Propagating Wave and Irregular Dynamics: Spatiotemporal Patterns of Cholinergic Theta Oscillations in Neocortex In Vitro

Weili Bao and Jian-Young Wu
Department of Physiology and Biophysics, Georgetown University, Washington DC, 20057-1421

Submitted 31 December 2002; accepted in final form 18 February 2003

Bao, Weili and Jian-Young Wu. Propagating wave and irregular dynamics: spatiotemporal patterns of cholinergic theta oscillations in neocortex in vitro. J Neurophysiol 90: 333–341, 2003. First published February 26, 2003; 10.1152/jn.00715.2002. Neocortical “theta” oscillation (5–12 Hz) has been observed in animals and human subjects but little is known about how the oscillation is organized in the cortical intrinsic networks. Here we use voltage-sensitive dye and optical imaging to study a carbachol/bicuculline induced theta (~8 Hz) oscillation in rat neocortical slices. The imaging has large signal-to-noise ratio, allowing us to map the phase distribution over the neocortical tissue during the oscillation. The oscillation was organized as spontaneous epochs and each epoch was composed of a “first spike,” a “regular” period (with relatively stable frequency and amplitude), and an “irregular” period (with variable frequency and amplitude) of oscillations. During each cycle of the regular oscillation, one wave of activation propagated horizontally (parallel to the cortical lamina) across the cortical section at a velocity of ~50 mm/s. Vertically the activity was synchronized through all cortical layers. This pattern of one propagating wave associated with one oscillation cycle was seen during all the regular cycles. The oscillation frequency varied noticeably at two neighboring horizontal locations (330 μm apart), suggesting that the oscillation is locally organized and each local oscillator is about ~300 μm wide horizontally. During irregular oscillations, the spatiotemporal patterns were complex and sometimes the vertical synchronization decomposed, suggesting a de-coupling among local oscillators. Our data suggested that neocortical theta oscillation is sustained by multiple local oscillators. The coupling regime among the oscillators may determine the spatiotemporal pattern and switching between propagating waves and irregular patterns.

INTRODUCTION

Oscillation in theta band (5–12 Hz) is a well-characterized activity in the mammalian brain. Hippocampal theta occurs exclusively during exploratory behaviors (Van derwolf 1969) and rapid-eye movement sleep (Joffet 1969; Vanderwolf 1969), suggesting that this activity may be related to spatial learning and memory deposition. Neocortical theta activity has been observed in animal and human subjects (Raghavachari et al. 2001; Sarnthein et al. 1998) and may play a role in spatial learning during all the regular cycles. The oscillation frequency varied noticeably at two neighboring horizontal locations (330 μm apart), suggesting that the oscillation is locally organized and each local oscillator is about ~300 μm wide horizontally. During irregular oscillations, the spatiotemporal patterns were complex and sometimes the vertical synchronization decomposed, suggesting a de-coupling among local oscillators. Our data suggested that neocortical theta oscillation is sustained by multiple local oscillators. The coupling regime among the oscillators may determine the spatiotemporal pattern and switching between propagating waves and irregular patterns.

In this report, we use voltage-sensitive dye (VSD) imaging to examine this in vitro neocortical oscillation. Pharmacologically generating the activity in brain slice allows us to exclude contributions from external (subcortical) pacemaker(s), allowing an analysis of how intracortical interactions organize the phase distribution.

In brain slices, the sensitivity of VSD imaging was high (Jin et al. 2002), allowing a simultaneously measurement from 50 to 100 locations over an area of ~4 mm in diameter. The advantage of optical recordings over an electrode array is that VSD imaging measures the transmembrane potentials of the neuronal population and thus the phase gradient caused by current source/sink pairs in the tissue is ignored, and only the phase in the membrane potential oscillation is measured. Our results show that the oscillation is organized as propagating waves. Local (~330 μm) phase variations suggest that the oscillators may determine the spatiotemporal pattern and switching between propagating waves and irregular patterns.

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Address for reprint requests: J.-Y. Wu, Georgetown University, Rm 247, Basic Science Building, 3900 Reservoir Rd. NW, Washington, DC 20057 (E-mail: wuj@georgetown.edu).
The propagation wave may be composed of coupled local oscillators.

METHODS

Cortical slice preparation

Sprague-Dawley rats (*n* = 20) of both sexes from P28 to P35 were used. The animals were deeply anesthetized with halothane and quickly decapitated. The whole brain was chilled in cold (0–4°C) artificial cerebrospinal fluid [ACSF, containing (in mM) 132 NaCl, 3 KCl, 2 CaCl₂, 2 MgSO₄, 1.25 NaH₂PO₄, 26 NaHCO₃, and 10 dextrose and saturated with 95% O₂-5% CO₂] and coronal slices (450 μm thick) including occipital areas (Bregma −3 to −5 mm) were cut and transferred to a holding chamber for >60 min (at 22°C) before the next procedure.

VSD imaging

The imaging apparatus and methods are described in detail by Wu and Cohen (1993) and Jin et al. (2002). Briefly, the slices were stained with ACSF containing 0.005–0.02 mg/ml of an oxonol dye, NK3630 [first synthesized by R. Hildesheim and A. Grinvald as RH482; available from Nippon Kankoh-Shikiso Kenkyusho, Japan] (see Momose-Sato et al. (1999) for molecular structure], for 30–60 min (22°C). During staining, the dye solution was gently bubbled with 95% O₂-5% CO₂. The stained slices were then perfused in dye-free ACSF in a submerge chamber at 28°C with ACSF containing 0.005 M oxonol dye, NK3630 and used by NeuroPlex. When neocortical slices were perfused with 100 μM bicuculline and 10 μM bicuculline at 28–32°C, oscillations at theta frequencies (5–14 Hz) occurred in the occipital area of the slice (Fig. 1) in agreement with the results obtained by Lukatch and MacIver (1997). These oscillations can be distinguished from epileptiform spikes in the same tissue: epileptiform spikes had high-amplitude (>1 mV) and high frequency (5–14 Hz) (Kowalczyk et al. 2001). Staining with the dye did not change the frequency, duration, or the amplitude of the theta oscillations recorded by the local field potential electrode (data not shown). During VSD imaging, only a moderate illumination intensity was used so that bleaching and photodynamic damage (resulting from high illumination intensity, Jin et al. 2002) were not detectable.

In cortical layer II–III, oscillations both in local field poten-

Local field potential recordings

Tungsten microelectrodes (epoxyite-coated, FHC, Bowdoinham, ME) with tip resistance of ~75 kΩ were used for sampling local field potentials. The electrode was carefully placed into the tissue so that the tissue surrounding the electrode produced normal VSD signals. The field potential signals were amplified ×1,000 and band-pass filtered at 0.1–400 Hz (by a Brownlee Precision 440 amplifier) and digitized at 1,000 Hz simultaneously with the VSD signals.

Data analysis and display

The optical data were analyzed using the program NeuroPlex (RedShirtImaging, LLC, Fairfield, CT). Data were displayed in the form of traces for numerical analysis and pseudocolor images for visualizing the spatiotemporal patterns. To generate pseudocolor maps, we normalized the signals from each individual detector to their own maximum amplitude (peak = 1 and baseline/negative peak = 0). Then a scale of 16 colors was linearly assigned to the values between 0 and 1 (Variable scaling in NeuroPlex). The pseudocolor maps were displayed as “contour” maps using the CONTOUR function provided by IDL (Interactive Data Language, Research Systems, Boulder, CO) and used by NeuroPlex.

RESULTS

Electrical and optical signals

When neocortical slices were perfused with 100 μM carbachol and 10 μM bicuculline in 28–32°C, oscillations at theta frequencies (5–14 Hz) occurred in the occipital area of the slice (Fig. 1) in agreement with the results obtained by Lukatch and MacIver (1997). These oscillations can be distinguished from epileptiform spikes in the same tissue: epileptiform spikes had high-amplitude (~1 mV) and low-repetition frequency (0.5–1.5 Hz), whereas theta oscillations had a low-amplitude (~0.5 mV) and high frequency (5–14 Hz) (Kowalczyk et al. 2001). Staining with the dye did not change the frequency, duration, or the amplitude of the theta oscillations recorded by the local field potential electrode (data not shown). During VSD imaging, only a moderate illumination intensity was used so that bleaching and photodynamic damage (resulting from high illumination intensity, Jin et al. 2002) were not detectable.

In cortical layer II–III, oscillations both in local field poten-

![Figure 1](image-url)

FIG. 1. *Left:* schematic diagram of the preparation and recording arrangement. Slices containing occipital cortex were sectioned from bregma −3 to −5 mm. A tungsten microelectrode was used to record local field potential (LFP) from cortical layer II–III. Voltage-sensitive dye (VSD) signals from the tissue surrounding the electrode (a volume of 330 × 330 × 450 μm³, red square) were simultaneously recorded. *Middle:* in layer II–III, simultaneous electrical (black) and optical (red) recordings had a similar waveform during the oscillations. In layer V, the optical signal (blue) has the same polarity. Calibration bar: ~50 μV for LFP and 10⁻⁴ for optical recordings. *Right:* power spectra of electrical (black) and optical (red) signals showed the same main peak at ~7.8 Hz during a sample piece (~20 cycles) of oscillations.

J Neurophysiol • VOL 90 • JULY 2003 • www.jn.org
tial and optical signal were highly correlated in the same voxel (330 × 330 × 450 μm³, Fig. 1, middle, top 2 traces). However, in local field recordings there were harmonic frequency components (Fig. 1, right). Local field potential signal has a continuous phase shift from Layers II–III to VI and opposite phases occurred in between superficial and deep layers (data not shown) (but see Fig. 7 of Lukatch and Maclver 1997). This phase reversal was not seen in the VSD recordings during most oscillation cycles (14 slices from 10 animals, 1 recording from layer V was shown in Fig. 1, middle, bottom trace, other examples are in Figs. 3B, and 5, C3, C5, and D3; an exception shown in Fig. 6B). This difference between electrodes and optical recordings demonstrated that VSD and field potential recordings measured different aspects of the neuronal activity. VSD signal is a population sum of transmembrane potential; Local field potential represents the local current density; the phase shift and polarity reversal indicate a current sink/source pair located in the cortical column (Lukatch and Maclver 1997). This phase shift is not present in the membrane potential oscillations. The phase map of VSD imaging correlates with the phase distribution in the membrane potential over the neuronal population without the interference of current source/sink pairs resulting from the geometrical arrangement of the neurons.

Oscillation epoch

This oscillation was organized in epochs. The epochs started spontaneously or could be triggered by an electrical stimulation (e.g., 0.5 V × 0.1 ms). In local field recordings, each epoch was composed of a large first spike (Fig. 2B), a period of “regular” cycles (relatively stable frequency and amplitude) followed by a period of “irregular” cycles (with variable frequency and amplitude, Fig. 2B). These three components were seen in all epochs, from five slices of five animals, with ~300 spontaneous epochs recorded from each slice by a local field potential electrode. When a large area of tissue was imaged optically, the three components could be more clearly characterized by their spatiotemporal patterns. When recorded with a single electrode from one point, there was no apparent activity before the first spike. With imaging we found that occasionally (2 of 47 epochs recorded optically, from 14 slices of 10 animals) the first spike was preceded by a local oscillation (Figs. 2C, 1, and 5C, 1). The first spike occurred as an excitation wave propagating across the tissue. After the first spike, the periodic activation spread to the whole field of view (Fig. 2C, image 1) and the frequency and amplitude became relatively stable (Fig. 2C, images 2 and 3). Each oscillation cycle was associated with one activation wave (comparing the traces and the image of Figs. 2C, image 2, and 3A). This one-cycle one-wave pattern was seen during the entire course of the oscillation. The oscillation frequency decreased from cycle to cycle (Figs. 2C, image 3, and Fig. 4D), and later the recurrence of the waves gradually became infrequent and “irregular”, as the initiation site and propagating velocity varied in different cycles (Fig. 2C, images 5–7). The first cycle in Fig. 2C, image 5, started simultaneously on several detectors and propagated in the two opposite directions with different velocity. The second cycle in Fig. 2C, image 5, started from the bottom section and propagated up (a reversed direction as that in Fig. 2C, images 2–4). Complex patterns, such as collision and reflection of the waves also occurred: The first cycle in Fig. 2C, image 6, was initiated at the center of the tissue and propagates in both directions. Apparently the activity reflected at the edge of the field of view, and the reflected waves propagated back and collided in the center, forming an “O” pattern. Irregular periods were observed following regular cycles in all 47 epochs examined optically (14 slices from 10 animals). Other examples of irregular oscillations were documented in Figs. 5 and 6 and discussed in the related sections.

Propagating waves

During the regular oscillation period, VSD imaging revealed a localized activation associated with each oscillation cycle (e.g., Fig. 3A, pseudocolor images). The activated area had a columnar shape, perpendicular to the cortical laminae. The width of the active area (the area with signal >50% of the peak) was 400 ± 220 μm (n = 15). This activated area propagated continuously in the horizontal direction across the entire occipital cortex. “Propagating waves” were defined as one such activation wave correlated with one oscillation cycle (1-cycle 1-wave). The mean propagation velocity was 55 ± 21 mm/s (54 measurements from 54 waves in 3 slices). The horizontal propagation direction was the same (from medial to lateral, Figs. 2 and 5) during regular cycles.

During propagating waves, the activation of the neuronal population was more synchronized in the vertical (columnar) direction. Figure 3B shows the time difference for the VSD signal to reach its maximum at two neighboring detectors (named “peak-time difference” in this report). In the horizontal direction, the peak-time difference is centered around 6 ms, resulting from the propagation delay. In the vertical direction, the peak-time difference is centered around 0 ms. The shape of the distribution histogram in the vertical direction (red envelope in Fig. 3B) was also taller and thinner than that of the horizontal direction, indicating a better synchronization along the columnar direction than in the horizontal direction (also see Fig. 5C, 2 and 3). Because of this vertical synchronization, the propagating wave had a columnar shape in the activity maps (Fig. 3A, bottom).

Local frequency

Local oscillation frequency was examined on a spatial scale of ~330 μm. In Fig. 3B, the peak time difference at two horizontal neighboring locations had variations as large as ±20 ms, suggesting a wide range of frequency variations within a 330-μm distance. Figure 4A shows the peak time difference of two neighboring detectors (330 μm apart, horizontally arranged in layer II–III, Fig. 4B) in consecutive cycles of a regular period of oscillation. The overall propagation direction was the same for all the cycles. The peak-time difference changed from cycle to cycle, from positive to negative values. In 14 slices (47 epochs) imaged optically, we found 11 detector pairs with continuous changing of local frequency (Fig. 4C, blue and black), whereas others have apparent random fluctuations (Fig. 4C, red). The continuous cycle-to-cycle change suggests that the local frequency variations were not randomly distributed nor caused by noises. Because the overall oscilla-
tion frequency declined with time (Fig. 4D), if in one location the frequency declined faster than its neighbors, continued peak-time variations would occur. This suggests that the frequency at two neighboring locations were at least partially controlled by two local oscillators. The local oscillators would have a size similar to or smaller than $330 \times 330 \mu m^2$—the area of tissue imaged onto one optical detector.

Much larger local frequency variations were seen during irregular cycles where the oscillation at two neighboring locations can switch from phase advance to phase delay in one

Fig. 2. Spatial-temporal patterns of a spontaneous oscillation epoch. A: recording arrangement. Signals from 8 optical detectors in deep cortical layers were used in C. A local field potential microelectrode was placed in layers II–III and recorded simultaneously with the optical imaging. B: an oscillation epoch recorded by the local field potential electrode. The epoch started spontaneously with a large first spike and followed by regular and irregular cycles. Optical signals during the period 1–7 (marked under the trace) of this epoch were shown in C: pseudocolor images composed from optical signals recorded by eight detectors arranged horizontally (shown in A). The optical signal from each detector was normalized to the maximum on that detector during that period and normalized values were assigned to colors according to a linear color scale (at the top right of C, 256 colors). The red and blue traces on top of the images 2 and 5 are optical signals from 2 optical detectors labeled red and blue in A. The x direction of the images is the time (~12 s) and the y direction of each image represents ~2.6 mm of space in cortical tissue. Note also that the first spike (i) had high amplitude but propagated slower in the tissue.
cycle. The irregular patterns were analyzed below to demonstrate that the horizontal coupling regime could break and local oscillators could activate independently.

Irregular oscillations

Examples of irregular oscillations from four different slices were shown in Fig. 5. In all the examples, propagating wave occurred before the irregular patterns, indicating that a coupling regime for regular propagating waves existed in all preparations, and this regime could degrade during the course of the epoch and dynamically change into other coupling patterns. The following irregular patterns were seen in the 14 slices we examined: 1) dynamic reversal of propagating direction. The waves changed from the “\" to “/” shaped patterns in

FIG. 3. A: propagating wave during the oscillation. Top: oscillation recorded from 1 optical detector in cortical layer V. The location of the detector is indicated by the small square in the images. Bottom: pseudocolor images synthesized from recordings of many optical detectors. The white broken lines mark the boundaries of the slice (Orientation: left, white matter; right, pia; top, medial, bottom, temporal). The images were 1-ms snap-shots chosen at times marked by the vertical broken lines. B: distribution of peak-time differences during 93 cycles of oscillation (2 slices from 2 animals). The bar chart is made from 3,162 measurements from 16 horizontal and 18 vertical pairs of measured points, all with a center-to-center distance of 330 μm. y axis: percentage of occurrences; x axis: delay time in ms. The envelope lines were generated by low-pass filtering of the bar chart data.

FIG. 4. Evidence of locally controlled frequency. A: oscillation cycles recorded from 2 neighboring optical detectors (red and black traces) with a horizontal separation of 330 μm (schematic diagram in B). The numbers on top of each cycle are the peak-time difference of that cycle. The peak-time difference decreased with time, from +8 to −12 ms, indicating that the frequency at 1 location (black) declined faster than that of the other location (red). C: variations of peak-time difference of three pairs of optical detectors (schematic in B) during regular oscillation cycles (from three animals). D: cycle-to-cycle variation of the frequency during the same periods as that shown in C.
different cycles (Fig. 5A, images 1 and 3). When propagation direction changed, the phase relationship reversed in all neighboring locations; 2) wave collision. Two waves propagated in opposite directions and collided in the middle, forming a ">" pattern (1st 4 cycles in image 2 of Fig. 5A); 3) wave initiated in the center and propagated in two directions, forming a "<" pattern (1st cycle in image 4 of Fig. 5C); 4) possible reflection of the wave occurred outside the field of view, forming a "V" shaped pattern (image 4 of Fig. 5B); and 5) interruption of a propagating wave. In some cycles, the wave did not propagated through the entire tissue (image 2 of Fig. 5, A and B).

More complex patterns may be explained by the combination of the preceding patterns, such as the X-shaped pattern (image 4 of Fig. 5D), which can be explained as a combination of a collision and then the collision point initiating a new wave. The "O" shaped pattern (image 6 of Fig. 2C) can be explained as a combination of center initiation, reflections at both edges and then a collision at the center.

Vertical de-synchronization

As described before (Fig. 3, A and B), during propagating waves, the synchronization along cortical columns was better than that of horizontal (along the cortical laminae). Vertical synchronization also persevered during most irregular cycles when regular waves were disrupted (Fig. 5, C, 3 and 5, and D, 3). However, in the 14 slices we examined optically, we found two irregular periods where superficial and deep layers did not activate together. In one example during some irregular cycles, the activations in deep layers did not reach superficial layers (Fig. 5D, 5). In another slice (Fig. 6), the amplitude in layer II-III significantly reduced in some irregular cycles (Fig. 6A). Before these irregular cycles there was a period (Fig. 6A, ×) in which superficial and deep layers showed an alternating acti-
The velocity of 20 propagating waves during the two oscillations had a similar characteristic generated by more than one polysynaptic mechanisms. The MacIver 1997), suggesting that these propagating waves can be blocked by 2-amino-5-phosphonopentanoic acid (AP5) (data not shown, see also Lukatch and 7- to 10-Hz oscillation (Wu et al. 1999). The NMDA waves characteristic was seen in the oscillation cycle is associated with one propagating wave. This oscillation was organized as propagating waves. The oscillation has a one-cycle one-wave characteristic (Fig. 3); that is, each oscillation and therefore only two possible propagation directions. In brain slices there is only one horizontal dimension that allows variations in many different directions (Prechtl et al. 1997). In intact cortex there are two horizontal dimensions that allow variations in many directions. In brain slices there is only one horizontal dimension and therefore only two possible propagation directions. Reversal in the propagation was observed in this cholinergic oscillation (e.g., Figs. 2C, 5, and 5A, 3) and also in the NMDA oscillations (7–10 Hz) where the horizontal direction reversed dynamically in different cycles (Fig. 7 of Wu et al. 1999). This dynamic change of propagation direction further suggests that the activation of the cortical neuron population is dynamically organized during the oscillation.

DISCUSSION

One-cycle one-wave

In this report we found that the in vitro cholinergic oscillation was organized as propagating waves. The oscillation has a one-cycle one-wave characteristic (Fig. 3); that is, each oscillation cycle is associated with one propagating wave. This characteristic was seen in the N-methyl-D-aspartate (NMDA) 7- to 10-Hz oscillation (Wu et al. 1999). The NMDA waves can be blocked by 2-amino-5-phosphonopentanoic acid (AP5) (Wu et al. 1999), but the cholinergic waves in this report were not blocked by AP5 (data not shown, see also Lukatch and MacIver 1997), suggesting that these propagating waves can be generated by more than one polysynaptic mechanisms. The propagating waves during the two oscillations had a similar velocity of 20–60 mm/s, slower than axonal conductance, suggesting both are mediated by polysynaptic local circuitry.

Propagating waves during oscillations were also observed in intact brains from turtle visual cortex (10–20 Hz) (Prechtl et al. 1997; Senseman and Robbins 1999) and olfactory bulb (5–30 Hz) (Lam et al. 2000) in response to natural sensory stimulation. In turtle visual cortex, the propagation waves also had a one-cycle one-wave characteristic but their spatial pattern was much more complex (Prechtl et al. 1997). Oscillations of different frequencies happened at the same time and travel in different directions (Prechtl et al. 1997). In intact cortex there are two horizontal dimensions that allow variations in many directions. In brain slices there is only one horizontal dimension and therefore only two possible propagation directions. Reversal in the propagation was observed in this cholinergic oscillation (e.g., Figs. 2C, 5, and 5A, 3) and also in the NMDA oscillations (7–10 Hz) where the horizontal direction reversed dynamically in different cycles (Fig. 7 of Wu et al. 1999). This dynamic change of propagation direction further suggests that the activation of the cortical neuron population is dynamically organized during the oscillation.

Coupled local oscillators and propagating waves

Our data suggest that the frequency of the oscillation may be determined by locally organized oscillators. Coupled local oscillators were also proposed during the evoked oscillations in turtle visual cortex (Prechtl et al. 2000). Mathematical models showed that propagating waves might emerge in a network of coupled oscillators with proper frequency gradient or coupling intensity (Ermentrout and Kopell 1984, 1994; Kopell 1988). In our data, the coupling intensity seemed to be variable in each epoch: During regular cycles, the phase relationship is less variable, suggesting a stronger coupling; during the irregular cycles following the regular period, the phase relationship was more variable suggesting a weaker coupling. In all slices, we found regular and irregular waves occurred in the same tissue, suggesting that the coupling intensity is controlled by dynamic factors of the local circuits because the anatomical connectivity did not change within seconds. However, anatomical connectivity may still play a role: in an examination of the waveforms in different cortical areas, Lukatch and MacIver (1997) reported irregular waveforms were often seen in somatosensory areas while regular oscillations were mostly seen in occipital and entorhinal cortices, suggesting different cortical areas may have different background coupling strengths.

In thalamic slices, the propagating patterns of spindle waves also have similar irregular patterns, such as collisions, multiple initiation points, and local waves (Kim et al. 1995). Other kinds of one-dimensional propagating waves formed by coupled oscillators have been suggested in developing chicken spinal cord (O’Donovan et al. 1998) and in the lamprey spinal cord during fictive swimming (Mellen et al. 1995; Rand et al. 1988). Coupled local oscillations may have complex behaviors (e.g., Davidenko et al. 1992). However, all the variety of propagating patterns observed (Figs. 2, 5, and 6) can be explained by the variations in the initiation site, collisions, and phase advance/delay between two neighboring locations.
Size of local oscillators

The optical signal originates from the change in transmembrane potential of neurons (Ross et al. 1977). Our signal is the averaged transmembrane potentials of many neurons. The estimated neuronal density in neocortical tissue is $\sim 100,000$ neuron/mm3 (Douglas and Martin 1990). In the cortical tissue projected to one optical detector ($330 \times 330 \times 450 \, \mu m^3$), there were $\sim 5,000$ neurons. To detect the oscillation optically, a fraction of these neurons must change their membrane potential synchronously. Frequency fluctuations (Fig. 3) suggested that the size of the local oscillator is comparable to or less than the volume of the tissue ($330 \times 330 \times 400 \, \mu m^3$) projected onto one optical detector. Thus we estimate that the local oscillator during this cholinergic oscillation is organized with thousands of at least partially synchronized neurons.

During an evoked 20- to 80-Hz oscillation in cortical slices (Fig. 7 of Wu et al. 2001), the oscillation only appears on a field potential electrode but is not detectable optically from the same tissue, suggesting that the size of the local oscillator is substantially smaller than the volume of the tissue projected onto one optical detector. Another oscillation, a NMDA-mediated 7- to 10-Hz oscillation (Fig. 3 of Wu et al. 1999), can be detected optically, suggesting that it has larger local oscillators, similar to that of the cholinergic oscillation in this report.

Propagating velocity

The propagation velocity of excitation waves in neocortex has been measured during different population events (Bal et al. 1995; Chervin et al. 1988; Demir et al. 1999; Fleidervish et al. 1998; Golomb and Amitai 1997; Tanifuji et al. 1994; Tsau et al. 1998; Wu et al. 1999, 2001). GABAergic inhibition was proposed to be an important factor for controlling the propagating velocity of an excitation wave (Golomb and Ermentrout 2000). When the GABAergic network is intact, the propagation velocity of the evoked gamma oscillation is $\sim 10 \, mm/s$ (Wu et al. 2001). After blocking GABA$_A$ receptors with bicuculline, the propagation velocity increased to $\sim 130 \, mm/s$ (Wu et al. 2001). Here we show that in the presence of carbachol and bicuculline, the propagation velocity was much slower than that of adding bicuculline alone. We speculate that carbachol might modify the network to form localized oscillators and that the slow propagation wave may be due to network localization and the phase lags between neighboring oscillators.

Conclusions

Our results suggest that propagating waves during neocortical oscillations are organized by coupled local oscillators. Each oscillator is a population unit, composed of thousands of neurons. Variation in the coupling strength may contribute to the spatiotemporal dynamics of the waves. A number of questions remain. What defines a population oscillator? What determines the coupling strength? Finally, do similar oscillations also occur in vivo? The wavelengths of the propagating waves were small ($\sim 4 \, mm$, Figs. 3). It might be difficult for scalp electroencephalography to reach such a high spatial resolution (Ferree and Clay 2000) and detect waves with such small wavelengths. Additional experiments will be needed to address these questions.

We thank Drs. L. B. Cohen, G. B. Ermentrout, and J. E. Lisman for helpful comments. This work was supported by National Institute of Neurological Disorders and Stroke Grant NS-36477 and a Whitehall Foundation grant.

REFERENCES

