
A Appendix: Efficient Entry in Competing Auc-

tions (James Albrecht, Pieter A. Gautier, Su-

san Vroman)

A.1 Ex Post Case

In this appendix, we verify equation (2) and derive expressions for Λ(s, θ(s); s),

Π(s, θ(s); s), and V (s, θ(s)). As noted in the text, in Albrecht et al. (2012), we

analyzed the problem

max
r,θ(r)

Π(r, θ(r); 0) subject to V (r, θ(r)) = V

using expressions for Π(r, θ(r); 0) and V (r, θ(r)) that were derived in Peters and

Severinov (1997). This is the problem of a seller of type s = 0 choosing a reserve price

for a second-price auction who takes into account that the reserve price determines

the expected arrival rate of buyers to the auction. In the process of showing that

r = 0, that is, that the optimal reserve price equals the seller reservation value, we

derived
∂Π(0, θ(0); 0)

∂θ
+ θ(0)

∂V (0, θ(0))

∂θ
= 0

as one of the first-order conditions for the seller’s constrained maximization problem.

The same approach can be used to confirm equation (2),

∂Π(s, θ(s); s)

∂θ
+ θ(s)

∂V (s, θ(s))

∂θ
= 0

for arbitrary s.

Here we present an alternative approach to verifying equation (2). We use the

result that competition leads sellers to post efficient auctions; that is, sellers post
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reserve prices equal to reservation values. This gives equation (1) in the text, namely,

Λ(s, θ(s); s) = Π(s, θ(s); s) + θ(s)V (s, θ(s)).

Differentiating gives

∂Λ(s, θ(s); s)

∂θ
=

∂Π(s, θ(s); s)

∂θ
+ θ(s)

∂V (s, θ(s))

∂θ
+ V (s, θ(s)),

and our proof of equation (2) consists of showing

∂Λ(s, θ(s); s)

∂θ
= V (s, θ(s)). (7)

To do this, we develop expressions for Λ(s, θ(s); s) and V (s, θ(s)). We also derive

Π(s, θ(s); s) and verify that our expressions for seller and buyer expected payoffs are

equivalent to the ones given in Peters and Severinov (1997).

We begin with an expression for Λ(s, θ(s); s), the expected surplus associated

with the auction posted by seller s, which equals the expected maximum of s and

the highest valuation greater than s drawn by one of the buyers. Suppose n buyers

visit this seller and draw valuations of s or more. If n = 0, then Λ(s, θ(s); s) = s. If

n ≥ 1, then, conditional on n, the expected surplus is 1

s

xd

�
F (x)− F (s)
1− F (s)

�n
= 1−

 1

s

�
F (x)− F (s)
1− F (s)

�n
dx,

that is, the expected maximum of the n draws that are greater than or equal to s.

The number of buyers visiting seller s who draw valuations of s or more is Poisson

with parameter θ(s)(1−F (s)), so the unconditional expression for expected surplus
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is

Λ(s, θ(s); s) = se−θ(s)(1−F (s))

+e−θ(s)(1−F (s))
∞�
n=1

(θ(s)(1− F (s)))n
n!

�
1−

 1

s

�
F (x)− F (s)
1− F (s)

�n
dx

�
= se−θ(s)(1−F (s)) + e−θ(s)(1−F (s))

�
eθ(s)(1−F (s)) − 1�

−e−θ(s)(1−F (s))
 1

s

∞�
n=1

(θ(s)(F (x)− F (s)))n
n!

dx; i.e.,

Λ(s, θ(s); s) = 1−
 1

s

e−θ(s)(1−F (x))dx. (8)

Next, consider V (s, θ(s)), the expected payoff for a buyer who chooses a seller of

type s. Suppose this buyer draws a valuation x ≥ s. This is the winning draw with
probability e−θ(s)(1−F (x)). Conditional on winning, the buyer’s payoff is the difference

between x and the highest valuation drawn by any other buyers who visited this

seller or s if no other buyer drew a valuation y ≥ s. Now suppose there were n other
buyers who drew y ∈ [s, x). Conditional on n, the winning buyer’s expected payoff
is then

x−
 x

s

yd

�
F (y)− F (s)
F (x)− F (s)

�n
=

 x

s

�
F (y)− F (s)
F (x)− F (s)

�n
dy

Summing against the probability mass function for n, the buyer’s expected payoff,

conditional on winning with valuation x ≥ s, is
∞�
n=0

e−θ(s)(F (x)−F (s)) (θ(s)(F (x)− F (s)))n
n!

 x

s

�
F (y)− F (s)
F (x)− F (s)

�n
dy =

 x

s

e−θ(s)(F (x)−F (y))dy.

Multiplying by the probability of winning with valuation x at seller s gives

V (s, θ(s);x) =

 x

s

e−θ(s)(1−F (y))dy. (9)
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This is the expected payoff for a buyer who visits seller s conditional on drawing

valuation x, where x ≥ s. Finally, the unconditional expected payoff for a buyer who
visits seller s is

V (s, θ(s)) = (1− F (s))
 1

s

V (s, θ(s);x)
f(x)

1− F (s)dx

=

 1

s

 x

s

e−θ(s)(1−F (y))dyf(x)dx =
 1

s

(1− F (x))e−θ(s)(1−F (x))dx,(10)

where the last equality follows by integration by parts (u =
� x
s
e−θ(s)(1−F (y))dy,

v = −(1 − F (x))). With s = 0, equation (10) is the expression for expected buyer
payoff derived in Peters and Severinov (1997).

Differentiating equation (8) and using equation (10) gives equation (7). This

completes the derivation of equation (2).

For completeness, we also derive Π(s, θ(s); s). Consider a seller of type s who

posts reserve price equal to s, and suppose this seller attracts n buyers who draw

valuations of s or more. The seller gets a payoff of s if n = 0 or 1; if n ≥ 2, the

seller’s expected payoff equals the expected value of the second highest valuation

across the buyers, i.e., E[Yn−1]. The distribution function of Yn−1 is

Gn−1(y) =
�
F (y)− F (s)
1− F (s)

�n
+ n

�
F (y)− F (s)
1− F (s)

�n−1�
1− F (y)
1− F (s)

�
for s ≤ y ≤ 1.

Thus, conditional on n ≥ 2, the seller’s expected payoff is 1

s

ydGn−1(y) = 1−
 1

s

�
F (y)− F (s)
1− F (s)

�n
dy−n

 1

s

�
(F (y)− F (s))n−1(1− F (y))

(1− F (s))n
�
dy.
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Summing against the probability mass function for n,

Π(s, θ(s); s) = se−θ(s)(1−F (s)) (1 + θ(s)(1− F (s))) + e−θ(s)(1−F (s))
∞�
n=2

(θ(s)(1− F (s))n
n!

−e−θ(s)(1−F (s))
 1

s

∞�
n=2

(θ(s)(F (y)− F (s))n
n!

dy

−e−θ(s)(1−F (s))
 1

s

(1− F (y))θ(s)
∞�
n=2

(θ(s)(F (y)− F (s)))n−1
(n− 1)! ; i.e.,

Π(s, θ(s); s) = 1−
 1

s

e−θ(s)(1−F (x))dx−
 1

s

θ(s)(1− F (x))e−θ(s)(1−F (x))dx. (11)

Using equations (8), (10) and (11), it is straightforward to check equation (1). Fi-

nally, using

1−
 1

s

e−θ(s)(1−F (x))dx = θ(s)

 1

s

xe−θ(s)(1−F (x))f(x)dx,

the seller’s expected payoff can be rewritten as

Π(s, θ(s); s) = θ(s)

 1

s

�
x− 1− F (x)

f(x)

�
e−θ(s)(1−F (x))f(x)dx.

With s = 0, this is the expression for expected seller payoff that is given in Peters

and Severinov (1997).

A.2 Ex Ante Case

In this appendix, we give the details and prove the efficiency of free-entry equi-

libriuim for the ex ante case, i.e., the case in which buyers draw their valuations

before deciding which seller to visit. As discussed in the text, competition leads

sellers to post efficient mechanisms in the ex ante case just as it does in the ex post

case; in particular, a seller with reservation value s posts a second-price auction
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with reserve price s. However, with a distribution of seller types in the market, the

fact that buyers learn their valuations ex ante complicates the analysis. The extra

complication arises because the distribution of buyers will vary across seller types.

The surplus associated with an auction posted by a type s seller should therefore be

written as Λ(s, θ(s), F (x; s); s); that is, the surplus depends on the posted reserve

price, s, on the expected number of buyers attracted by that reserve price, θ(s),

and on the distribution of valuations across the buyers visiting sellers of type s,

F (x; s), as well as on the seller’s type, s. Similarly, the expected payoff for seller s

is Π(s, θ(s), F (x; s); s), and the expected payoff for a buyer with valuation x who

visits a seller posting reserve price s is V (s, θ(s), F (x; s);x). Applying the approach

used in Appendix 1 gives

Λ(s, θ(s), F (x; s); s) = 1−
 1

s

e−θ(s)(1−F (x;s))dx (12)

Π(s, θ(s), F (x; s); s) = θ(s)

 1

s

�
x− 1− F (x; s)

f(x; s)

�
e−θ(s)(1−F (x;s))f(x; s)dx(13)

V (s, θ(s), F (x; s);x) =

 x

s

e−θ(s)(1−F (y;s))dy (14)

For ease of notation, however, we use Λ(s), Π(s) and V (s;x), respectively. We also

simplify the notation by normalizing the measure of buyers, B, to one.

We use the following approach to characterize the equilibrium and the social

planner solution in the ex ante case. First, we consider the case of two seller types

with a mass m1 of sellers of type s1 and a mass m2 of potential sellers of type s2,

where 0 ≤ s1 < s2 < 1. Second, we extend the analysis to the case of N seller types

with masses m1, ...,mN of seller types 0 ≤ s1 < ... < sN < 1. Finally, we move to a
continuum of sellers by considering the appropriate limit.
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A.2.1 Two Seller Types

We have argued in the text of the paper that equilibrium is characterized by a cutoff,

x∗, and a measure, m∗
2, of type s2 sellers such that

V (s1;x
∗) = V (s2;x

∗) (15)

Π(s2) = A+ s2. (16)

Note that x∗ is the lowest value of x satisfying equation (15); in particular, V (s1;x) >

V (s2;x) for all x ∈ [s1, x∗) while V (s1;x) = V (s2;x) for all x ∈ [x∗, 1].
The corresponding social planner problem is to choose a cutoff, �x, and a measure,

�m2, to maximize

m1 (Λ(s1)− (A+ s1)) +m2 (Λ(s2)− (A+ s1)) .

Consider the partial derivative of the social planner maximand with respect to �x; in
particular, consider an increase in the cutoff from �x to �x+dx. The key to understand-
ing this derivative is to recognize that the only agents who change their behavior are

buyers with valuations in the interval [�x, �x+ dx). Buyers with valuations x ∈ [0, �x)
randomized over sellers of type s1 before the change; they continue to do so after

the change. Similarly, buyers with valuations x ∈ [�x + dx, 1] randomized over all
sellers before the change; they continue to do so afterwards.

Buyers with valuations x ∈ [�x, �x + dx) randomized over all sellers before the
increase in the cutoff; after the increase, these buyers randomize over sellers of type

s1. Thus, there are some buyers with valuations in [�x, �x + dx) who would have
participated in an auction run by a seller of type s2 before the change but instead

participate in an auction run by a seller of type s1 after the change. To be more
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precise, approximately
m2

m1 +m2

f(�x)dx buyers are expected to switch seller types.
When a buyer switches from an auction with reserve price s2 to one with reserve

price s1, there is an increase in surplus associated with the auction posted by the

type s1 seller but a decrease in surplus associated with the auction posted by the

type s2 seller. The social planner wants these two effects to offset each other. Were

this not the case, e.g., if moving buyers with valuations close to �x from type s2 sellers
to type s1 sellers increased the surplus associated with auctions posted by type s1

sellers more than it decreased the surplus associated with auctions posted by type

s2 sellers, then the social planner should increase the cutoff value.

Consider the reallocation of a buyer with valuation x ∈ [�x, �x+dx) from a type s2
seller to a type s1.seller. The increase in surplus at the auction posted by the type

s1 seller is the sum of three components: (i) the increase in the seller’s expected

payoff, (ii) the decrease in the expected payoffs of any “incumbent” buyers, and (iii)

the expected payoff, V (s1;x), of the buyer who switched seller types. As we have

argued in the text, the first two terms are exactly offsetting; thus, the increase in

surplus associated with an auction posted by a type s1 seller that gained a buyer

of type x equals V (s1;x). By the same argument, the decrease in surplus associated

with an auction posted by a type s2 seller that lost a buyer of type x equals V (s2;x).

Now let dx→ 0, so x ≈ �x. Satisfying the first-order condition of the social planner
problem with respect to the cutoff value requires

V (s1; �x) = V (s2; �x).
The cutoff �x is the lowest value of x satisfying this equation. Equation (15) thus
implies �x = x∗; that is, the equilibrium and social planner cutoffs coincide.
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Next consider the partial derivative of the social planner maximand with respect

to �m2. We can write the first-order condition as

m1
∂Λ(s1)

∂m2

+ �m2
∂Λ(s2)

∂m2

+ Λ(s2)− (A+ s2) = 0. (17)

Since the social planner wants sellers to post efficient mechanisms, we have

Λ(s2) = Π(s2) + θ(s2)V (s2),

where

V (s2) =

 1

x∗
V (s2;x)

f(x)

1− F (x∗)dx (18)

is a shorthand notation for the expected payoff per buyer visiting a type s2 seller.

Equation (17) implies equation (16) if

m1
∂Λ(s1)

∂m2

+ �m2
∂Λ(s2)

∂m2

= −θ(s2)V (s2). (19)

We now verify equation (19). Suppose a type s2 seller enters the market.

In expectation, this seller takes θ(s2) buyers away from incumbent sellers; thus,

m1
∂Λ(s1)

∂m2

+ �m2
∂Λ(s2)

∂m2

is the business-stealing effect associated with the entrant.

Any buyer who attempts to purchase the good from the new entrant has a valuation

of x∗ or more, and these buyers randomize their visits across both seller types. If a

buyer with valuation x moves from an incumbent seller to the new entrant, the loss

in surplus at the incumbent seller’s auction is V (s2;x), and since V (s1;x) = V (s2;x)

for all x ≥ x∗, i.e., high-valuation buyers are indifferent between the two seller types,
this loss is the same irrespective of the type of the incumbent seller. The valuation

x is a draw from the truncated density,
f(x)

1− F (x∗) ; thus, the expected loss to the in-
cumbent seller is V (s2), as given in equation (18). Multiplying this by the expected

number of buyers who visit the new entrant gives equation (19).

9



A.2.2 N Seller Types

Suppose there are N seller types, 0 ≤ s1 < · · · < sN < 1, with respective measures
m1, . . . ,mN , where we consider the entry decision of the marginal seller type, sN .

In equilibrim, there will exist N − 1 thresholds x∗(s2), . . . , x∗(sN) such that buyer
types in [x∗(sk), x∗(sk+1)] randomize among sellers s1, . . . , sk. Buyers of type x < s1

do not participate in the market; that is, x∗(s1) = s1. Equilibrium is characterized

by the cutoffs, x∗(s1), x∗(s2), ...x∗(sN), and a measure of sellers of type sN such that

0 = V (s1;x
∗(s1))

V (s1;x
∗(s2)) = V (s2;x

∗(s2)) (20)

V (s1;x
∗(s3)) = V (s2;x

∗(s3)) = V (s3;x∗(s3))

...

V (s1;x
∗(sk)) = V (s2;x

∗(sk)) = ... = V (sk;x∗(sk)) (21)

....

V (s1;x
∗(sN)) = V (s2;x

∗(sN)) = ... = V (sN ;x∗(sN))

Π(sN) = A+ sN . (22)

The corresponding social planner problem is to choose cutoffs, �x(s1), �x(s2), . . . , �x(sN),
and a measure, �mN , of type sN sellers to maximize

N�
k=1

mk (Λ(sk)− (A+ sk)) .

The proof that �x(sk) = x∗(sk) for k = 1, ..., N is essentially the same as the one

given for the case of two seller types.
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First, it is obvious that x∗(s1) = �x(s1) = s1. Buyers with x ≤ s1 have no in-

centive to participate in the market nor does the social planner want them to do

so. Second, given any collection of cutoffs for sellers of type s3 and above and

given any level of entry by type sN sellers, the choice of �x(s2) does not affect�N

k=3
mk (Λ(sk)− (A+ sk)). The same argument that was used to characterize�x(s2) in the two-seller case then implies that the social planner sets �x(s2) so that

V (s1; �x(s2)) = V (s2; �x(s2)).
Comparing this with equation (20) gives �x(s2) = x∗(s2). The final step in the

argument uses induction. Suppose �x(si) = x∗(si) for i = 1, ..., k − 1, and take
{�x(sk+1), . . . , �x(sN),mN} as given. The choice of �x(sk) has no effect on�N

i=k+1
mi (Λ(si)− (A+ si)) .

Since {�x(s1), �x(s2), . . . , �x(sk−1)} are assumed to have been set optimally, the social
planner is indifferent between assigning the buyer with valuation �x(sk) to seller sk
versus assigning that buyer to any seller with a lower reservation value. That is,

V (s1; �x(sk)) = V (s2; �x(sk)) = ... = V (sk; �x(sk));
thus, by comparison with equation (21), �x(sk) = x∗(sk). By induction, the equilib-
rium and social planner cutoff values coincide for i = 1, ..., N.

Finally, in order that �mN = m
∗
N , it must be that

N�
k=1

mk
∂Λ(sk)

∂mM

= −θ(sN)V (sN);

that is, the business-stealing effect associated with the entry of a type sN seller has

to equal the expected number of buyers drawn away by the entry of the marginal

seller times the loss in surplus per buyer who leaves an incumbent’s auction. The
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argument for why this equation holds is exactly the same as in the case with two

seller types.

A.2.3 Continuum of Seller Types

In the model with N seller types, for each seller type sk, there is a corresponding

buyer type x∗(sk) who is indifferent between visiting a seller of type sk versus any

seller posting a lower reserve price. The function x∗(sk) is defined on a discrete set

of points, {s1, ..., sN}. To move to a continuum of seller types, we let the distance

between seller types sk+1 and sk go to zero and derive a differential equation that

gives a continuous function x∗(s) as the limit of the N -seller case. The purpose

of this subsection is to derive this equation. Since the continuum-of-seller-types

solution is the limit of the discrete seller type case, our efficiency results carry over

to the continuum.

As in the ex post case, we normalize the total measure of potential sellers to one,

and we denote the distribution of reservation values across these seller by G(s). We

begin with a discrete distribution over seller types. Let s1 = 0, s2 = Δs, ..., sk+1 =

sk + Δs, and let m1 = g(s1)Δs, m2 = g(s2)Δs, etc. We denote the arrival rate of

buyers to type sk sellers by θ(sk) and the distribution of valuations among buyers

visiting type sk sellers by F (x; sk).

Lemma 1

θ(sk) = θ(sk+1) +
1
k

j=1mj

 x∗(sk)

x∗(sk)
f(x)dx for k = 1, ..., N − 1 (23)

θ(sk)F (x; sk) =
1
k

j=1mj

 x

x∗(sk)
f(z)dz for x∗(sk) ≤ x ≤ x∗(sk+1). (24)
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Proof. Buyers with valuations x ≥ x∗(sk+1) randomize across all sellers of type

sk+1 or below. Thus, a type sk seller can expect as many buyers of this type as

can a type sk+1 seller. In addition, a type sk seller attracts some additional buyers,

namely, those with valuations x ∈ [x∗(sk), x∗(sk+1)). Buyers with valuations in this
range randomize over sellers of type sk and below, and there is a mass


k
j=1mj of

such sellers. This gives equation (23). To understand equation (24), note that (i)

the measure of the buyers with valuations between x∗(sk) and x < x∗(sk+1) visiting

type sk sellers is
�

mk

m1 + ...+mk

�� x
x∗(sk)

f(z)dz while (ii) the measure of type sk

sellers can be written as mkθ(sk). Since F (x; sk) = 0 for x ≤ x∗(sk), it follows that

F (x; sk) =

�
mk

m1 + ...+mk

�� x
x∗(sk)

f(z)dz

mkθ(sk)
for x∗(sk) ≤ x ≤ x∗(sk+1).

Multiplying both sides by θ(sk) gives equation (24).

The cutoff valuation x∗(sk+1), i.e., the lowest buyer type who is indifferent be-

tween visitinga type sk seller versus a type sk+1 seller, is defined by V (sk;x∗(sk+1)) =

V (sk+1;x
∗(sk+1)). Using equation (14) gives x∗(sk+1)

sk

e−θ(sk)(1−F (x;sk))dx =
 x∗(sk+1)

sk+1

e−θ(sk+1)(1−F (x;sk+1))dx. (25)

Note that F (x; sk) = 0 for x < x∗(sk), and similarly F (x; sk+1) = 0 for x < x∗(sk+1).

Equation (25) can thus be rewritten as

e−θ(sk) (x∗(sk)− sk) +
 x∗(sk+1)

x∗(sk)
e−θ(sk)(1−F (x;sk))dx = e−θ(sk+1) (x∗(sk+1)− sk+1) or

x∗(sk)− sk +
 x∗(sk+1)

x∗(sk)
eθ(sk)F (x;sk)dx = eθ(sk)−θ(sk+1) (x∗(sk+1)− sk+1)

Using

eθ(sk)F (x;sk) 
 1 + θ(sk)F (x; sk) and eθ(sk)−θ(sk+1) 
 1 + θ(sk)− θ(sk+1)
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equation (25) can be further rewritten as

x∗(sk+1)− sk +
 x∗(sk+1)

x∗(sk)
θ(sk)F (x; sk)dx = (1 + θ(sk)− θ(sk+1)) (x

∗(sk+1)− sk+1) .
(26)

We use the notation sk+1 = s, sk = s − Δs, x∗(sk+1) = x∗(s), and x∗(sk) =

x∗(s)−Δx∗(s) and note that G(s) =
k
j=1mj. Then using equations (23) and (24),

we can rewrite equation (26) as

x∗(s)−s+Δs+
 x

x∗(s)−Δx∗(s)

 x

x∗(s)−Δx∗(s)

f(z)dz

G(s)
dx = (x∗(s)− s)

⎛⎝1 + � x∗(s)x∗(s)−Δx∗(s) f(x)dx

G(s)

⎞⎠ .
(27)

The left-hand side of equation (27) used equation (24); the right-hand side used

equation (23). The term
 x

x∗(s)−Δx∗(s)

 x

x∗(s)−Δx∗(s)

f(z)dz

G(s)
dx on the left-hand side of

this equation is o(Δx∗(s)). On the right-hand side, x∗(s)

x∗(s)−Δx∗(s)
f(x)dx = F (x∗(s))− F (x∗(s)−Δx∗(s)) 
 f(x∗(s))Δx∗(s).

Equation (27) therefore reduces to

Δx∗(s)
Δs

=
G(s)

(x∗(s)− s) f(x) . (28)

Together with the initial condition, x∗(0) = 0, equation (28) determines the function

x∗(s).
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