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Abstract
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1 Introduction

In a pioneering paper, Dale Mortensen (1982) argued that search theory can — and

should —be used to help understand the way that many different markets function. In

that spirit, we present a directed search model of the housing market. We construct our

model with the following stylized facts in mind. First, sellers post asking prices, and

buyers observe these announcements. Second, there is not a straightforward relationship

between the asking price and the final sales price. Sometimes buyers make counteroffers,

and houses sell below the asking price. Sometimes houses sell at the asking price.

Sometimes —more often when the market is hot —houses are sold by auction above

the asking price. This is documented by Han and Strange (2014), who use a survey by

the National Association of Realtors and find that between 2003 and 2006, when the

housing market was booming, 13.5% of houses sold above the asking price, 29.4% sold

at the asking price, and 57.1% sold below the asking price. During the "housing bust"

period from 2007 to 2010, 8.2% sold above the asking price, 17.5% sold at the asking

price, and 74.3% sold below the asking price.1 Third, a seller who posts a low asking

price is more likely to sell his or her house, albeit at a lower price, than one who posts

a higher asking price.2

Our model is one of directed search in the sense that sellers use the asking price to

attract buyers. However, ours is not a standard directed search model in that we assume

only limited commitment to the asking price.3 The specific form of commitment to the

asking price that we assume reflects the institutions of the U.S. housing market. Within

a “selling period,”buyers who view a house that is listed at a particular price can make

offers on that house.4 A seller is free to reject any offer below the asking price, but

also has the option to accept such an offer. However, if one or more bona fide offers to

buy the house at the asking price (without contingencies) are received, then the seller is

1Case and Shiller (2003) conduct a survey in four cities, Boston, Los Angeles, Milwaukee, and San
Francisco, and find that on average in 1988, 4.9% of houses sold above the asking price, 27.9% sold at
the asking price, and 67.1% sold below the asking price. For 2003, the figures were 25.5% above the
asking price, 48.4% at the asking price, and 29.1% below the asking price. Data from the Netherlands
(see, e.g., De Wit and Van der Klaauw 2013 for a description of the data) are also consistent with our
stylized facts.

2Ortalo-Magné and Merlo (2004), using UK data, find that a lower asking price increases the number
of visitors and offers that a seller can expect to receive but decreases the expected sales price. Similarly,
using Dutch data, De Wit and Van der Klaauw (2013) show that list price reductions significantly
increase the probability of selling a house.

3While we assume limited commitment to the asking price, we do assume full commitment to the
selling mechanism, which will be discussed below.

4We assume that each buyer can bid on at most one house within a selling period, but a seller
may receive multiple bids. Our urn-ball meeting technology is “many-on-one”or what Eeckhout and
Kircher (2010) call “nonrival.”The urn-ball meeting technology is also what Lester et al. (2015) call
“invariant.”
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committed to sell.5 If only one such offer at the asking price is received, then the seller

is committed to transfer the house to the buyer at that price. If the seller receives two

or more legitimate offers at the asking price, then, of course, the house cannot be sold to

more than one buyer. In this case, the buyers who bid the asking price can bid against

each other to buy the house. In practice, in some locations, this auction takes the form

of bids with escalator clauses. For example, if a house is listed at $1 million, a buyer

might submit a bid of that amount together with an offer to beat any other offer the

seller might receive by $5,000 up to a maximum of $1.1 million.

Given limited commitment, what determines the asking prices that sellers post and

what role do these asking prices play? Of course, the asking price for a spacious house

that is located in a desirable neighborhood is typically higher than the asking price for

a smaller house in a less desirable neighborhood. We assume that prospective buyers

can observe these and more subtle “vertical”differences among houses, either directly or

with the help of real estate agents. Instead, we focus on the role that asking prices play

in directing search across houses that buyers view as ex ante identical. In particular,

we are interested in the question of whether asking prices can direct buyers towards

“motivated sellers,” that is, those who are particularly eager to sell and are therefore

more likely to accept a low counteroffer.

We begin, however, with a basic version of our model in which all sellers are equally

motivated, i.e., have the same reservation value. This homogeneous-seller version of our

model serves as a foundation for the heterogeneous-seller version but is also of interest

in its own right. After observing all the asking prices in the market, each buyer visits a

set of sellers. Upon visiting a seller, the buyer discovers how much he or she likes the

house; that is, the buyer observes the realization of a match-specific random variable.

This realization is the buyer’s private information and we assume that observing it is

costless.6 Based on these realizations —and without knowing how many other buyers

have visited these sellers — the buyer chooses a house to bid on and decides between

accepting the seller’s asking price and making a counteroffer (and, if so, at what level).

The seller then assembles the offers, if any. If no buyer has offered to pay the asking

price, the seller decides whether or not to accept the best counteroffer. If one, and only

5This commitment is often written into contracts between sellers and their real estate agents in the
form of a clause requiring the seller to reimburse the agent’s fee if a bona fide offer is rejected.

6Lester et al. (2013) consider a directed search model in which there is a cost to observe the match-
specific value. In their model, buyers sequentially pay this cost and observe their valuations. The selling
process terminates when a buyer accepts the asking price, or, if no buyer accepts the asking price, the
seller sells to the buyer with the highest bid if that bid exceeds the seller’s reservation value. Our
assumption that it is costless to observe the match-specific value reflects our view that in the housing
market, once a buyer visits a house the cost of observing the valuation is minor, although the cost of
inspection (usually done after a contract is reached) can be high.
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one, offer at the asking price has been received, then the house is sold at that price.

If multiple offers at the asking price have been received, the buyers who made those

offers are allowed to compete for the house via an ascending bid auction.7 A payoff-

equivalence result holds for this version of the model. All asking prices at or above the

seller’s reservation value give the seller the same expected payoff; asking prices below

the reservation value yield a lower expected payoff. Similarly, buyers are indifferent

with respect to any asking price greater than or equal to the common reservation value

but strictly prefer any asking price below that level. Any distribution of asking prices

greater than or equal to the common seller reservation value constitutes an equilibrium,

and there are no equilibria in which any sellers post asking prices below the common

reservation value. These equilibria are constrained effi cient in the sense that, given the

level of market tightness, the house always goes to the buyer who values it most if

that value is above the seller’s reservation value or, if not, it is retained by the seller.

In addition, when market tightness is endogenous, equilibrium entails the optimal seller

entry. These effi ciency results follow from the payoffequivalence between the mechanism

we consider and a second-price auction with a competitively determined reserve price.8

After analyzing the homogeneous-seller case, we consider a version of our model in

which sellers have different reservation values and in which these reservation values are

private information. Specifically, we examine a model in which there are two seller types

—one group with a high reservation value (“relaxed sellers”), the other with a low reser-

vation value (“motivated sellers”). In this heterogeneous-seller version of our model, the

asking price can potentially signal a seller’s type. In our signaling model, sellers have

both ex ante and ex post signaling motives. Ex ante a seller wants to signal a low reser-

vation value. This attracts buyers since buyers prefer to visit a seller who is perceived

to be “weak.”Ex post, however, that is, once any buyers have visited, a seller prefers to

have signaled a high reservation value. Buyers will make higher bids when dealing with

a seller who is perceived to be “strong.”Using a standard refinement on buyers’out-of-

equilibrium beliefs, we show the nonexistence of pooling and hybrid equilibria. We then

prove the existence of separating equilibria in which the two seller types are identified

by their posted asking prices. These separating equilibria are constrained effi cient in

the sense that the level of entry by sellers is optimal and the equilibrium allocation of

buyer visits across the two seller types is the same as the allocation that a social planner

7In a tight market, we sometimes observe buyers submitting initial bids above the asking price. We
assume that sellers are committed to allowing all buyers who bid at least the asking price to participate
in the auction, so it is not in any buyer’s interest to make an initial bid above the asking price. Buyers
do, however, make bids above the asking price in the subsequent auction.

8In Albrecht et al. (2014), we prove effi cient seller entry in a competing auction model in which
sellers post second-price auctions. Here we extend the result to a market in which asking prices may
exceed the seller’s reservation value and counteroffers below the asking price are possible.
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would choose.9

Our paper contributes to the growing literature that uses an equilibrium search

approach to understand the housing market. Search theory is a natural tool to use to

analyze this market since it clearly takes time and effort for buyers to find suitable sellers

and vice versa. Most of the papers in this literature assume that search is random.

In some of these papers, when a buyer and seller meet, one of the parties (typically

the seller) makes a take-it-or-leave-it offer; in others, prices are determined by Nash

bargaining. See, for example, Wheaton (1990) and Albrecht et al. (2007). In contrast, in

our model, search is directed; that is, sellers post prices to attract buyers. Other models

of the housing market that take a directed search approach include Díaz and Jerez (2013),

Carrillo (2012), and Stacey (2013). Díaz and Jerez (2013) analyze the problem initially

posed in Wheaton (1990), in which shocks lead to mismatch, causing a household to first

search to buy a new house and then to look for a buyer for its old house. In equilibrium,

all sellers post the same asking price, the asking price and the sales price are the same,

and all houses sell with the same probability. In Carrillo (2012), buyers also direct their

search in response to posted asking prices, but sellers interact with only one buyer at

a time. In his model, the asking price is a price ceiling —sometimes the seller gets the

asking price, but sometimes the buyer gets the house at the seller’s reservation value.

Houses never sell above their asking prices because, by assumption, there is never any ex

post competition among buyers. Relative to these models, our model yields prices that

may be above the asking price, which is consistent with the empirical findings. Finally,

Stacey (2013) is the paper that is closest to ours. Using our model as a starting point,

albeit with a two-point distribution for the idiosyncratic value that a buyer realizes once

he or she visits a seller, he explores the implications of eliminating any commitment to

the asking price. In the heterogeneous-seller version of our model, sellers signal their

type by their (limited) commitment to the asking prices they announce, whereas in his

model, also with two seller types, sellers signal whether they are motivated or not by the

type of real estate contract they sign (high-service/high-fee versus low-service/low-fee).

We also contribute to the directed search literature. In the standard directed search

model, there is full commitment in the sense that all transactions must take place at

the posted price. In our model, however, there is only limited commitment. The posted

price “means something”and is used to attract buyers, but the final selling price need

not be the same as the posted price. Camera and Selcuk (2009) also consider a model

of directed search with limited commitment to the asking price. As we do, they assume

that sellers post prices and that buyers direct their search in response to those postings.

The difference between our approach and theirs comes once each buyer chooses a seller.

9These effi ciency results follow directly from Albrecht et al. (2014).
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They allow for the possibility that the final selling price and the posted price differ, but

they are agnostic about the specifics of how this occurs. Our approach differs from theirs

in that we assume a specific price determination mechanism. We take this more specific

approach because the price determination mechanism that we analyze is an important

one in practice.

We also add to the directed search literature by considering the potential signaling

role of the asking price. There are a number of papers that incorporate private informa-

tion into a directed search model, but most of these assume that the private information

is not on the side of the price setters. See, for example, Guerrieri et al. (2010). Delacroix

and Shi (2013) is an exception that does have private information on the side of the price

setters as we do. They consider a model in which the asking price plays the dual role

of directing buyer search and potentially signaling seller type. In their model, sellers

choose a price and whether to produce a low-quality or high-quality good. Buyers direct

their search based on the observed price and then, after matching, observe a signal of

quality. The nature of the equilibrium depends on the quality differential. Their model

differs in several dimensions from ours. First, seller type in our model is motivation

while in their model it is quality of the good. Thus, there is a common value component

to the value of the match in their model. Second, they assume full commitment to the

price. Finally, they assume bilateral or rival matching.

Finally, our model is related to the papers of Menzio (2007) and Kim and Kircher

(2013), which consider the possibility of cheap-talk equilibria in a directed search en-

vironment. In the heterogeneous-seller version of our model, it is also natural to ask

whether cheap talk might be enough to separate the two seller types. That is, is it

enough for sellers to post advertisements announcing their types without commitment

of any sort to the asking price? In our setup, the answer is “no”—relaxed sellers would

want to mimic their more motivated counterparts.

In constructing our model, we have abstracted from some important features of the

housing market. One obvious abstraction is that we ignore real estate agents. We do this

to keep our model simple but also because the decision about the asking price, which

is the focus of our model, is ultimately the seller’s to make. We also abstract from the

fact that in the housing market, buyers are often also sellers and their ability to buy

may hinge on their ability to sell. Rather than modeling this explicitly as in Wheaton

(1990) and Díaz and Jerez (2013), we capture this in the heterogeneous-seller version of

our model through the reservation value. A motivated seller, one with a low reservation

value, can be thought of as one who has already bought or put a contract on a new

house and is thus eager to sell.

The remainder of our paper is organized as follows. In the next section, we lay
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out the structure of the game that we analyze. In Section 3, we analyze the model

assuming that all sellers have the same reservation value. In Section 4, we consider the

heterogeneous-seller case. We show the nonexistence of pooling and hybrid equilibria

and the existence of separating equilibrium. Finally, in Section 5, we conclude.

2 Basic Model

We model the housing market as a one-shot game played by B buyers and S sellers of

identical houses. We consider a large market in which both B and S go to infinity but

in such a way as to keep θ = B/S, the market tightness, constant. We first analyze the

market taking θ as given. Then, once equilibrium is characterized for any given θ, we

allow for free entry of sellers and discuss the effi ciency of market equilibrium.

The game has several stages:

1. Each seller posts an asking price a.

2. Each buyer observes all posted prices and chooses k houses to visit. There is

no coordination among the buyers. Upon visiting a house, the buyer draws a

match-specific value. Match-specific values are private information and are iid

draws across buyer-seller pairs. The buyer can bid on at most one house and

chooses the house with the highest match-specific value, which we denote by x.

We assume that x has a continuous distribution, F (x), with support [0, 1]. This

distribution is assumed to have an increasing hazard. Buyers do not observe the

number of other visitors to a house.

3. At the chosen house, the buyer can accept the asking price, a, or make a coun-

teroffer.10

4. If no buyer visits, the seller retains the value of the house.

5. If at least one buyer visits, but no buyer accepts the asking price, then the seller

can accept or reject the highest counteroffer. If one or more buyers accept the

asking price, then there is an ascending-bid (second-price) auction with reserve

price a among those buyers. In this case, the house is transferred to the highest

bidder.

A buyer who fails to purchase a house receives a payoff of zero. The payoff for a buyer

who draws x and then purchases the house is x− p, where p is the price that the buyer
10If x < s, we view the buyer as making a counteroffer of zero. Equivalently, the buyer makes no bid.
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pays. If no sale is made, the owner of the house retains its value, while a seller who

transfers a house to a buyer at price p receives that price as payoff.

This is a model of directed search in the sense that buyers observe all asking prices

and choose which house to bid on based on these asking prices. It differs from many

directed search models in that the sellers make a limited commitment to their asking

prices. If only one buyer shows up and accepts the asking price, then the seller agrees

to sell at that price, but if more buyers accept the asking price, then the price is bid

up. We consider symmetric equilibria in which all buyers use the same strategy. They

search optimally given the distribution of posted asking prices and given optimal directed

search by other buyers. Buyers bid optimally given the bidding strategy followed by other

buyers.

We first consider the case of homogeneous sellers, i.e., the case in which all sellers

have the same reservation value s. In setting an asking price, each seller anticipates the

reactions of buyers to the posted price given the distribution of asking prices posted by

other sellers. When sellers are homogenous, we show that the only role of the asking

price is to ensure that houses do not sell below s. After considering the homogeneous

case, we turn to the heterogeneous case in which sellers differ with respect to their

reservation values and seller type is private information. In this case, the asking price

can potentially signal seller type. We assume that there are two seller types: high

types who have reservation value s and low types who have a reservation value that we

normalize to zero.

3 Homogeneous Sellers

We begin by considering the case in which all sellers have the same reservation value, s.

We first show a payoff equivalence result for asking prices of s or more. We next show

that any distribution of asking prices on a ≥ s is an equilibrium. We do this by showing

that, in equilibrium, no seller wants to post an asking price below s.

3.1 Payoff Equivalence

Consider a seller posting a ≥ s. If a = s, the seller is posting a second-price auction with

reserve price s. If a > s, some buyers may choose to make counteroffers between s and a,

while buyers who draw higher valuations may accept the asking price. The buyers who

choose to make counteroffers are essentially engaging in a sealed-bid first-price auction

(relevant only if no buyers accept a) while any who accept a are participating in a

second-price auction.

Our payoffequivalence result follows from standard auction theory, although we need
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to account for the fact that the number of buyers is random. First, consider the case in

which the number of buyers visiting a particular seller is given. A statement of revenue

equivalence is given in Proposition 3.1 of Krishna (2010):

Suppose that values are independently and identically distributed and all

buyers are risk neutral. Then any symmetric and increasing equilibrium of

any standard auction, such that the expected payment of a bidder with value

zero is zero, yields the same expected revenue to the seller.

The selling mechanism that we consider is a standard auction since the mechanism

dictates that the buyer who makes the highest bid of s or more (the highest counteroffer

if no buyer accepts a; the highest bid in the second-price auction if one or more buyers

accepts a) gets the house. The equilibrium is increasing since buyer bids are increasing

in x. Finally, a buyer who draws x ≤ s gets value zero from this selling mechanism and

pays nothing.

We also have payoff equivalence for buyers across all asking prices of s or more. The

surplus associated with a particular house is the maximum of the seller’s reservation

value and the highest value drawn by a buyer. Any surplus that doesn’t go to the

seller necessarily goes to the winning bidder (and any losing bidders get zero). Revenue

equivalence for sellers thus implies payoff equivalence for buyers, so buyers are equally

willing to visit any seller posting an asking price of a ≥ s.

Payoffequivalence for buyers and sellers continues to hold when the number of buyers

is a random draw from a finite number of potential bidders (McAfee and McMillan 1987,

Harstad, Kagel and Levin 1990). In our directed search setting, the expected queue

length across all sellers offering the same expected payoff, i.e., across all sellers posting

a ≥ s, must be equal. In a large market, this means that the number of buyers visiting

a particular seller is a Poisson random variable, a random draw from a distribution with

unbounded support. The same argument used to show revenue and payoff equivalence

when the set of potential buyers is finite can be used to show that it holds in this case

as well.11

3.2 Equilibrium

We have shown that buyers and sellers are indifferent across all asking prices a ≥ s.

To show that any distribution of asking prices over a ≥ s constitutes an equilibrium,
11With a random number of buyers, an individual buyer’s optimal bid is a weighted average of

his optimal bids conditional on competing with n = 0, 1, 2, ... other buyers; specifically, b(x) =∑
pnF (x)

nb(x;n)∑
pnF (x)n

, where pn is the probability the buyer is competing with n other buyers and b(x;n)

is the optimal bid at x when facing n other buyers. The only issue with a potentially infinite number
of bidders is the convergence of the weighted average. With Poisson weights, convergence is assured.

9



we must show that no seller would choose to post an asking price below s. If a seller

were to post an asking price a < s, the expected arrival rate of buyers would be greater

than it would have been had that seller posted a ≥ s, but the seller would expect to

receive lower bids. Note that a seller who posts a < s is in effect offering a second-price

auction with reserve price a. The reason is that buyers know that there is never any

point to making a counteroffer since counteroffers would always be rejected. The seller’s

problem of choosing an optimal reserve price in a second-price auction can be posed as a

constrained maximization problem. The seller advertises a reserve price, a, to maximize

the expected payoffsubject to the constraint that a buyer who visits the seller can expect

to receive at least as high a payoff as is available elsewhere in the market. The rate at

which buyers visit this seller, ξ, adjusts so that the value of visiting this particular seller

is the same as that of visiting any of the other sellers. The constrained maximization

problem can thus be written as12

max Π(a, ξ) subject to V (a, ξ) = V , (1)

where a is the reserve price, ξ is the Poisson arrival rate of buyers, and V is the market

level of buyer utility. The seller and buyer payoffs are Π(·) and V (·), respectively, with

Π(a, ξ) = s+ ξ

∫ 1

a

(v(x)− s)e−ξ(1−F (x))f(x)dx

= s+ (1− e−ξ)
∫ 1

a

(v(x)− s)g(x)dx

V (a, ξ) =

∫ 1

a

(x− v(x))e−ξ(1−F (x))f(x)dx

=

∫ 1

a

(1− F (x))e−ξ(1−F (x))dx,

where

v(x) = x− 1− F (x)

f(x)

is the “virtual valuation function,”which can be interpreted as the marginal revenue

associated with a buyer of type x (Bulow and Roberts 1989), and

g(x) =
ξe−ξ(1−F (x))f(x)

1− e−ξ

is the density of the highest valuation drawn by the buyers visiting a particular seller

conditional on the seller having at least one visitor.13 As is standard, v(x) is increasing

12This formulation of the problem follows Peters and Severinov (1997).
13The derivation of g(x) is as follows. Let H denote the event that a particular buyer draws the

highest valuation. Using Bayes Law,

f(x|H) ≡ g(x) = P (H|x)f(x)
P (H)

.
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in x. This follows from our assumption that F has an increasing hazard. The expected

seller payoff is s plus the probability that at least one buyer visits the seller times the

integral of v(x)−s against the density of the highest valuation. Finally, the buyer payoff,
V (a, ξ), is x− v(x) times the probability that no other buyer draws a value greater than

x integrated against the density of x.

Lemma 1 The asking price that solves the constrained maximization problem (1) is

a∗ = s. The corresponding Poisson arrival rate is the solution to V (s, ξ∗) = V .

The proof is analogous to the one given in Albrecht, Gautier, and Vroman (2012),

which deals with the case of s = 0.14 Lemma 1 implies that no sellers post asking prices

below s, and since all asking prices a ≥ s are payoffequivalent, any distribution of asking

prices over a ≥ s is an equilibrium.

Summarizing,

Proposition 1 Any distribution of asking prices over a ≥ s constitutes an equilibrium

of the homogeneous-seller model. All such equilibria are payoff equivalent. Further, there

are no equilibria in which any sellers post asking prices below s.

Note that although we have presented our results in the context of a one-shot game,

the same results would obtain in a steady-state framework.15

Proposition 1 states that there is an infinity of equilibria in the homogeneous-seller

model, but we have shown that all of these equilibria are payoff equivalent. We can

thus choose one of these equilibria, for example, the one in which all sellers post a = s,

to demonstrate some of the properties of equilibrium. In particular, we now show that

The probability that a buyer who has drawn x has the highest valuation is

P [H|x] = e−ξ(1−F (x)).

The unconditional probability that any one buyer has the highest valuation is

P [H] =

∫ 1

0

e−ξ(1−F (x))f(x)dx =
1− e−ξ

ξ
.

14Extending the proof to the case of s ≥ 0 is straightforward and is available from the authors upon
request. The lemma generalizes results in Julien et al.(2000) and in Eeckhout and Kircher (2010). In
different contexts, they show that if all buyers have the same valuation (not less than the common
seller reservation value), then the equilibrium reserve price in a competing auctions game is the seller
reservation value.
15A steady-state version of the model can be derived using the methodology in Wolinsky (1988).

He considers a market in steady state in which sellers are assumed to post first-price auctions with
a minimum price and in which the number of buyers per seller is assumed to be a Poisson random
variable. Given revenue equivalence, the results presented in Wolinsky (1988) apply directly to our
second-price auction setting.
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the probability of sale and the average selling price vary with θ and s, the exogenous

parameters of the model, in the expected way.

Consider first the probability that any particular house is sold. This is

P [Sale] = 1− e−θ(1−F (s)).

As expected, as the market gets tighter, i.e., as θ increases, the probability that a house

sells increases. Equivalently, if we were to recast our model in a steady-state framework,

as θ increases, expected time on the market decreases. In addition, also as expected, as

sellers become “less motivated,” i.e., as s increases, the probability of a sale decreases

(equivalently, expected time on the market increases).

Next, conditional on a sale, the expected price is

E[P ] =

∫ 1
s
v(x)g(x)dx∫ 1
s
g(x)dx

.

Since neither v(x) nor g(x) depend on s,

∂E[P ]

∂s
=
−v(s)g(s)

∫ 1
s
g(x)dx+ g(s)

∫ 1
s
v(x)g(x)dx(∫ 1

s
g(x)dx

)2
=

g(s)
∫ 1
s

(v(x)− v(s))g(x)dx(∫ 1
s
g(x)dx

)2 > 0,

where the inequality follows from our assumption that v(x) is increasing. As sellers

become less motivated, fewer houses are sold, but those that do sell are sold at a higher

price on average.

Finally, to examine how the expected price varies with θ, write

E[P ] =

∫ 1

s

v(x)h(x; θ)dx,

where

h(x; θ) =
g(x; θ)∫ 1

s
g(x; θ)dx

.

Note that H(x; θ) =
∫ x
s
h(t; θ)dt satisfies first-order stochastic dominance with respect

to θ; that is, θ′ > θ implies H(x; θ′) < H(x; θ) for all x ∈ (s, 1).16 Now, write

v(x) = v(s) +

∫ x

s

v′(t)dt,

16We thank Xiaoming Cai for suggesting this argument. The intuition is that as the number of
visitors a seller can expect increases, the distribution of the highest valuation drawn among those
visitors becomes more “favorable” from the seller’s point of view. The algebra required to verify this
formally is a bit tedious but is available on request.
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so

E[P ] = v(s) +

∫ 1

s

h(x; θ)

∫ x

s

v′(t)dtdx

= v(s) +

∫ 1

s

v′(t)

∫ 1

t

h(x; θ)dxdt

= v(s) +

∫ 1

s

v′(t)(1−H(t; θ))dt.

Finally, since v′(t) > 0 (by assumption) and
∂(1−H(t; θ))

∂θ
> 0 (by first-order stochastic

dominance with respect to θ), we have
∂E[P ]

∂θ
> 0.

It is clear that in the model with homogeneous sellers, the mechanism that we analyze

is effi cient in the sense that once buyers match with sellers, no mutually profitable

transactions are left unconsummated. Further, if more than one buyer draws a valuation

above the seller’s reservation value, the house is necessarily sold to the buyer with the

highest valuation. The only remaining effi ciency question is whether, once we allow for

free entry on the seller side of the market, the buyer/seller ratio is constrained effi cient.

In Albrecht, Gautier, and Vroman (2014), we prove that in a large market in which

sellers compete by posting reserve prices for second-price auctions, the free-entry equilib-

rium level of seller entry is constrained effi cient. The mechanism that we consider here is

equivalent to a second-price auction in the sense that, given any level of market tightness,

expected buyer and seller payoffs are the same in the infinity of payoff-equivalent equi-

libria of our model as they would be if sellers were to compete by posting reserve prices

for second-price auctions (in which case, as we argued above, they would all post s). In

particular, sellers have the same incentive to enter as they would if houses were sold by

second-price auctions. We can therefore apply the effi ciency result from Albrecht, Gau-

tier, and Vroman (2014) to conclude that free-entry equilibrium is constrained effi cient

in the homogeneous-seller case.

4 Heterogeneous Sellers

When all sellers have the same reservation value, the only role that asking prices play

is to ensure that houses never sell below that common value. Why then do buyers care

about asking prices? An important reason, in our view, is that, across identical houses,

the asking price signals a seller’s type, that is, how eager the seller is to sell his or her

house. We now develop this idea in the heterogeneous-seller version of our model.

We suppose that sellers are heterogeneous with respect to their reservation values.

For simplicity, we consider two seller types. A fraction q of the sellers, the high (H) types

13



(“relaxed sellers”), have reservation value s, as in the homogeneous case. The remaining

sellers, the low (L) types (“motivated sellers”), have a lower reservation value, which

we normalize to 0. Seller type is private information, but q is common knowledge. The

model with heterogeneous sellers is a signaling game, so we consider Perfect Bayesian

Equilibria. A seller’s strategy is a choice of an asking price and, in case no buyer accepts

the asking price, a reaction (accept or reject) to the highest counteroffer received, if any.

A buyer’s strategy is a choice of which seller to visit —or a distribution of probability

across all sellers —together with a choice of whether to make a counteroffer (and, if so, at

what level) or to accept the seller’s asking price once x is observed. Buyers form beliefs

about sellers’types based on their asking prices. As in the homogeneous-seller case, we

only consider symmetric equilibria in which all buyers use the same strategy.

There are three types of Perfect Bayesian Equilibria to consider in which sellers

follow pure strategies. In a separating equilibrium, each seller posts an asking price that

is type-revealing. There are also two types of pooling equilibria to consider —one in

which type-H sellers mimic type-L sellers by posting asking prices below s (“pooling-

on-low”) and one in which type-L sellers mimic type-H sellers by posting asking prices

of s or more (“pooling-on-high”). Finally, hybrid equilibria, in which one seller type

randomizes between a high price and a low price, also need to be considered. In a

“mixing-by-lows”equilibrium, type-L sellers randomize between posting a low price and

a high price, while type-H sellers all post a high price, and in a “mixing-by-highs”

equilibrium, type-H sellers randomize between posting a low versus a high price, while

all type-L sellers post a low price.

The asking price has the potential to signal seller type, but the incentives for one

type to mimic the other are not straightforward in our model. Ex ante sellers want

buyers to believe that they are type L because this increases the expected queue length,

but ex post, once buyers have allocated themselves across sellers, sellers want buyers to

believe that they are type H because this belief leads to higher bids on average. Sellers,

however, have only one signal and must trade off the benefit of longer queues in the

first stage against higher bids in the second stage. This is why the two types of pooling

equilibria and the two types of hybrid equilibria are conceivable in our setting.

Despite the incentives to mimic, we show that neither pooling equilibria nor hybrid

equilibria exist in our model under a standard refinement on buyers’beliefs. The equi-

libria that do exist separate the two seller types. Type-L sellers post low prices, and

type-H sellers post high prices of s or more, and there is a separating equilibrium for

each parameter combination, {q, s, θ}. More precisely, similar to the homogeneous-seller
case, there is an infinity of payoff-equivalent equilibria for each parameter configuration.

Other separating equilibria in which type-H sellers post higher asking prices than type-L
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sellers do but in which the higher asking prices are less than s are also conceivable, but

we can rule out this possibility using the same refinement on out-of-equilibrium beliefs

used to rule out pooling and hybrid equilibria.

Separating equilibria are effi cient in three senses. First, once buyers have allocated

themselves across sellers, sales are consummated if and only if the net surplus from doing

so is positive, and when a house is sold it always goes to the buyer with the highest

valuation. Second, a social planner would prefer that type-L sellers have longer queues

on average than do type-H sellers. Separating equilibrium gets these queue lengths just

right. Finally, seller entry is constrained effi cient.

We now give the details of these arguments.

4.1 Nonexistence of Pooling or Hybrid Equilibria

We begin by showing the nonexistence of pooling and hybrid equilibria. In a pooling

equilibrium, all sellers post the same asking price. There are two cases to consider. First,

all sellers could post a high asking price, e.g., a = s. Second, they could all post a low

asking price, e.g., a = 0. We refer to the two cases as “pooling on high”and “pooling

on low”and analyze them in turn.

Consider first a candidate pooling-on-high equilibrium; e.g., suppose all sellers post

a = s.17 Buyers know that a seller posting s is type H with probability q and type L with

probability 1−q. A buyer who draws a low enough value of x makes a counteroffer below
s, which only type-L sellers accept, while a buyer who draws a higher value of x may

prefer to accept s.18 If one or more buyers accepts s, then a second-price auction with

reserve price s, limited to those buyers who accepted s, follows. Consider a potential

deviation by a type-L seller to a = 0. Such a deviation has both a benefit and a cost.

The benefit is that the expected arrival rate of buyers increases, which has a positive

effect on the seller’s expected payoff, while the cost is that in some circumstances the

final price is less than it would have been had the seller posted a = s.19 At the candidate

equilibrium, the expected arrival rate is θ. The deviant’s expected arrival rate, ξ, is

determined by the buyer indifference condition.

V (s, θ; q) = V (0, ξ). (2)

17We thank Yosuke Yasuda for helpful comments on this case.
18The reason for the conditional language (“may prefer”) is that if s is suffi ciently close to one and/or

q is suffi ciently close to zero, buyers prefer making counteroffers to accepting s for all x ∈ [0, 1].
19When all sellers post a = s, there is a value x̃ such that buyers who draw x < x̃ make a bid that only

type-L sellers would accept, i.e., a bid below s. (The buyer who draws x̃ must be indifferent between
bidding s and making a counteroffer that only a type-L seller would accept.) The cost of deviating
arises when there is only one buyer who draws an x ≥ x̃. In this case, when the seller posts s, the
seller’s payoff is s. Were the seller to post 0, the expected payoff would be the expected maximum of
any draws below x̃, which must be less than s by the definition of x̃.
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Here V (s, θ; q) denotes the expected payoff for a buyer bidding on a house with asking

price s and expected arrival rate θ given that the buyer believes that the seller is type H

with probability q, and V (0, ξ) is the corresponding expected payoff for a buyer bidding

on the house with asking price 0 and expected arrival rate ξ. Note that the latter

expression doesn’t depend on q since the buyer does not care about the seller’s type

when the asking price is 0.

We want to prove that it is in the interest of a type-L seller to deviate to a = 0.Denote

the expected payoff for a type-L seller who posts s when all other sellers are posting s by

ΠL(s, θ; q) and the corresponding expected payoff for a deviation to a = 0 by ΠL(0, ξ).

We want to prove that ΠL(0, ξ) > ΠL(s, θ; q) ∀(s, q) ∈ (0, 1]2. At s = 0, there is trivially

no difference between deviating and not deviating, so ξ = θ, and ΠL(0, θ) = ΠL(0, θ; q).

Thus, what we need to show is that starting at s = 0, increasing s raises the seller’s

value of deviating, ΠL(0, ξ), more than it raises the value of setting a = s. That is, we

want to show that
∂ΠL(0, ξ)

∂s
>
∂ΠL(s, θ; q)

∂s
∀q ∈ (0, 1]. (3)

An increase in s affects ΠL(0, ξ) indirectly by increasing ξ; that is,

∂ΠL(0, ξ)

∂s
=
∂ΠL(0, ξ)

∂ξ

∂ξ

∂s
. (4)

From the market utility condition, i.e., equation (2), we have

∂ξ

∂s
=
∂V (s, θ; q)/∂s

∂V (0, ξ)/∂ξ
. (5)

since neither θ nor q are affected by a change in s.Whether the type-L seller posts a = s

or a = 0, the selling mechanism is effi cient in the sense that the total surplus generated is

distributed between the buyer and seller with no surplus “left on the table.”In particular,

when a = s, the total surplus, 1−
∫ 1
0
e−θ(1−F (x))dx,20 is divided between the seller with

expected payoff ΠL(s, θ; q) and the buyers with expected payoff of V (s, θ; q). That is,

1−
∫ 1

0

e−θ(1−F (x))dx = ΠL(s, θ; q) + θV (s, θ; q).

20The total surplus associated with the mechanism is the expected value of the highest valuation drawn
among the buyers who visit this seller. Suppose n buyers visit. Conditional on n, this expectation is

Emax[X1, ..., Xn] =

∫ 1

0

xdF (x)n = 1−
∫ 1

0

F (x)ndx.

The number of buyers visiting this seller is Poisson with parameter θ, so the total surplus is

∞∑
n=0

e−θθn

n!

(
1−

∫ 1

0

F (x)ndx

)
= 1−

∫ 1

0

e−θ(1−F (x))dx.
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In turn, since the LHS does not vary with s, this implies

∂V (s, θ; q)

∂s
= −

(
1

θ

)
∂ΠL(s, θ; q)

∂s
. (6)

Substituting equations (5) and (6) into (4), gives

∂ΠL(0, ξ)

∂s
= −

(
∂ΠL(0, ξ)

∂ξ

)(
1

θ

)(
∂ΠL(s, θ; q)/∂s

∂V (0, ξ)/∂ξ

)
;

and inequality (3) becomes

−
(
∂ΠL(0, ξ)

∂ξ

)
/

(
∂V (0, ξ)

∂ξ

)
> θ. (7)

To verify this final inequality, we use a result from Albrecht et al. (2012), namely,

∂ΠL(0, ξ)

∂ξ
+ ξ

∂V (0, ξ)

∂ξ
= 0, 21

so inequality (7) reduces to ξ > θ, which is true for all q ∈ (0, 1]. QED

It is worth noting that buyer beliefs about what a deviation to an asking price of

zero might signal about the deviant’s type play no role in the argument. A buyer who

visits a seller posting a = 0 doesn’t care about the seller’s type. The buyer’s optimal

bid, namely, accept a = 0, is the same regardless of the seller’s type, as is the expected

payoff. Pooling on any other a > s can also be ruled out as an equilibrium by the same

argument. Similarly, hybrid equilibria in which all type-H sellers post an asking price

above s and the type-L sellers mix between that asking price and zero are also ruled out.

We do, however, use a restriction on out-of-equilibrium beliefs to prove the nonexis-

tence of pooling-on-low and mixing-by-highs equilibria. To understand the equilibrium

refinement that we use, suppose all sellers post a = 0. According to the Intuitive Cri-

terion (Cho and Kreps 1987), buyers should believe that a deviation to a = s signals

type H with probability one if (i) the deviation is strictly profitable for a type-H seller

conditional on buyers believing that the deviation signals type H with probability one

and (ii) the deviation is strictly unprofitable for a type-L seller for any beliefs that buy-

ers might hold about the deviant’s type. Let µ be the probability that buyers attach

to type H given a deviation to a = s. By Lemma 1, a deviation from a = 0 to a = s

is strictly profitable for type H if µ = 1, and by a proof similar to the one we used

to rule out pooling-on-high or mixing-by-lows equilibria, the same deviation is strictly

21The intuition for this result is that when a new buyer visits a seller, the surplus at that seller is
increased. The seller is better off, the extant buyers are worse off, and there is an expected benefit to
the new buyer. As the equation indicates, the effects on the seller and on the extant buyers just balance
out.
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unprofitable for a type L so long as µ > 0. If µ = 0, however, the type-L seller would

neither gain nor lose by deviating to a = s. All asking prices are revenue equivalent

for this type so long as buyers continue to believe that the seller’s reservation value is

zero with probability one. The Intuitive Criterion is thus not strong enough to rule out

the candidate pooling-on-low equilibrium. Instead, we appeal to the “D1 refinement”

(Banks and Sobel 1987; see also Fudenberg and Tirole 1992, p. 452). Refinement D1

requires buyers to set µ = 1 if the set of beliefs that make type L sellers willing to

deviate to a = s is a strict subset of the set of beliefs that make type H sellers willing

to deviate to a = s. We have already argued that type L is willing to deviate to a = s

only if µ = 0 and that type H is willing to deviate to a = s if µ = 1. To show that the

condition required for D1 holds, it thus suffi ces to show that type H is also willing to

deviate to a = s when µ = 0. Suppose then that a type-H seller deviates from a = 0 to

a = s but that buyers view the deviation as a probability-one signal that the deviant is

type L; i.e., buyers set µ = 0. The expected arrival rate of buyers to the deviant is the

same as would have been realized had the seller continued to post a = 0. Some buyers

who visit the deviant will make counteroffers below s; others may accept s. If the type-H

deviant always accepted the highest bid received, i.e., the highest counteroffer when no

buyer accepts s, then, by revenue equivalence, the expected payoffwould be the same as

it would have been had the deviant continued to post a = 0. However, the deviant has

the option to reject counteroffers below s, and it is in the seller’s interest to do so. In

short, if µ = 0, a type-H seller benefits by deviating to a = s because (i) the expected

number of buyers visiting does not change and (ii) the seller can reject bids below s.

Finally, if all sellers post a = 0, and if buyers believe that a deviation to a = s

signals type H with probability one, then —again, by Lemma 1, —it is in the interest of

the type-H seller to deviate. Pooling-on-low equilibria are ruled out by this reasoning,

and a similar argument gives the nonexistence of a hybrid equilibrium in which type-H

sellers mix between a low price and a high price. We have used a = 0 as a convenient

example of a candidate pooling-on-low equilibrium, but we can also rule out pooling

on other asking prices below s. In particular, if all sellers post a ∈ (0, s), then, by the

same argument that we used to rule out pooling-on-high equilibria, type-L sellers want

to deviate to an asking price of zero.

Summarizing, we have shown:

Proposition 2 Neither pooling-on-high nor mixing-by-lows equilibria exist in the heterogeneous-
seller version of the model. In addition, under the D1 refinement, neither pooling-on-low

nor mixing-by-highs equilibria exist.
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4.2 Separating Equilibria

A natural separating equilibrium to consider is one in which all type-L sellers post a = 0,

all type-H sellers post a = s, and in which buyers believe that a = 0 signals type L with

probability 1 while a = s signals type H with probability 1. This configuration satisfies

an obvious effi ciency criterion, namely, that a house is sold if and only if the highest

buyer valuation is greater than or equal to the seller’s reservation value.

To prove the existence of this type of equilibrium, note first that, given buyer beliefs,

a type-H seller strictly prefers posting the high asking price to the low one. This follows

directly from Lemma 1 since, given the hypothesized buyer beliefs, the choice between

a = 0 versus a = s is one of choosing between reserve prices for a second-price auction.

At the same time, a type-L seller strictly prefers posting a = 0 to a = s. This follows

from the argument that we made to rule out pooling-on-high equilibria. Finally, of

course, if all type-L sellers post a = 0 and all type-H sellers post a = s, then buyer

beliefs are consistent, and the equilibrium exists. There is, however, the question of

whether either seller type would want to deviate to some asking price other than 0 or s.

As discussed above when we ruled out the existence of a pooling-on-low equilibrium, a

type-L seller strictly prefers a = 0 to any a′ > 0 if posting a′ would lead buyers to place

any positive probability on the possibility that the deviant might be type H. Further,

even if buyers believe that a deviation to a′ signals type L with probability one, type-

L sellers are no better off posting a′ than posting zero. In short, type-L sellers have

no incentive to deviate from the conjectured equilibrium configuration. Next, consider

a type-H seller. If a type-H seller deviates to a′ > s and buyers view a′ > s as a

probability-one signal that the deviant is type H, then the type-H seller neither gains

nor loses by the deviation. Finally, it cannot be in the interest of a type-H seller to

deviate to a′ ∈ (0, s). The argument is by contradiction. Suppose that it would be in

the interest of a type-H seller to deviate to a′ if buyers viewed the deviant as type H

with probability µ > 0. However, if µ > 0, it is strictly not in the interest of a type-L

seller to post a′, so, by the D1 refinement, buyers should believe the deviant is type H

with probability 1. But if µ = 1, then Lemma 1 shows that it is not in the interest of a

type-H seller to post a′. Similarly, suppose it would be in the interest of a type-H seller

to deviate to a′ if µ = 0. Then buyers must view the deviant as type H with positive

probability; i.e., the hypothesized buyer beliefs would be inconsistent.

In addition to the separating equilibrium just described, there are other payoff-

equivalent separating equilibria. In particular, a situation in which all type-L sellers

post a = 0, while type-H sellers post any distribution of asking prices over a ≥ s, and

buyers believe a = 0 signals type L and that asking prices of s or more signal type H,

is also a Perfect Bayesian Equilibrium. There are also payoff-equivalent equilibria in
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which type-L sellers post a distribution of low asking prices while type-H sellers post a

distribution of high asking prices with consistent buyer beliefs.

Without restrictions on out-of-equilibrium beliefs, there may also exist payoff-inferior

separating equilibria. Suppose, for example, that all type-L sellers post a = 0 while all

type-H sellers post a = s− ε. Suppose further that if a seller were to post a = s, buyers

would believe this signaled type L with probability one. Then it would not be in the

interest of a type-H seller to deviate to a = s. This configuration entails a loss of surplus

relative to the equilibrium in which all type-L sellers post a = 0 and all type-H sellers

post a = s since when type-H sellers post an asking price below s, houses are sometimes

transferred from a type-H seller to a buyer even though the buyer values the house less

than the seller does.

We rule out these “unnatural”separating equilibria by appealing to the same refine-

ment that we used to show the nonexistence of pooling-on-low equilibria. Specifically,

given that buyers believe that a deviation to a = s signals type H with probability one,

it is in the interest of type-H sellers to make that deviation. This argument rules out any

candidate equilibrium in which type-H sellers are assumed to post asking prices below

their reservation value.

Summarizing, we have the following results on separating equilibrium:

Proposition 3 Under the D1 refinement, there exists a separating equilibrium in which
all type-L sellers post a = 0, all type-H sellers post a = s, and in which buyers believe

that a = 0 signals type L with probability 1 while a = s signals type H with probability

1. There also exist payoff-equivalent separating equilibria in which type-L sellers post

a distribution of low asking prices, type-H sellers post a distribution of asking prices

over a ≥ s, and in which buyers believe that low (high) asking prices signal type L (H)

with probability one. Finally, there exist no payoff-inferior separating equilibria in which

type-H sellers post asking prices below s.

4.2.1 Buyer Optimality Condition

A continuum of payoff-equivalent separating equilibria exist for each parameter configu-

ration, {q, s, θ}. Relative to the homogeneous-seller version of the model, an additional
issue to consider is the question of how buyers allocate themselves across the two seller

types. Suppose buyers visit type-H sellers with probability r and type-L sellers with

probability 1−r. For given q and θ, this implies an expected arrival rate of θL =
(1− r)θ

1− q
to type-L sellers and of θH =

rθ

q
to type-H sellers. Given r, the expected payoff for a
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buyer who visits a type-L seller is

VL(r) =

∫ 1

0

(1− F (x))e−θL(1−F (x))dx,

while the expected payoff for a buyer who visits a type-H seller is

VH(r) =

∫ 1

s

(1− F (x))e−θH(1−F (x))dx.

This gives the following Buyer Optimality Condition

VL(r) ≥ VH(r) with equality if r > 0. (8)

Note that (i) VL(r) is increasing in r, (ii) VH(r) is decreasing in r,22 and (iii) VL(q) ≥
VH(q). If VL(0) ≥ VH(0), then r = 0. If VL(0) < VH(0), then there is a unique r ∈ (0, q]

that satisfies the Buyer Optimality Condition.

To get a sense for the Buyer Optimality Condition, we consider a simple example.

Suppose X follows a standard uniform distribution, so F (x) = x for 0 ≤ x ≤ 1. Then

VL(r) =
1− e−θL − θLe−θL

θ2L

VH(r) =
1− e−θH(1−s) − θH(1− s)e−θH(1−s)

θ2H
.

The shaded areas of Figures 1 and 2 show the set of (s, θ) combinations for which r > 0

for two different values of q. The pattern shown in these figures is intuitive. When s

is not too high, buyers do not lose much by visiting a type-H seller, and when θ is not

too low, the market is relatively tight so buyers have an incentive to visit the type-H

sellers. As q increases, there are relatively fewer type-L sellers to visit so buyers have

more incentive to visit the type-H sellers. In the non-shaded areas in Figures 1 and

2, where s is relatively high and/or θ is relatively low, separating equilibria exist with

r = 0, i.e., buyers do not visit the type-H sellers.

22Unless, of course, s = 1, in which case VH(r) = 0 for all r.
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Figure 1: (s, θ) combinations for which r > 0 for q = 0.2
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Figure 2: (s, θ) combinations for which r > 0 for q = 0.8
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4.2.2 Equilibrium with Free Entry

Of course, it is odd to consider separating equilibria in which buyers never visit type-H

sellers. This makes it natural to consider the equilibrium entry of these sellers. Suppose

there is an entry cost of A, where A could be interpreted, for example, as an advertising

cost. Type-L sellers enter so long as

θL

∫ 1

0

v(x)e−θL(1−F (x))f(x)dx ≥ A.

Assume this free-entry condition holds as a strict inequality, so that all motivated sellers

enter the market. If there were some type-L sellers who chose not to enter, then it

could not be in the interest of any type-H sellers to enter, and we would be back in the

homogeneous-seller case. We let B be the measure of buyers in the market and L be

the measure of type-L sellers, and we define φ = B/L, the exogenous ratio of buyers to

type-L sellers. The interesting entry question therefore has to do with type-H sellers,

and in equilibrium, the free-entry condition for this type is

s+ θH

∫ 1

s

(v(x)− s)e−θH(1−F (x))f(x)dx ≤ A+ s with equality if θH > 0. (9)

Once we impose this free-entry condition for type-H sellers, the model is described by

two parameters, φ and s. Again, it is useful to consider the standard uniform example.

Figure 3 shows the set of (φ, s) combinations that are consistent with entry by type-H

sellers. All else equal, the lower is s, i.e., the smaller is the difference in motivation

between type-L and type-H sellers, the more incentive there is for type-H sellers to incur

the advertising cost and enter the market. Similarly, the higher is φ, the more incentive

there is for entry by relaxed sellers since as φ rises, the number of visiting buyers that a

seller can expect increases.
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Figure 3: (s, φ) combinations with entry of type-H sellers

25



In the heterogeneous-seller version of the model, there are three dimensions of effi -

ciency to consider. First, as in the homogeneous-seller version of the model, once buyers

are matched to sellers, the selling mechanism that we consider is effi cient. In separating

equilibrium, the house is sold if and only if the highest buyer valuation exceeds the

seller’s reservation value, and if the house is sold, it goes to the buyer with the highest

valuation. Second, —and this is specific to the heterogeneous-seller version of the model

—there is the question of whether buyers allocate themselves effi ciently across the two

seller types. Finally, there is the question of whether the equilibrium levels of seller

entry are the same as the levels that a social planner would choose.

To prove that the equilibrium queue lengths and the level of seller entry are con-

strained effi cient, note that separating equilibria in which type-H sellers post asking

prices of s or more while type-L sellers distinguish themselves by posting lower asking

prices are payoff equivalent to an equilibrium in which the two seller types post second-

price auctions with reserve prices of s and 0, respectively. The results of Albrecht,

Gautier, and Vroman (2014) then imply that the equilibrium queue lengths and entry

are constrained effi cient. That is, free-entry equilibrium is constrained effi cient in the

heterogeneous-seller model.

5 Conclusions

In this paper, we construct a directed search model of the housing market. The mecha-

nism that we analyze captures important aspects of the way houses are bought and sold

in the United States. Sellers post asking prices, and buyers direct their search based on

these prices. A buyer can make a counteroffer or offer to pay the asking price. If no buy-

ers offer to pay the asking price, the seller can accept or reject the best counteroffer (if

any) received. If at least one buyer offers to pay the asking price, the seller is committed

to sell the house at a price equal to the highest bid that follows from the competition

among those buyers.

In the homogeneous-seller version of this model, that is, when we assume that all

sellers have the same reservation value, s, we show that any distribution of asking prices

over a ≥ s constitutes an equilibrium. Furthermore, consistent with the empirical evi-

dence, our model implies that houses sometimes sell below, sometimes at, and sometimes

above the asking price. Thus, our model generates equilibrium price dispersion for iden-

tical houses sold by identical sellers in terms of both asking prices and final sales prices.

This free-entry equilibrium is also constrained effi cient.

In the heterogeneous-seller version of the model under the D1 refinement on buyers’

beliefs, only separating equilibria exist. In separating equilibrium, the sellers with the
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low (high) reservation value identify themselves by posting low (high) asking prices.

That is, the asking price also plays a signaling role by allocating buyers across the two

seller types. Equilibrium is again constrained effi cient. The fraction of buyers who

visit high-type sellers and the level of market tightness equal the values that a social

planner would choose. Of course, we are not arguing that there are no ineffi ciencies in

the housing market, but rather that the pricing mechanism and the fact that buyers do

not directly observe seller types is not a source of ineffi ciency.

Our paper contributes both to the growing literature that uses equilibrium search

theory to model the housing market and to the directed search literature. Our contri-

bution to the housing literature is to build a directed search model that captures the

main features of the house-selling process in the United States. We explain the role of

the asking price and its relationship to the sales price. Our contribution to the directed

search literature is to analyze a model in which there is only limited commitment and

the posted price also plays a signaling role.
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