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Abstract

In this paper, we demonstrate the effi ciency of seller entry in a model of competing

auctions in which we allow for both buyer and seller heterogeneity. This generalizes

existing effi ciency results in the competitive search literature by simultaneously

allowing for nonrival (many-on-one) meetings and private information.
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In this paper, we consider the effi ciency of seller entry into a large market in which

sellers post and commit to terms of trade and buyers then allocate themselves across

sellers. Buyers differ in their valuations for the good that is being sold in this market, and

sellers are heterogeneous with respect to their reservation values. In this environment,

a second-price auction is a simple mechanism that allows the buyers who interact with

a particular seller to compete for that seller’s good. The competing auctions literature,

e.g., McAfee (1993) and Peters and Severinov (1997), considers the characteristics of these

auctions as the market gets large, and it is now well understood that competition leads

each seller to post an effi cient mechanism, e.g., a second-price auction with reserve price

equal to seller reservation value.

The implications of a large market for seller entry are less well understood in this envi-

ronment. When goods are auctioned, buyers extract an information rent from sellers. One

might therefore expect that the equilibrium level of seller entry into the market would be

below the level that a social planner would choose. There is, however, a counterbalancing

force, namely, that when a seller enters the market, that seller “steals”buyers from the

sellers who were already there and so potentially reduces the surpluses associated with

these sellers. Our main result is that in a large market when sellers are free to choose

their preferred mechanisms, these two effects —information rent versus business stealing —

exactly offset each other, leading to the socially effi cient level of seller entry. In addition,

we show that the equilibrium and social planner allocation of buyers across seller types

coincide.

The model we present is one of competitive search. Sellers compete for buyers by

posting and committing to selling mechanisms, and buyers direct their search based on

these posted mechanisms. Moen (1997) and Shimer (1996) demonstrate the effi ciency

of entry in a model of competitive search that has two special features. First, meetings

between buyers and sellers are one-on-one, that is, each seller interacts with at most

one buyer. Second, there is complete information in the sense that once a buyer and

seller meet private information is not an issue. We generalize this literature on effi cient

entry in competitive search in two directions. First, we allow for nonrival (many-on-one)

meetings; that is, the fact that one or more buyers choose to visit a seller does not make
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it more diffi cult for any other buyer to visit that seller.1 Second, we allow for private

information, which we model by assuming that sellers do not know how much the buyers

at their auctions value the good.2 With a one-on-one meeting technology and complete

information, the only relevant mechanism for selling a good is price posting. With many-

on-one meetings and asymmetric information, second-price auctions rather than wage

posting constitute an optimal mechanism. Thus, we have a model of competing auctions.

1 Model

We consider a market with a double continuum of buyers and sellers. The measure of

buyers is B, and we normalize the measure of sellers that could potentially enter the

market to one. In this market, each buyer wants to purchase one unit; each seller has

one unit of the good for sale. Every seller posts and commits to a selling mechanism, and

each buyer, after observing all posted mechanisms, chooses one seller to interact with.

The meeting technology is nonrival. Finally, as is standard in the competitive search

literature, we assume that buyers cannot coordinate their visiting strategies.

We assume that buyer valuations for the good are distributed as X ∼ F (x), with

corresponding density, f(x), and we normalize the range of X to [0, 1]. Buyer valuations

are independently and identically distributed and are private information; i.e., we are

considering a model of “independent private values.” In our baseline case, we assume

that buyers learn their valuations ex post, that is, only after choosing a particular seller.3

Sellers are ex ante heterogeneous with reservation values distributed as S ∼ G(s), with

corresponding density, g(s). Again, we normalize the range of the random variable to

[0, 1]. We interpret seller type as motivation —the sellers with high reservation values are

“relaxed" about selling their good while those with reservation values close to zero are

“desperate”(or, as is often seen in housing ads, “motivated”). Finally, we describe the

1Nonrival is the terminology used in the search literature for such meeting technologies. See Eeckhout

and Kircher (2010).
2Effi ciency of seller entry in competitive search with private information was shown by Albrecht and

Jovanovic (1986) for one-on-one meetings using a particular matching function.
3We refer to our baseline model as the ex post case. We consider the ex ante case in which buyers

know their valuations before choosing which seller to visit in Section 3.
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allocation of buyers across the different seller types by a function θ(s), which gives the

expected number of buyers per seller of type s.

We model the interaction of buyers and sellers as a one-shot game with the following

stages:

1. Each type s seller decides whether or not to pay a cost A to enter the market. A

type s seller who does not enter retains the reservation value s.

2. Each seller who enters the market posts and commits to a mechanism to sell one

unit of the good.

3. Each buyer, after observing all posted mechanisms, chooses a seller.

4. Given the allocation of buyers to sellers, goods are allocated and payments are made

according to the posted mechanisms.

The payoff for a type s seller consists of any payments received according to the posted

mechanism plus s if the good is retained. The payoff for a buyer with valuation x equals

x if the good is purchased and zero otherwise less any payments specified by the posted

mechanism.

Definition 1 An equilibrium for this game is a choice of a selling mechanism by each

seller, an allocation of buyers across sellers, θ(s), and a cutoff seller type, s∗, such that

(i) each seller’s mechanism maximizes the seller’s expected payoff given the mechanisms

posted by the other sellers in the market and the rule that buyers follow to allocate them-

selves across sellers, (ii) each buyer chooses a probability distribution over seller types that

maximizes the buyer’s expected payoff given the mechanisms posted in the market and the

allocation rule followed by the other buyers, and (iii) the payoff that seller s∗ expects on

entering the market equals A+ s∗.

In the independent private values environment that we consider, a second-price auction

with reserve price equal to seller reservation value is an effi cient mechanism. It guarantees
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that the good is sold whenever at least one buyer has a valuation above the seller’s

reservation value and it also guarantees that, if the good is sold, it goes to the buyer with

the highest valuation. Competition ensures that sellers post effi cient mechanisms. The

intuition can be seen in Levin and Smith (1994). They consider a single seller offering a

second-price auction with reserve price r who faces a fixed number of potential buyers,

each with a common outside option. Their result, that endogenizing buyer entry drives

r to the seller’s reservation value, even though there is only one seller in the market,

is generated by the fixed outside option. Each buyer who participates in the auction

must get an expected payoff equal to this outside option. It is therefore in the seller’s

interest to post an effi cient mechanism. Posting an ineffi cient mechanism cannot reduce

the expected payoff per buyer that the seller has to pay and therefore can only reduce the

seller’s expected payoff. The same result holds in the competing auctions environment

(Albrecht, Gautier and Vroman 2012) with the difference that the outside option —now

equal to “market utility,”i.e., the payoff that a buyer can expect to get elsewhere in the

market —is endogenous.4

Levin and Smith (1994) also show that it is not in the seller’s interest to post an

entry fee, and the same result can be derived in the competing auctions framework using

the approach of Albrecht et al. (2012). The fact that buyer entry fees are zero and

reserve prices equal reservation values in a large market means that not only is effi ciency

ensured in the competing auctions equilibrium but also that the seller’s expected payoff

is limited to the expectation of the second highest valuation among buyers participating

in the auction. This result is related to one derived in Gorbenko and Malenko (2011).

They consider competition in “securities auctions” in which sellers auction off the right

to develop projects for a combination of cash and a share of the profits. Getting buyers

to pledge a profit share is a way for sellers to recapture some of the information rent

associated with buyer private information. Proposition 4 in Gorbenko and Malenko (2011)

shows that as the number of buyers and sellers in the market gets large, all-cash auctions

are posted in the competitive search equilibrium. That is, as the market gets large,

4Of course, this effi ciency result requires a large market. In a market with a small number of sellers,

the terms of trade posted by any one seller affect market utility.

4



competition prevents sellers from “clawing back”any part of the information rent.5

2 Effi cient Seller Entry

To discuss the effi ciency of seller entry, some notation is useful. Consider a type s seller

who posts a second-price auction with reserve price r, which generates an expected buyer

arrival rate of θ(r). Let Π(r, θ(r); s) denote this seller’s expected payoff. Similarly, let

V (r, θ(r)) denote the expected payoff for a buyer who participates in an auction with

reserve price r.6 This seller sets a reserve price to maximize Π(r, θ(r); s) subject to the

constraint that V (r, θ(r)) = V , where V is market utility. Competition leads the seller to

choose r = s.

The surplus associated with a second-price auction posted by this seller with reserve

price equal to reservation value is the expected maximum of s and the highest valuation

drawn by buyers who interact with this seller. Denoting this surplus by Λ(s, θ(s); s),7 we

have

Λ(s, θ(s); s) = Π(s, θ(s); s) + θ(s)V (s, θ(s)). (1)

The surplus associated with this auction equals the seller’s expected payoff plus the ex-

pected number of buyers participating in the auction, θ(s), times the expected payoff per

buyer. Because the mechanism is effi cient, no surplus is “left on the table.”

Our proof that seller entry into this market is effi cient relies on the fact that

∂Π(s, θ(s); s)

∂θ(s)
+ θ(s)

∂V (s, θ(s))

∂θ(s)
= 0. (2)

That is, if the expected number of buyers per type s seller increases, the increase in this

seller’s expected payoff is just offset by the expected decrease in payoffs across the seller’s

5It is worth noting that the same logic —competition leads sellers to post effi cient mechanisms —applies

with a rival meeting technology. However, the effi cient mechanism in this case does include an entry fee.

See Albrecht and Jovanovic (1986) and Faig and Jerez (2005).
6The seller’s expected payoff depends on the reserve price posted, the expected arrival rate of buyers

and on the seller’s type, s, since s is retained if the good is not sold. The buyer’s expected payoff only

depends on the posted reserve price and the expected arrival rate of other buyers.
7In Appendix A.1, we derive expressions for Π(s, θ(s); s), V (s, θ(s)) and Λ(s, θ(s); s).
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“incumbent”buyers.8 The intuition for equation (2) can most easily be understood in a

single-seller setting.

Consider a type s seller posting a second-price auction with reserve price s. Suppose n

buyers initially participate in the auction. Now suppose an (n+1)st buyer is added. Total

surplus only increases if the new buyer wins the auction. In this case, the buyer gets his

or her valuation minus the maximum of s and the highest valuation across the original

n buyers; that is, the marginal contribution to the surplus associated with the auction

equals the new buyer’s payoff. This means, as equation (2) indicates, that the entry of

a new buyer does not change the sum of the payoffs to the seller and to the original n

buyers.

We can apply this intuition to the large market setting. Suppose a new type s seller

enters the market, posting a second-price auction with reserve price s. This seller can

expect to attract θ(s) buyers away from sellers who were already in the market. Since

the market is large, the probability that two or more of these buyers come from any one

auction that was already in the market is negligible. The new seller’s auction creates a

surplus equal to the highest valuation drawn by the buyers it attracts (or s if it attracts

no buyers drawing x ≥ s). This seller’s payoff equals the second-highest valuation (or s

if the auction attracts no buyers or only one buyer who draws x ≥ s). The difference

between the surplus associated with the auction and the seller’s payoff is the information

rent.

Now consider the buyers (if any) who are attracted to the new auction. If the new

seller hadn’t entered the market, each of these buyers would have participated in some

other seller’s auction. The buyers who choose the new auction decrease the surpluses

associated with the auctions they leave. In each of these auctions, there is a decrease in

the expected seller payoff and an increase in the expected payoffs across the remaining

8In Albrecht et al. (2012), we consider the problem of maximizing Π(r, θ(r); 0) subject to V (r, θ(r)) =

V using the expressions for Π(·) and V (·) derived in Peters and Severinov (1997). We verify equation
(2) for the case of s = 0 in that paper by showing that this equation is one of the first-order conditions

for the seller’s constrained maximization problem. In Appendix A.1, we present an alternative approach

to verifying this equation; namely, we use the result that competition leads sellers to post effi cient

mechanisms (r = s) to develop simple expressions for the terms in equation (1).
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buyers, but these two effects cancel, so the decrease in surplus associated with each of

these auctions equals the payoff the departing buyer could have expected there, namely,

the market utility, V . Similarly, each of these buyers increases the surplus associated with

the new seller’s auction. Each buyer who participates in the new seller’s auction increases

that seller’s expected payoff but decreases the expected payoffs for any other buyers who

visit the new seller. Again, these two effects are exactly offsetting. That is, the increase

in surplus at the new seller’s auction generated by adding one more buyer equals that

buyer’s expected payoff at that auction. Since each of the buyers who participates in the

new seller’s auction anticipates competing with θ(s) other buyers at that auction, each

buyer’s expected payoff at the new auction is V (s, θ(s)). In equilibrium, V (s, θ(s)) = V ,

so the decrease in surplus at an auction that loses a buyer equals the increase in surplus

that buyer adds to the entrant’s auction. The decrease in surplus at auctions that lose

buyers is the business-stealing effect, θ(s)V , and this equals the sum of the contributions

these buyers make to the new seller’s auction, θ(s)V (s, θ(s)). From equation (1), we have

Π(s, θ(s); s) = Λ(s, θ(s); s)− θ(s)V (s, θ(s)); that is, the expected payoff for a new entrant

of type s equals the increase in surplus generated by the auction net of the decrease in

surplus caused by the departure of buyers from auctions that were already in the market.

Thus, the information-rent and business-stealing effects are exactly offsetting.

We now consider the social planner problem. The social planner chooses a level of

seller entry and an allocation of buyers across seller types to maximize total surplus in

the market net of entry and opportunity cost. That is, the social planner chooses a cutoff

seller type, s∗, —all sellers of type s ≤ s∗ enter the market; all types s > s∗ stay out —

and a buyer-seller ratio for each seller type, θ(s), to maximize∫ s∗

0

(Λ(s, θ(s); s)− (A+ s)) g(s)ds.

This maximization is carried out subject to∫ s∗

0

θ(s)g(s)ds = B;

that is, the allocation of buyers across seller types has to satisfy an adding-up constraint.
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Proposition 1 The social planner values of θ(s) and s∗ equal the free-entry equilibrium

values.

Proof. The Lagrangean for the social planner problem is∫ s∗

0

(Λ(s, θ(s); s)− (A+ s)) g(s)ds+ λ

(
B −

∫ s∗

0

θ(s)g(s)ds

)
with first-order conditions

Λ(s∗, θ(s∗); s∗)− (A+ s∗)− λθ(s∗) = 0 (3)
∂Λ(s, θ(s); s)

∂θ(s)
− λ = 0 ∀s ∈ [0, s∗] (4)

B −
∫ s∗

0

θ(s)g(s)ds = 0 (5)

Using equations (1) and (2), equation (4) can be rewritten as

V (s, θ(s)) = λ ∀s ∈ [0, s∗]. (6)

That is, the social planner wants buyers to allocate themselves across sellers so that the

values of visiting the various seller types in the market are equalized. This same condition

holds in equilibrium since buyers must be indifferent across seller types.

Next, consider equation (3). This can be rewritten as

Π(s∗, θ(s∗); s∗)− (A+ s∗) + θ(s∗) (V (s∗, θ(s∗))− λ) = 0.

From equation (6), we have V (s∗, θ(s∗)) = λ, so equation (3) requires Π(s∗, θ(s∗); s∗) =

A + s∗. That is, the marginal entrant should be just indifferent with respect to entering

the market. Again, the same condition holds in equilibrium with free entry.9

3 The Ex Ante Case

In this section, we consider the case in which buyers know their valuations ex ante, i.e.,

before choosing which seller to visit. We begin by describing the equilibrium in competing

9In our related working paper, Albrecht et al. (2013), we prove a similar result for the case of two

seller types.
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auctions for this case taking the distribution of sellers in the market as given. Then we

discuss the effi ciency of seller entry and of the allocation of buyers across seller types.

The details are given in Appendix A.2.

Competition in selling mechanisms in the ex ante case was first considered by McAfee

(1993). Sellers post effi cient mechanisms, as in the ex post case, but, interestingly, the

reasoning is different. McAfee (1993) makes the following argument to show that when

sellers all have reservation value 0, each posts a second-price auction with a zero reserve

price.10 Suppose all sellers post positive reserve prices, so buyers with low valuations

are shut out of the market. Now consider the seller posting the lowest reserve price, say

r′ > 0. If this seller deviates to r = 0, he or she captures the entire market between zero

and r′. What is more interesting is that the deviant seller doesn’t lose any buyers (in

expectation) with valuations above r′. Buyers with valuations above r′ don’t care about

competition from buyers with valuations below r′. More precisely, a buyer with valuation

x > r′ knows that r′ is the lowest possible price irrespective of whether the deviant seller

is posting r = r′ or r = 0 because all buyers with x ≤ r′ visit this seller. Thus, buyers

with valuations above r′ continue to allocate themselves across all sellers (including the

deviant) exactly as they would have absent the deviation. This argument further implies

that no seller (regardless of what reserve prices are set by the other sellers) wants to set

a positive reserve price. Thus, competition drives the equilibrium reserve price to the

common seller reservation value of zero in the ex ante case.

When sellers are heterogeneous with respect to their reservation values, the equilibrium

is more complicated. It is simplest to start with the intuition for the case of two seller

types. Suppose there is a mass m1 of sellers with reservation value s1 and a mass m2 of

sellers with reservation value s2 > s1. Competition leads the sellers to post reserve prices

equal to their reservation values.

Buyers then sort themselves based on their valuations. Buyers with valuations below

s1 are shut out of the market. Similarly, it is pointless for a buyer with valuation x < s2 to

visit a seller posting s2. Essentially the same is true for buyers with valuations that are

slightly higher than s2 —these buyers are also better off visiting a seller posting s1, even

10Our treatment follows Peters and Severinov (1997) and Peters (2013).
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though there may be more competition from other buyers there. Let x∗ be the lowest

valuation that is consistent with indifference between visiting the two seller types. Buyers

with x > x∗ are also indifferent between the two seller types and visit all sellers with equal

probability. Why do buyers with suffi ciently high valuations randomize across all sellers?

To understand this, consider the buyer of type x∗. So long as buyers with higher valuations

randomize their visits across all sellers, the buyer with valuation x∗ is equally likely to be

the high bidder in an auction with reserve price s2 as in an auction with reserve price s1.

The threshold value x∗ is then determined by equating the expected payoffs in the two

auctions, conditional on being the high bidder. Next, consider a buyer with valuation

x′ > x∗. If all buyers with even higher valuations randomize their visits across all sellers,

then the buyer with valuation x′ is equally likely to be the high bidder in either seller

type’s auction. Finally, given that expected payoffs conditional on winning are the same

for the buyer with valuation x∗ and given that buyers with valuations between x∗ and x′

randomize their visits across all sellers, the expected payoff, conditional on winning, for

the buyer with valuation x′ is the same in an auction with reserve price s1 as one with

reserve price s2.

Continuing with two seller types, the next step is to allow for free entry. That is, m2 is

endogenized in free-entry equilibrium. In Appendix A.2, we consider the two-seller type

case in detail. We characterize the equilibrium allocation of buyers across the two seller

types and the distribution of seller types in the market in terms of x∗ and m2, and we

show that these values are the same as those that would be chosen by a social planner. In

short, we show that the equilibrium level of seller entry and the allocation of buyers across

the two seller types are effi cient in competitive search equilibrium. We then generalize to

allow for an arbitrary, discrete number of seller types. Finally, by taking the appropriate

limit, we consider the model with a continuum of seller types. The equilibrium allocation

of buyers across sellers, that is, the expected number of buyers choosing each seller type

and the distribution of buyer types across sellers, is described by a function x∗(s) that

gives the threshold valuation associated with each seller type, and the marginal seller type

is determined by free entry.

The intuition for the effi cient allocation of buyers across seller types and effi cient seller
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entry in a model of competing auctions when buyers know their valuations ex ante is not

so different from the intuition given above in the ex post case. Consider again the model

with two seller types. From the planner’s perspective, buyers with valuations below x∗

contribute less to auctions posted by sellers of type s2 than they do to auctions posted by

the other seller type. In equilibrium, the contribution these buyers would make to each

auction type equals their expected payoffs, so these buyers have the correct incentives to

direct their search effi ciently. That is, the market uses the ex ante information effi ciently

in the sense that low valuation buyers do not wastefully visit high seller types. Similarly,

buyers who find it worthwhile to search both seller types should do so in such a way

that the surplus they add by participating in an auction with reserve price s1 is the same

as what they add by participating in an auction with reserve price s2. Again, because

these buyers allocate themselves between the two auction types to equalize their expected

payoffs, equilibrium incentives give the socially optimal allocation of buyers across the two

seller types. In terms of seller entry, the marginal entrant has reservation value s2. Only

high-valuation buyers will consider visiting this entrant. In equilibrium, the expected

payoff for high-valuation buyers is the same whether they visit sellers posting s1 or s2.

Thus, whichever auction type the marginal entrant draws buyers away from, the business-

stealing effect is the same. Exactly as in the ex post case, the expected contribution that

a buyer makes to the new entrant’s auction equals the expected loss in surplus that his

or her “departure” generates in the auction in which he or she would otherwise have

participated. Once again, the information-rent and business-stealing effects are exactly

offsetting, giving the correct incentives for entry.

4 Conclusion

The constrained effi ciency of competitive search equilibrium is well understood when

meetings between buyers and sellers take place on a one-on-one basis with complete in-

formation. However, in many situations, e.g., in standard auction settings, it is more

appropriate to assume a nonrival meeting technology, i.e., many-on-one meetings. These

are situations in which buyers differ in terms of how much they value the good that is
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being offered for sale and in which these valuations are private information.

Our main contribution in this paper is to show that the allocation of buyers across

seller types and the level of seller entry are effi cient in competitive search equilibrium

with nonrival meetings. To get effi cient entry, sellers who could potentially enter the

market need the correct incentives. The payoff expected by the marginal entrant should

equal his or her expected contribution to market surplus. The expected contribution

to market surplus from this auction is the maximum of the seller’s reservation value, s,

and the expectation of the highest valuation drawn by buyers who participate in that

auction, while the seller’s expected payoff is the expectation of the maximum of s and

the second-highest valuation across buyers in the auction. The difference between what

the winning buyer expects to get and what the seller expects to receive is an information

rent, and the existence of this information rent makes it seem that there will not be

enough seller entry. This, however, neglects the fact that the buyers who participate in

the marginal entrant’s auction would have participated in some other seller’s auction had

the last seller not entered the market. That is, the entry of the marginal seller creates

a business-stealing externality. Our main contribution, therefore, can be understood as

showing that the information-rent and business-stealing effects exactly offset each other

in competitive search equilibrium, thus generating the effi cient level of seller entry.
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A Appendix

A.1 Ex Post Case

In this appendix, we verify equation (2) and derive expressions for Λ(s, θ(s); s),Π(s, θ(s); s),

and V (s, θ(s)). As noted in the text, in Albrecht et al. (2012), we analyzed the problem

max
r,θ(r)

Π(r, θ(r); 0) subject to V (r, θ(r)) = V

using expressions for Π(r, θ(r); 0) and V (r, θ(r)) that were derived in Peters and Severinov

(1997). This is the problem of a seller of type s = 0 choosing a reserve price for a second-

price auction who takes into account that the reserve price determines the expected arrival

rate of buyers to the auction. In the process of showing that r = 0, that is, that the optimal

reserve price equals the seller reservation value, we derived

∂Π(0, θ(0); 0)

∂θ
+ θ(0)

∂V (0, θ(0))

∂θ
= 0

as one of the first-order conditions for the seller’s constrained maximization problem. The

same approach can be used to confirm equation (2),

∂Π(s, θ(s); s)

∂θ
+ θ(s)

∂V (s, θ(s))

∂θ
= 0

for arbitrary s.

Here we present an alternative approach to verifying equation (2). We use the result

that competition leads sellers to post effi cient auctions; that is, sellers post reserve prices

equal to reservation values. This gives equation (1) in the text, namely,

Λ(s, θ(s); s) = Π(s, θ(s); s) + θ(s)V (s, θ(s)).

Differentiating gives

∂Λ(s, θ(s); s)

∂θ
=
∂Π(s, θ(s); s)

∂θ
+ θ(s)

∂V (s, θ(s))

∂θ
+ V (s, θ(s)),

and our proof of equation (2) consists of showing

∂Λ(s, θ(s); s)

∂θ
= V (s, θ(s)). (7)

To do this, we develop expressions for Λ(s, θ(s); s) and V (s, θ(s)).We also deriveΠ(s, θ(s); s)

and verify that our expressions for seller and buyer expected payoffs are equivalent to the

ones given in Peters and Severinov (1997).
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We begin with an expression for Λ(s, θ(s); s), the expected surplus associated with

the auction posted by seller s, which equals the expected maximum of s and the highest

valuation greater than s drawn by one of the buyers. Suppose n buyers visit this seller and

draw valuations of s or more. If n = 0, then Λ(s, θ(s); s) = s. If n ≥ 1, then, conditional

on n, the expected surplus is∫ 1

s

xd

(
F (x)− F (s)

1− F (s)

)n
= 1−

∫ 1

s

(
F (x)− F (s)

1− F (s)

)n
dx,

that is, the expected maximum of the n draws that are greater than or equal to s.

The number of buyers visiting seller s who draw valuations of s or more is Poisson

with parameter θ(s)(1− F (s)), so the unconditional expression for expected surplus is

Λ(s, θ(s); s) = se−θ(s)(1−F (s))

+e−θ(s)(1−F (s))

∞∑
n=1

(θ(s)(1− F (s)))n

n!

(
1−

∫ 1

s

(
F (x)− F (s)

1− F (s)

)n
dx

)
= se−θ(s)(1−F (s)) + e−θ(s)(1−F (s))

(
eθ(s)(1−F (s)) − 1

)
−e−θ(s)(1−F (s))

∫ 1

s

∞∑
n=1

(θ(s)(F (x)− F (s)))n

n!
dx; i.e.,

Λ(s, θ(s); s) = 1−
∫ 1

s

e−θ(s)(1−F (x))dx. (8)

Next, consider V (s, θ(s)), the expected payoff for a buyer who chooses a seller of type

s. Suppose this buyer draws a valuation x ≥ s. This is the winning draw with probability

e−θ(s)(1−F (x)). Conditional on winning, the buyer’s payoff is the difference between x and

the highest valuation drawn by any other buyers who visited this seller or s if no other

buyer drew a valuation y ≥ s. Now suppose there were n other buyers who drew y ∈ [s, x).

Conditional on n, the winning buyer’s expected payoff is then

x−
∫ x

s

yd

(
F (y)− F (s)

F (x)− F (s)

)n
=

∫ x

s

(
F (y)− F (s)

F (x)− F (s)

)n
dy

Summing against the probability mass function for n, the buyer’s expected payoff, condi-

tional on winning with valuation x ≥ s, is

∞∑
n=0

e−θ(s)(F (x)−F (s)) (θ(s)(F (x)− F (s)))n

n!

∫ x

s

(
F (y)− F (s)

F (x)− F (s)

)n
dy =

∫ x

s

e−θ(s)(F (x)−F (y))dy.

Multiplying by the probability of winning with valuation x at seller s gives

V (s, θ(s);x) =

∫ x

s

e−θ(s)(1−F (y))dy. (9)
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This is the expected payoff for a buyer who visits seller s conditional on drawing valuation

x, where x ≥ s. Finally, the unconditional expected payoff for a buyer who visits seller s

is

V (s, θ(s)) = (1− F (s))

∫ 1

s

V (s, θ(s);x)
f(x)

1− F (s)
dx

=

∫ 1

s

∫ x

s

e−θ(s)(1−F (y))dyf(x)dx =

∫ 1

s

(1− F (x))e−θ(s)(1−F (x))dx, (10)

where the last equality follows by integration by parts (u =
∫ x
s
e−θ(s)(1−F (y))dy, v = −(1−

F (x))). With s = 0, equation (10) is the expression for expected buyer payoff derived in

Peters and Severinov (1997).

Differentiating equation (8) and using equation (10) gives equation (7). This completes

the derivation of equation (2).

For completeness, we also derive Π(s, θ(s); s). Consider a seller of type s who posts

reserve price equal to s, and suppose this seller attracts n buyers who draw valuations of

s or more. The seller gets a payoff of s if n = 0 or 1; if n ≥ 2, the seller’s expected payoff

equals the expected value of the second highest valuation across the buyers, i.e., E[Yn−1].

The distribution function of Yn−1 is

Gn−1(y) =

(
F (y)− F (s)

1− F (s)

)n
+ n

(
F (y)− F (s)

1− F (s)

)n−1(
1− F (y)

1− F (s)

)
for s ≤ y ≤ 1.

Thus, conditional on n ≥ 2, the seller’s expected payoff is∫ 1

s

ydGn−1(y) = 1−
∫ 1

s

(
F (y)− F (s)

1− F (s)

)n
dy − n

∫ 1

s

(
(F (y)− F (s))n−1(1− F (y))

(1− F (s))n

)
dy.

Summing against the probability mass function for n,

Π(s, θ(s); s) = se−θ(s)(1−F (s)) (1 + θ(s)(1− F (s))) + e−θ(s)(1−F (s))

∞∑
n=2

(θ(s)(1− F (s))n

n!

−e−θ(s)(1−F (s))

∫ 1

s

∞∑
n=2

(θ(s)(F (y)− F (s))n

n!
dy

−e−θ(s)(1−F (s))

∫ 1

s

(1− F (y))θ(s)

∞∑
n=2

(θ(s)(F (y)− F (s)))n−1

(n− 1)!
; i.e.,

Π(s, θ(s); s) = 1−
∫ 1

s

e−θ(s)(1−F (x))dx−
∫ 1

s

θ(s)(1− F (x))e−θ(s)(1−F (x))dx. (11)

Using equations (8), (10) and (11), it is straightforward to check equation (1). Finally,

using

1−
∫ 1

s

e−θ(s)(1−F (x))dx = θ(s)

∫ 1

s

xe−θ(s)(1−F (x))f(x)dx,
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the seller’s expected payoff can be rewritten as

Π(s, θ(s); s) = θ(s)

∫ 1

s

(
x− 1− F (x)

f(x)

)
e−θ(s)(1−F (x))f(x)dx.

With s = 0, this is the expression for expected seller payoff that is given in Peters and

Severinov (1997).

A.2 Ex Ante Case

In this appendix, we give the details and prove the effi ciency of free-entry equilibriuim

for the ex ante case, i.e., the case in which buyers draw their valuations before deciding

which seller to visit. As discussed in the text, competition leads sellers to post effi cient

mechanisms in the ex ante case just as it does in the ex post case; in particular, a seller

with reservation value s posts a second-price auction with reserve price s. However, with

a distribution of seller types in the market, the fact that buyers learn their valuations

ex ante complicates the analysis. The extra complication arises because the distribution

of buyers will vary across seller types. The surplus associated with an auction posted

by a type s seller should therefore be written as Λ(s, θ(s), F (x; s); s); that is, the surplus

depends on the posted reserve price, s, on the expected number of buyers attracted by

that reserve price, θ(s), and on the distribution of valuations across the buyers visiting

sellers of type s, F (x; s), as well as on the seller’s type, s. Similarly, the expected payoff

for seller s is Π(s, θ(s), F (x; s); s), and the expected payoff for a buyer with valuation x

who visits a seller posting reserve price s is V (s, θ(s), F (x; s);x). Applying the approach

used in Appendix 1 gives

Λ(s, θ(s), F (x; s); s) = 1−
∫ 1

s

e−θ(s)(1−F (x;s))dx (12)

Π(s, θ(s), F (x; s); s) = θ(s)

∫ 1

s

(
x− 1− F (x; s)

f(x; s)

)
e−θ(s)(1−F (x;s))f(x; s)dx (13)

V (s, θ(s), F (x; s);x) =

∫ x

s

e−θ(s)(1−F (y;s))dy (14)

For ease of notation, however, we use Λ(s), Π(s) and V (s;x), respectively. We also simplify

the notation by normalizing the measure of buyers, B, to one.

We use the following approach to characterize the equilibrium and the social planner

solution in the ex ante case. First, we consider the case of two seller types with a mass m1

of sellers of type s1 and a mass m2 of potential sellers of type s2, where 0 ≤ s1 < s2 < 1.

Second, we extend the analysis to the case of N seller types with masses m1, ...,mN
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of seller types 0 ≤ s1 < ... < sN < 1. Finally, we move to a continuum of sellers by

considering the appropriate limit.

A.2.1 Two Seller Types

We have argued in the text of the paper that equilibrium is characterized by a cutoff, x∗,

and a measure, m∗2, of type s2 sellers such that

V (s1;x∗) = V (s2;x∗) (15)

Π(s2) = A+ s2. (16)

Note that x∗ is the lowest value of x satisfying equation (15); in particular, V (s1;x) >

V (s2;x) for all x ∈ [s1, x
∗) while V (s1;x) = V (s2;x) for all x ∈ [x∗, 1].

The corresponding social planner problem is to choose a cutoff, x̂, and a measure, m̂2,

to maximize

m1 (Λ(s1)− (A+ s1)) +m2 (Λ(s2)− (A+ s1)) .

Consider the partial derivative of the social planner maximand with respect to x̂; in

particular, consider an increase in the cutoff from x̂ to x̂+ dx. The key to understanding

this derivative is to recognize that the only agents who change their behavior are buyers

with valuations in the interval [x̂, x̂ + dx). Buyers with valuations x ∈ [0, x̂) randomized

over sellers of type s1 before the change; they continue to do so after the change. Similarly,

buyers with valuations x ∈ [x̂+ dx, 1] randomized over all sellers before the change; they

continue to do so afterwards.

Buyers with valuations x ∈ [x̂, x̂+dx) randomized over all sellers before the increase in

the cutoff; after the increase, these buyers randomize over sellers of type s1. Thus, there

are some buyers with valuations in [x̂, x̂+ dx) who would have participated in an auction

run by a seller of type s2 before the change but instead participate in an auction run by

a seller of type s1 after the change. To be more precise, approximately
m2

m1 +m2

f(x̂)dx

buyers are expected to switch seller types. When a buyer switches from an auction with

reserve price s2 to one with reserve price s1, there is an increase in surplus associated

with the auction posted by the type s1 seller but a decrease in surplus associated with the

auction posted by the type s2 seller. The social planner wants these two effects to offset

each other. Were this not the case, e.g., if moving buyers with valuations close to x̂ from

type s2 sellers to type s1 sellers increased the surplus associated with auctions posted by

type s1 sellers more than it decreased the surplus associated with auctions posted by type

s2 sellers, then the social planner should increase the cutoff value.
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Consider the reallocation of a buyer with valuation x ∈ [x̂, x̂ + dx) from a type s2

seller to a type s1.seller. The increase in surplus at the auction posted by the type s1

seller is the sum of three components: (i) the increase in the seller’s expected payoff, (ii)

the decrease in the expected payoffs of any “incumbent”buyers, and (iii) the expected

payoff, V (s1;x), of the buyer who switched seller types. As we have argued in the text,

the first two terms are exactly offsetting; thus, the increase in surplus associated with an

auction posted by a type s1 seller that gained a buyer of type x equals V (s1;x). By the

same argument, the decrease in surplus associated with an auction posted by a type s2

seller that lost a buyer of type x equals V (s2;x). Now let dx → 0, so x ≈ x̂. Satisfying

the first-order condition of the social planner problem with respect to the cutoff value

requires

V (s1; x̂) = V (s2; x̂).

The cutoff x̂ is the lowest value of x satisfying this equation. Equation (15) thus implies

x̂ = x∗; that is, the equilibrium and social planner cutoffs coincide.

Next consider the partial derivative of the social planner maximand with respect to

m̂2. We can write the first-order condition as

m1
∂Λ(s1)

∂m2

+ m̂2
∂Λ(s2)

∂m2

+ Λ(s2)− (A+ s2) = 0. (17)

Since the social planner wants sellers to post effi cient mechanisms, we have

Λ(s2) = Π(s2) + θ(s2)V (s2),

where

V (s2) =

∫ 1

x∗
V (s2;x)

f(x)

1− F (x∗)
dx (18)

is a shorthand notation for the expected payoffper buyer visiting a type s2 seller. Equation

(17) implies equation (16) if

m1
∂Λ(s1)

∂m2

+ m̂2
∂Λ(s2)

∂m2

= −θ(s2)V (s2). (19)

We now verify equation (19). Suppose a type s2 seller enters the market. In ex-

pectation, this seller takes θ(s2) buyers away from incumbent sellers; thus, m1
∂Λ(s1)

∂m2

+

m̂2
∂Λ(s2)

∂m2

is the business-stealing effect associated with the entrant. Any buyer who at-

tempts to purchase the good from the new entrant has a valuation of x∗ or more, and

these buyers randomize their visits across both seller types. If a buyer with valuation x

moves from an incumbent seller to the new entrant, the loss in surplus at the incumbent
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seller’s auction is V (s2;x), and since V (s1;x) = V (s2;x) for all x ≥ x∗, i.e., high-valuation

buyers are indifferent between the two seller types, this loss is the same irrespective of

the type of the incumbent seller. The valuation x is a draw from the truncated density,
f(x)

1− F (x∗)
; thus, the expected loss to the incumbent seller is V (s2), as given in equation

(18). Multiplying this by the expected number of buyers who visit the new entrant gives

equation (19).

A.2.2 N Seller Types

Suppose there are N seller types, 0 ≤ s1 < · · · < sN < 1, with respective measures

m1, . . . ,mN , where we consider the entry decision of the marginal seller type, sN . In

equilibrim, there will exist N − 1 thresholds x∗(s2), . . . , x∗(sN) such that buyer types

in [x∗(sk), x
∗(sk+1)] randomize among sellers s1, . . . , sk. Buyers of type x < s1 do not

participate in the market; that is, x∗(s1) = s1. Equilibrium is characterized by the cutoffs,

x∗(s1), x∗(s2), ...x∗(sN), and a measure of sellers of type sN such that

0 = V (s1;x∗(s1))

V (s1;x∗(s2)) = V (s2;x∗(s2)) (20)

V (s1;x∗(s3)) = V (s2;x∗(s3)) = V (s3;x∗(s3))

...

V (s1;x∗(sk)) = V (s2;x∗(sk)) = ... = V (sk;x
∗(sk)) (21)

....

V (s1;x∗(sN)) = V (s2;x∗(sN)) = ... = V (sN ;x∗(sN))

Π(sN) = A+ sN . (22)

The corresponding social planner problem is to choose cutoffs, x̂(s1), x̂(s2), . . . , x̂(sN),

and a measure, m̂N , of type sN sellers to maximize

N∑
k=1

mk (Λ(sk)− (A+ sk)) .

The proof that x̂(sk) = x∗(sk) for k = 1, ..., N is essentially the same as the one given for

the case of two seller types.

First, it is obvious that x∗(s1) = x̂(s1) = s1. Buyers with x ≤ s1 have no incentive

to participate in the market nor does the social planner want them to do so. Second,

given any collection of cutoffs for sellers of type s3 and above and given any level of entry

by type sN sellers, the choice of x̂(s2) does not affect
∑N

k=3
mk (Λ(sk)− (A+ sk)). The
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same argument that was used to characterize x̂(s2) in the two-seller case then implies that

the social planner sets x̂(s2) so that

V (s1; x̂(s2)) = V (s2; x̂(s2)).

Comparing this with equation (20) gives x̂(s2) = x∗(s2). The final step in the argument

uses induction. Suppose x̂(si) = x∗(si) for i = 1, ..., k−1, and take {x̂(sk+1), . . . , x̂(sN),mN}
as given. The choice of x̂(sk) has no effect on

∑N

i=k+1
mi (Λ(si)− (A+ si)) . Since

{x̂(s1), x̂(s2), . . . , x̂(sk−1)} are assumed to have been set optimally, the social planner is
indifferent between assigning the buyer with valuation x̂(sk) to seller sk versus assigning

that buyer to any seller with a lower reservation value. That is,

V (s1; x̂(sk)) = V (s2; x̂(sk)) = ... = V (sk; x̂(sk));

thus, by comparison with equation (21), x̂(sk) = x∗(sk). By induction, the equilibrium

and social planner cutoff values coincide for i = 1, ..., N.

Finally, in order that m̂N = m∗N , it must be that

N∑
k=1

mk
∂Λ(sk)

∂mM

= −θ(sN)V (sN);

that is, the business-stealing effect associated with the entry of a type sN seller has to

equal the expected number of buyers drawn away by the entry of the marginal seller times

the loss in surplus per buyer who leaves an incumbent’s auction. The argument for why

this equation holds is exactly the same as in the case with two seller types.

A.2.3 Continuum of Seller Types

In the model with N seller types, for each seller type sk, there is a corresponding buyer

type x∗(sk) who is indifferent between visiting a seller of type sk versus any seller posting a

lower reserve price. The function x∗(sk) is defined on a discrete set of points, {s1, ..., sN}.
To move to a continuum of seller types, we let the distance between seller types sk+1 and

sk go to zero and derive a differential equation that gives a continuous function x∗(s) as

the limit of the N -seller case. The purpose of this subsection is to derive this equation.

Since the continuum-of-seller-types solution is the limit of the discrete seller type case,

our effi ciency results carry over to the continuum.

As in the ex post case, we normalize the total measure of potential sellers to one, and

we denote the distribution of reservation values across these seller by G(s).We begin with

a discrete distribution over seller types. Let s1 = 0, s2 = ∆s, ..., sk+1 = sk + ∆s, and
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let m1 = g(s1)∆s, m2 = g(s2)∆s, etc. We denote the arrival rate of buyers to type sk
sellers by θ(sk) and the distribution of valuations among buyers visiting type sk sellers by

F (x; sk).

Lemma 1

θ(sk) = θ(sk+1) +
1∑k

j=1 mj

∫ x∗(sk)

x∗(sk)

f(x)dx for k = 1, ..., N − 1 (23)

θ(sk)F (x; sk) =
1∑k

j=1mj

∫ x

x∗(sk)

f(z)dz for x∗(sk) ≤ x ≤ x∗(sk+1). (24)

Proof. Buyers with valuations x ≥ x∗(sk+1) randomize across all sellers of type sk+1 or

below. Thus, a type sk seller can expect as many buyers of this type as can a type sk+1

seller. In addition, a type sk seller attracts some additional buyers, namely, those with

valuations x ∈ [x∗(sk), x
∗(sk+1)). Buyers with valuations in this range randomize over sell-

ers of type sk and below, and there is a mass
∑k

j=1 mj of such sellers. This gives equation

(23). To understand equation (24), note that (i) the measure of the buyers with valuations

between x∗(sk) and x < x∗(sk+1) visiting type sk sellers is
(

mk

m1 + ...+mk

)∫ x
x∗(sk)

f(z)dz

while (ii) the measure of type sk sellers can be written as mkθ(sk). Since F (x; sk) = 0 for

x ≤ x∗(sk), it follows that

F (x; sk) =

(
mk

m1 + ...+mk

)∫ x
x∗(sk)

f(z)dz

mkθ(sk)
for x∗(sk) ≤ x ≤ x∗(sk+1).

Multiplying both sides by θ(sk) gives equation (24).

The cutoffvaluation x∗(sk+1), i.e., the lowest buyer type who is indifferent between vis-

itinga type sk seller versus a type sk+1 seller, is defined by V (sk;x
∗(sk+1)) = V (sk+1;x∗(sk+1)).

Using equation (14) gives∫ x∗(sk+1)

sk

e−θ(sk)(1−F (x;sk))dx =

∫ x∗(sk+1)

sk+1

e−θ(sk+1)(1−F (x;sk+1))dx. (25)

Note that F (x; sk) = 0 for x < x∗(sk), and similarly F (x; sk+1) = 0 for x < x∗(sk+1).

Equation (25) can thus be rewritten as

e−θ(sk) (x∗(sk)− sk) +

∫ x∗(sk+1)

x∗(sk)

e−θ(sk)(1−F (x;sk))dx = e−θ(sk+1) (x∗(sk+1)− sk+1) or

x∗(sk)− sk +

∫ x∗(sk+1)

x∗(sk)

eθ(sk)F (x;sk)dx = eθ(sk)−θ(sk+1) (x∗(sk+1)− sk+1)
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Using

eθ(sk)F (x;sk) ' 1 + θ(sk)F (x; sk) and eθ(sk)−θ(sk+1) ' 1 + θ(sk)− θ(sk+1)

equation (25) can be further rewritten as

x∗(sk+1)− sk +

∫ x∗(sk+1)

x∗(sk)

θ(sk)F (x; sk)dx = (1 + θ(sk)− θ(sk+1)) (x∗(sk+1)− sk+1) . (26)

We use the notation sk+1 = s, sk = s − ∆s, x∗(sk+1) = x∗(s), and x∗(sk) = x∗(s) −
∆x∗(s) and note that G(s) =

∑k
j=1mj. Then using equations (23) and (24), we can

rewrite equation (26) as

x∗(s)−s+∆s+

∫ x

x∗(s)−∆x∗(s)

∫ x

x∗(s)−∆x∗(s)

f(z)dz

G(s)
dx = (x∗(s)− s)

1 +

∫ x∗(s)

x∗(s)−∆x∗(s)
f(x)dx

G(s)

 .

(27)

The left-hand side of equation (27) used equation (24); the right-hand side used equation

(23). The term
∫ x

x∗(s)−∆x∗(s)

∫ x

x∗(s)−∆x∗(s)

f(z)dz

G(s)
dx on the left-hand side of this equation is

o(∆x∗(s)). On the right-hand side,∫ x∗(s)

x∗(s)−∆x∗(s)

f(x)dx = F (x∗(s))− F (x∗(s)−∆x∗(s)) ' f(x∗(s))∆x∗(s).

Equation (27) therefore reduces to

∆x∗(s)

∆s
=

G(s)

(x∗(s)− s) f(x)
. (28)

Together with the initial condition, x∗(0) = 0, equation (28) determines the function

x∗(s).
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