Photo of Simon

Simon J. Blanchard

Associate Professor of Marketing
Graham Family Faculty Fellow
Georgetown University

Email:
CV (as of 10/20/2018): PDF

I develop methods to study how consumers categorize products and brands. Specifically, I am interested in understanding how consumer intuitively see some objects (e.g., products, brands) as similar in some way, and the consequences of those judgments. My research in this area relates to card sorting, unsupervised learning methods (e.g., clustering) and classification.

Research about Categorization and Clustering

  1. Daniel Pinerho, Daniel Aloise, Simon J. Blanchard "Convex Fuzzy k-Medoid Clustering." Under review.

  2. Ethan Pancer, Theodore J. Noseworthy, Simon J. Blanchard "Estimating Crowdfunding Success Based On Visual and Categorical Ambiguity." Working paper.

  3. Blanchard, Simon J., Daniel Aloise, Wayne S. DeSarbo (2017). ”Extracting Summary Piles from Sorting Task Data, "Journal of Marketing Research, 54(3), 398-414.

  4. Blanchard, Simon J., Ishani Banerji. (2016) "Evidence-Based Recommendations for Designing Free-Sorting Experiments." Behavior Research Methods, 48 (4), 1318-1336.

  5. Santi, Everton, Daniel Aloise and Simon J. Blanchard (2016). "A Model for Clustering Using Heterogeneous Dissimilarity Matrices." European Journal of Operations Research, 253 (3), 659-672.

  6. Blanchard, Simon J., Wayne S. DeSarbo (2013). "A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification." Psychometrika, 78 (2), 322-340.

  7. Blanchard, Simon J., Daniel Aloise and Wayne S. DeSarbo (2012). "Heterogeneous P-Median for Categorization Based Clustering." Psychometrika, 77 (4), 741-762.

  8. Blanchard, Simon J., Wayne S. DeSarbo, A. Selin Atalay, Nukhet Harmancioglu (2011). "Identifying Consumer Heterogeneity in Unobserved Categories." Marketing Letters, 23 (1), 177-194.

  9. DeSarbo, Wayne S., A. Selin Atalay, David LeBaron, and Simon J. Blanchard (2008). "Estimating Multiple Segment-Level Ideal Points from Context Dependent Survey Data." Journal of Consumer Research, 35 (June), 142-153.