; a) is decreasing in a , the reduction in a increases the matching rate and

can, for some parameter values, increase the marginal benefit of opening a vacancy, i.e.,

mθ(θ; a), sufficiently so that the social planner would also raise θ. This happens despite

the fact that were a fixed at either a∗ or a∗∗, the social planner would want to decrease θ.
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ing from the putative equilibrium wage, the indifference condition becomes

considerably more complicated. A worker’s application strategy affects the

probabilities of being placed on 0, 1, or 2 short lists; the worker could be

in first or second place on these short lists, etc. In addition, an interme-

diate wage arises in this model. Consider two vacancies competing for the

same applicant in the first round. If either or both of these vacancies has a

second-round candidate, then Bertrand competition in the first round stops

before the competitive level.

Our analysis of shortlisting follows the same road map that we used

for our basic model. We first derive the matching probability, assuming a

symmetric equilibrium posted wage. Second, taking θ as given, we derive

the symmetric equilibrium wage-posting strategy for vacancies. Finally, we

characterize the free-entry equilibrium level of labor market tightness and

the corresponding constrained efficient level and compare the two. The

central result of our analysis still holds — the equilibrium level of θ exceeds

the efficient level.

Because the details of the shortlisting extension are tedious, we present

the derivations in the first section of the web supplements to this paper.

Here, in the text, we simply summarize and comment on our results.

We begin with the matching probability. Assuming the existence of a

symmetric equilibrium posted wage, that is, assuming that all vacancies are

equally attractive ex ante, the probability that a worker finds a job is

m(θ) = 1− (1− q1)
2(1− q2)

2,

where q1 is the probability that an application leads to a first-round offer
and q2 is the probability that an application leads to a second-round offer
given that it does not generate a first-round offer. An explanation of the
form of m(θ) and expressions for q1 and q2 are given in Section 1 of the web
supplements to this paper. Note that the probability that an application
leads to a first-round offer is the same as the probability that the application
would have generated an offer had there been only one round; i.e., q1 = q

(from the basic model). The obvious result thus follows; namely, for each
value of θ, shortlisting increases the probability that a worker finds a job.

From the social planner’s perspective, the only effect of shortlisting is to
change the form of m(θ). The effect on equilibrium is, however, much more
complicated. For low values of θ, the equilibrium analysis is qualitatively
similar to the one we carried out for our basic model. All vacancies post
a wage of zero. Bertrand competition for an applicant who has two first-
round offers either drives the wage to the competitive level (if neither of
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the competing vacancies has a second-round candidate) or to the interme-
diate wage (if at least one of the vacancies has a second-round candidate).
An applicant who, having failed to get any first-round offers, gets a single
second-round offer receives the monopsony wage (zero). An applicant who
gets two second-round offers receives a wage of one.

For higher values of θ (the cutoff value is approximately θ = 0.42),
there are multiple equilibria. For example, when θ = 1, any wage in the
interval [0.20, 0.23] (approximately) is consistent with equilibrium. Multiple
equilibria arise because the derivative of expected profit with respect to
the potential deviant’s wage is discontinuous at the equilibrium wage. The
reason that w = 0 is not an equilibrium posted wage for higher values of θ
has to do with the change in application incentives implied by shortlisting.
In our basic model, a worker whose application is accepted by more than
one vacancy necessarily receives a wage of one, and workers are willing to
apply to vacancies posting w = 0 in hopes of hitting the jackpot. With
shortlisting, however, a worker can wind up with the posted wage even if
both of her applications are accepted — specifically, if she is first on one
vacancy’s short list and second on the other’s. (When θ is low, w = 0 arises
even with shortlisting due to a lack of competition among vacancies.)

Whether θ is low, so w = 0 is the unique posted wage, or θ is high,
so there are multiple equilibria, workers can receive three different wages
— the posted wage, the intermediate wage, and the competitive wage. The
intermediate wage, s, is determined by

1− s = (1− q1)(1− q2)(1−w).

The left-hand side of this expression is the profit that a vacancy realizes
if it hires its first-round candidate at wage s. The right-hand side is the
expected profit for a vacancy that received two applications should it choose
to proceed to the second round. With probability 1−q1 the vacancy’s second-
place candidate will still be available after the first round. Conditional on
still being available, this candidate will fail to get a competing second round
offer with probability 1− q2. The vacancy then realizes a profit of 1−w.

For each value of θ, the next step is to compute the expected profit of
a vacancy, say π(θ). When there are multiple equilibria, we use the highest
possible equilibrium wage. At this wage, π(θ) is at its lowest possible level;
hence the incentive to create vacancies is as small as possible. The free-entry
equilibrium value of labor market tightness, θ∗∗, is determined by

cv = π(θ∗∗),
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which is analogous to equation (7) in our basic model. The efficient value
of labor market tightness, θ∗, is determined by

cv = m′(θ∗),

precisely as in the basic model. The only effect of shortlisting is to change
the form of m(·).

It is straightforward to compute m′(θ) and π(θ) numerically. Both of
these functions are positive and decreasing in θ, and π(θ) > m′(θ) for each
θ > 0. Equivalently, θ∗∗ > θ∗. That is, the central result of our basic model,
namely, that there is excessive vacancy creation in equilibrium, continues to
hold when we extend our model to allow for shortlisting.

The fact that shortlisting reduces matching frictions does not necessarily
mean that shortlisting makes equilibrium more efficient in the sense that
θ∗∗ “gets closer to” θ∗. Shortlisting affects both the social planner’s problem
and the market outcome so that both θ∗ and θ∗∗ change. The fact that
θ∗∗ > θ∗ continues to hold when we allow for shortlisting suggests that
our result on the inefficiency of directed search equilibrium when workers
make multiple applications is robust to our assumption that vacancies can
consider at most one application. Even if vacancies could process all their
applicants, some vacancies that receive applications would nonetheless lose
all their candidates to rival vacancies. Shortlisting reduces the coordination
problem among vacancies but does not eliminate it.

5.3 Offer-Beating Strategies

In our basic model, we assumed that if a worker receives offers from two
or more vacancies, those vacancies then engage in Bertrand competition for
the worker’s services. Although the Bertrand assumption is standard in the
literature, it can be debated in our environment. A vacancy that is about
to lose a worker to a rival should be indifferent between letting the worker
take the other job versus entering into Bertrand competition. After all, both
policies, conceding or competing, lead to the same zero-profit outcome.

A natural alternative is to assume that each vacancy announces a wage
and then commits not to engage in ex post bidding. However, as discussed
in footnote 1, in this case, there is no equilibrium with a common posted
wage. Moreover, simply assuming commitment is unsatisfactory because if
all other vacancies were to follow the commitment strategy, any vacancy
whose candidate has multiple offers could do better by deviating from that
strategy and offering slightly more. This leads us to consider offer-beating
strategies.
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We define such strategies as follows:

1. Post w.

2. If all other vacancies pursuing the same applicant post w or less, con-
tinue to offer w.

3. If at least one other vacancy pursuing the same applicant posts w′ > w

or makes a counteroffer w′ > w, make a counteroffer above w′. If one or
more rivals makes a counteroffer to the counteroffer, respond in kind;
i.e., engage in Bertrand competition.

Of course, these strategies only are relevant when workers make more than
one application.

Offer-beating strategies are analogous to the price-beating strategies that
have been used in the industrial organization literature to rule out Bertrand
competition in prices. Price-beating strategies are sometimes used in that
literature as a foundation for “kinked demand curves” (e.g., Tirole 1988, pp.
243-45). Typically, there is a continuum of price-beating Nash equilibria —
absent any consideration of equilibrium refinements, there is a continuum of
prices at which the demand curve can kink.

We begin our analysis of offer-beating equilibria taking θ as given. We
first show that for each θ, there is a continuum of offer-beating Nash equi-
libria. We then show that when we endogenize θ, all of these equilibria are
inefficient. The details of our analysis and the proofs of our results are given
in Section 2 of the web supplements to this paper. Specifically, we prove the
following:

Proposition 5 Let w(θ; a) =

a

θ
e−a/θ

1− e−a/θ
. There exists a continuum of sym-

metric offer-beating Nash equilibria indexed by w ∈ [0, w(θ;a)].

Proposition 6 There is excessive vacancy creation in any symmetric offer-

beating Nash equilibrium.

This indicates that the inefficiency associated with multiple applications is
not an artifact of ex post Bertrand competition for applicants.

To gain further insight into the inefficiency result in our basic model, it
is useful to examine why offer-beating equilibria are also inefficient. Offer-
beating strategies lead to implicit collusion among vacancies. This collusion
shuts down all ex post competition, that is, the competition that can occur
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after workers make their applications and vacancies select their candidates.
Offer-beating strategies can also shut down ex ante competition among va-
cancies, that is, the competition among vacancies to attract applicants, to a
greater or lesser extent, ranging from a complete absence of ex ante compe-
tition when w = 0 to full ex ante competition when w = w(θ;a). Note that
w(θ; a) = w∗, the wage that a social planner would set if vacancies engaged
in Bertrand competition rather than following offer-beating strategies. That
is, were there full ex post competition, the social planner would want to im-
plement full ex ante competition. If vacancies follow offer-beating strategies,
the social planner would prefer a wage above w(θ; a) to compensate for the
lack of ex post competition. Absent ex post competition, the decision to
post a vacancy neglects the externality that arises when a vacancy hires a
worker with one or more other offers.

In our model, Bertrand competition fully implements ex post competition
but at the cost of eliminating ex ante competition. Offer-beating strategies
have the potential to achieve full ex ante competition but by design shut
down ex post competition. The lesson we draw is that in directed search
models in which workers make a finite number of multiple applications and
vacancies post wages to attract workers, there is a fundamental tradeoff
between ex ante and ex post competition.

6 Concluding Remarks

In this paper, we construct an equilibrium search model of a large labor
market in which workers, after observing all posted wages, submit a fixed
number of applications, a ∈ {1, ...A}, to the vacancies that they find most at-
tractive. We derive the symmetric equilibrium matching probability and the
common posted wage. When a = 1, our analysis is a large labor market ver-
sion of BSW. However, when a ∈ {2, ...A}, i.e., when workers make multiple
applications, the symmetric equilibrium of our model is radically different.
With multiple applications, the matching probability in our model reflects
the interplay of two coordination failures — an urn-ball failure among work-
ers and a multiple-application failure among vacancies. In addition, when
workers make more than one application, all vacancies post the monopsony
wage, but there is dispersion in wages paid. Workers who receive only one
job offer are paid the monopsony wage, but those who receive multiple of-
fers get the competitive wage. When workers make a single application or
when they apply to an arbitrarily large number of vacancies, equilibrium
is constrained efficient; but when workers make a finite number of multiple
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applications, too many vacancies are posted. These results, both positive
and normative, carry over from the single-period model to a steady-state
framework and they are robust with respect to reasonable variations in our
key assumptions.

Directed search is an appealing way to model equilibrium unemploy-
ment and wage dispersion. In reality, workers do direct their applications to
attractive vacancies, but unemployment nonetheless persists as a result of
coordination failures on both sides of the labor market. In addition, those
workers who are lucky enough to generate competition for their services
do in fact have their wages bid up. The contribution of our paper is to
show that these realistic features can be captured in a tractable equilibrium
model and, more importantly, that when these features are incorporated,
equilibrium is not constrained efficient.
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Appendices

A Proof of Proposition 1

We now sketch the proof of Proposition 1. The full proof is given in Albrecht
et. al. (2004). We computem(θ; a) as follows. The probability that a worker
finds a job is one minus the probability that he or she gets no job offers.
Consider a worker who applies to a vacancies, and let the random variables
X1,X2, ...,Xa be the number of competitors that he or she has at vacancy 1,
vacancy 2, ..., vacancy a. The probability that the worker gets no job offers
can be expressed as

∑
...
∑ x1

x1 + 1

x2
x2 + 1

...
xa

xa + 1
P [X1 = x1,X2 = x2, ...Xa = xa].

In general, the random variables X1,X2, ...,Xa are not independent, making
the computation of the joint probability a difficult one. (Albrecht et. al.
2004 and Philip 2003 give an expression for the joint probability.) The
intuition for dependence is straightforward. Consider, for example, a labor
market in which u and v are small and in which each worker makes a = 2
applications. Then, if a worker has relatively many competitors at the first
vacancy to which he or she applies, it is more likely that his or her second
application has relatively few competitors. The key to Proposition 1 is
that this dependence vanishes in the limit. In the limit, the fact that a
worker has an unexpectedly large number of competitors at one vacancy
says nothing about the number of competitors he or she faces elsewhere.
The joint probability then equals the product of the marginals, and the
probability that a worker gets at least one offer can be computed as 1 −(∑ x

x+1P [X = x]
)a

. As u, v →∞ with v/u = θ, the number of competitors

an applicant faces at any particular vacancy, X, converges in distribution to

a Poisson (
a

θ
) random variable. A straightforward computation then gives

equation (1).
If a = 1, there is no problem of dependence. The number of competitors

that a worker has at the vacancy to which he or she applies is a bin(u−1, 1v )
random variable. The probability that a worker gets an offer is then

1−
u−1∑
x=0

x

x+ 1

(
u− 1

x

)(
1

v

)x(
1−

1

v

)u−1−x

=
v

u

[
1− (1−

1

v
)u
]
.

With a change in notation, this result is the same as the one given in BSW.
Taking the limit of this matching probability as u, v → ∞ with v/u = θ
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gives m(θ; 1) = θ(1 − e−1/θ), as equation (1) implies. The case of a = v
is the polar opposite. In this case, X1 = X2 = ... = Xa = u − 1 with
probability one, so the probability a worker gets an offer is 1− (u−1u )v, as in
JKK. Taking the limit as u, v→∞ with v/u = θ gives

m(θ) = 1− e−θ.

The same expression can be derived by taking the limit of m(θ;a) as a→∞
in equation (1).

B Proof of Proposition 2

As discussed in the text, we need to show that when a = 1, the wage
w(θ; 1) has the property that if all vacancies, with the possible exception
of a potential deviant (D), post that wage, then it is also in D’s interest to
post w(θ; 1). When a ∈ {2, ...,A}, we need to show that no matter what
common wage is posted by other vacancies, it is always in D’s interest to
undercut, thus driving w(θ; a) to zero.

Suppose D posts a wage of w′ and that each nondeviant vacancy (N)
posts w. Then D’s expected profit is

π(w′;w) = (1−w′)P [D gets at least one application]P [selected applicant has no other offer]

Let k be the probability that any one worker applies to D. In symmetric
equilibrium, k must be the same for all workers. As u → ∞, k must go to
zero; otherwise, any applicant to D would have an infinity of competitors
and therefore would get the job at D with probability zero. We let u→∞
and k → 0 in such a way that ku = ξ stays constant; thus, in a large
labor market, the number of applications sent to D is a Poisson (ξ) random
variable. We therefore have

P [D gets at least one application] = 1− e−ξ.

The parameter ξ depends on w′ and w through an indifference condition,
which we develop below. Finally, the last term on the right-hand side of
π(w′;w) can be written as

P [selected applicant has no other offer] = (1− q)a−1,

where q is the probability that any one application to an N vacancy leads
to an offer. We thus have

π(w′;w) = (1−w′)(1− e−ξ)(1− q)a−1.
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The parameter ξ determines the probability (call it qD) that a worker
who applies to D gets an offer from that vacancy, as follows:

qD =
∞∑

x=0

1

x+ 1

e−ξξx

x!
=

1

ξ
(1− e−ξ).

To understand this expression, note that (i) a worker who has x competitors

at D gets the offer from D with probability
1

x+ 1
and (ii) the number of

competitors faced by a worker who applies to D is Poisson (ξ). Similarly,
the probability that an application to an N vacancy leads to an offer is

q =
∞∑

x=0

1

x+ 1

e−a/θ(aθ )
x

x!
=

θ

a
(1− e−a/θ).

Note that q was also defined in the discussion following Proposition 1 and
does not depend on w′.

We now develop the indifference condition, which defines ξ as a function
of w′ given w and θ. Each worker must be indifferent between sending all a
applications to N vacancies versus sending 1 application to D and the other
a−1 to N vacancies. The expected payoff from sending all applications to N
vacancies depends on neither ξ nor w′ and can thus be treated as a constant.
The expected payoff from sending one application to D and the others to N
vacancies does, of course, depend on ξ and w′.

The possible payoffs for a worker who sends 1 application to D and the
other a− 1 applications to N vacancies are

(i) 1 if 2 or more applications are accepted.
This occurs with probability

qD(1− (1− q)a−1) + (1− qD)(1− (1− q)a−1 − (a− 1)q(1− q)a−2)

= 1− (1− q)a−1 − (1− qD)(a− 1)q(1− q)a−2.

(ii) w′ if only the application to D is successful.
This occurs with probability qD(1− q)a−1.

(iii) w if the application to D is unsuccessful and only one application to N
is successful.

This occurs with probability (1− qD)(a− 1)q(1− q)a−2.

(iv) 0 if no applications are successful.
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This occurs with probability (1− qD)(1− q)a−1.

The expected payoff for a worker who sends 1 application to D and a− 1 to
N is thus

1−(1−q)a−1−(1−qD)(a−1)q(1−q)a−2+w′qD(1−q)a−1+w(1−qD)(a−1)q(1−q)a−2.

Equating the two expected payoffs implicitly defines ξ(w′;w, θ). Differen-

tiating with respect to w′, taking into account that
dqD

dξ
= −

1− e−ξ − ξe−ξ

ξ2
,

and substituting for qD and q gives

dξ

dw′
=

ξ(1− e−ξ)(1− θ
a(1− e−a/θ))

(1− e−ξ − ξe−ξ)
(
(a− 1)θa(1− e−a/θ)(1−w) +w′(1− θ

a(1− e−a/θ))
)

Since 1 − e−x − xe−x > 0 for all x > 0 and 1 ≥ w, we have
dξ

dw′
> 0 (as

expected) and
d2ξ

dw′
2
< 0.

Turning back to D’s optimization problem, π(w′;w) is proportional to
(1 − w′)(1 − e−ξ). Maximizing with respect to w′, the first-order (Kuhn-
Tucker) condition is

−(1− e−ξ) + (1−w′)e−ξ
dξ

dw′
≤ 0 with equality if w′ > 0.

If there is an interior solution, the second-order condition holds.
We are interested in the possibility of an interior solution at w′ = w.

Consider first the case of a = 1. If w′ = w, then ξ = 1/θ. Substituting and
solving gives

w(θ; 1) =
e−1/θ

θ(1− e−1/θ)
.

Next consider the case of a ∈ {2, ...,A}. Substituting the expression

for
dξ

dw′
into the Kuhn-Tucker condition and evaluating at w′ = w, where

ξ = a/θ, gives

(1−w)ξe−ξ(1− 1

ξ (1− e−ξ))

(1− e−ξ − ξe−ξ)
(
(a− 1)1ξ (1− e−ξ)(1−w) +w(1− 1

ξ (1− e−ξ))
) ≤ 1

This can be rewritten as

(1−w)e−ξ(ξ2−ξ(1−e−ξ)) ≤
(
1− e−ξ − ξe−ξ

)(
(a− 1)(1− e−ξ)(1−w) +w(ξ − (1− e−ξ))

)
,
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or

ξ2e−ξ + (a− 2)ξe−ξ(1− e−ξ)− (a− 1)2(1− e−ξ)2

(1− e−ξ)
≤ w(ξ−a(1−e−ξ)+(a−1)2ξ(1−e−ξ)2).

Only a corner solution exists with w(θ;a) = 0 if this is a strict inequality.
To show that this inequality is in fact strict when a ∈ {2, ..., A}, we show

that the RHS of the above expression is positive for any w > 0 and for all
ξ = a/θ > 0, while the LHS is negative. Note first that as ξ → 0, the
RHS → 0 and, using a L’Hôpital’s Rule argument, so does the LHS. Then
note that

dRHS

dξ
= w(1− ae−ξ + (a− 1)2(1− e−ξ)2 + 2(a− 1)2ξ(1− e−ξ)e−ξ) > 0,

while

dLHS

dξ
=
−e−ξ((1− e−ξ)2((a− 1)(a− 2) + ξ(a− 2)) + (1− e−ξ − ξ)2

(1− e−ξ)2
,

which is negative for a ∈ {2, ...,A}. Thus, in this case, we have a corner
solution with w(θ; a) = 0.

Finally to derive γ(θ;a), note that in symmetric equilibrium qD ≡ q =
θ
a(1 − e−a/θ). A fraction 1 − (1 − q)a of all workers get a job. A fraction
1 − (1 − q)a − a(1 − q)a−1 of all workers receive multiple offers. Thus, a
fraction

1− (1− q)a − a(1− q)a−1

1− (1− q)a

of the workers who find a job receive the competitive wage. Substituting for
q gives equation (4). QED
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