Direct Proofs Chapter 3

Chapter 3: Direct Proofs

§ 3.1: Getting Started on a Problem
Let's review some steps for studying the truth of a statement.

Step 1, Examplesif possible, look at some specific examples, including extreme
cases, to help understand if a statement is trugvapd it might be true. This step
doesn't always help, but should always be considered. When working examples,
make sure you trying to understand what each clause in the statement means, why
each clause is there, if the statement seems true, and, most impostaytly, the
statement is true. THINK ABOUT THE EXAMPLES.

Step 2, AssumedCarefully list what is given and/or assumed, possibly using
definitions so that what is given is in a usable form. This often involves the
choose method. IF YOU DO THIS STEP PROPERLY, MANY PROBLEMS
WILL ALMOST SOLVE THEMSELVES.

Step 3, To ShowCarefully describe what must be shown, again using definitions to
rewrite what must be shown in a usable form. IF YOU DON'T KNOW WHAT
YOU NEED TO PROVE, YOU WON'T BE ABLE TO PROVE IT.

In Steps 2 and 3, take careful note of the phrases "for all" and "there exists" to help
identify what variables are (from the choose method) assumed as given, and what
variables are considered unknown and are to be found. Sometimes the phrase "for all" is
implied. For example, if the statement begins "tet 1 " or "Suppase ", what the
statement is really saying is "For alt>1 ."

In each of the next several examples, the goal is to see how each of the three steps
contribute to understanding the problem and finding a proof. The actual proof is of
secondary importance. In the next section, we will begin focusing on developing proofs.

Example 3.1:Letn,m € Z. Ifn andm are bothodd er and are both even,
thenn + m is even.

Step 1, ExamplesWe should add several pairs of odd integers, including cases
where both are negative and only one is negative. In all cases, the sum will be
even. We should do the same thing for pairs of even integers. Think about why
the examples work. When adding even numbers, each number has a factor of 2,
so 2 can be factored out of the sum. When adding odd integers, each integer is a
multiple of 2, plus an extra 1, so when added together, we get an extra 2, making
the sum even.

Step 2, AssumedThe statement is of the formv ¢ = »  where
p={n,me 0}, g ={n,m € E}, andr = {n +m € E}.

Using the definitions of even and odd, we can assume there exists two integers,
k,l € Z such that
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p = {n =2k andm = 2}

or g={n=2k+1andm =20+ 1}

So we know one of these two statements must be true, and could then do cases,
Case 1 wherg is assumed true and Case 2 where is assumed true.

Step 3, To ShowWe must show +m is even. Using the definition, we must
show

r={3a€Z > n+m=2a}
From Step 2, if we assumpe is true, then the varidgbles [ and are treated as if they

were known integers. To show s true, we treat the variable as if it were an unknown
which we have to find. Note that

n+m=2k+2l=2k+1)

sowe canlet = k£ +1 and we have solved for the unknown variable in terms of the
known variables. This occurs quite frequently. The reader should prove the second case
in Example 3.1 by showing=- r

Example 3.2: Show for every integet n* + 3n is even.

Step 1, Examplesiet's try several values far to see what is happening. We
organize our examples in Table 3.1.

Table 3.1: Check of claim
n n3 3n | nd+3n

1 1 3 4

2 6 14

3 27 |9 | 36

4 64 |12 | 76

5 125 | 15 | 140

6 216 | 18 | 234

The claim seems to be true; the numbers in the last column are all even. By
breaking the sum into parts, though, we notice a pattern. When is even, we get
the sum of two even integers. When is odd, we get the sum of two odd integers.
So the even total comes about in different ways, depending on whether is even
or odd. This suggests cases,

{nis aninteger= {n isaneveninteger{n is an odd infeger
We can now write what is assumed in a usable form.

Step 2, AssumedOriginally, it didn't look like we could assume much, but the
examples suggest we break the problem into the two casesmwhere is even and
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whenn is odd. Using the definitions, we assume there exists an ihteger such
that

n=2korn=2k+1
Step 3, To Shown? + 3n is even, which by the definition means we must show
there exists an integgr such that- 3n = 2.

As in Example 3.1, the integer from Step 2 is treated as a known and the jnteger
from Step 3 is an unknown integer that will be solved for in termks of . In the proof of
the claim in Example 3.2, it = 2k , then

n + 3n = (2k)® + 3(2k) = 2(4k> + 3k)
andj = 4k® + 3k. On the other hand, i = 2k +1 , then
n® + 3n = (2k+1) + 3(2k+1) = 8k + 12k? + 12k + 4 = 2(4k> + 6k> + 6k + 2)
andj = 4k*® + 6k> + 6k + 2.

We could have simplified the proof for Example 3.2 by applying Example 3.1. For
example, assuming that= 2k , we getthat is everBand is even, so by Example
3.1, the sum is even. Alternativelyyif= 2k +1, we canshow is odd#and is odd,
so again by Example 3.1, the sum is even.

The statement in Example 3.2 could have been proven a third way by writing
n® +3n = n(n® + 3)

and considering two columns in a Table similar to Table 3.1, in which one column is the
n-column and another column is thé+3  column. In this case, when is even, one
factor is even, and when is odd, the other factor is even. The proof is similar to the one
given here.

Example 3.3:Show that ifiz| > 10 , them? + 40 > 14z.

Step 1, Examplesif we substitute values suchas= 10.1, 100, —10.1, —200

into the inequality, we will see that the values satisfy the inequality. It is not clear
from the examples why this works. Sometimes it helps to try values not assumed,
that isz -values such that| < 10.  Some values will also satisfy the inequality
and some won't. The key is tryirg= 10 , in which caget 40 = 14x . This
seems to be the key.

Step 2, Assumedp = {|z| > 10}

Note that what is assumed is not in a usable enough form. Absolute values are
often difficult to work with, algebraically. We will use cases to rewrite it in more
usable form. If

p={|z| > 10}, p» = {x > 10} andp_ = {x < —10 }
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then P=py Voo

We can rewrite what is assumedras 10 orz < —10. A usable way to rewrite
x> 101Is

z=10+a,a R’
Similarly, we could rewritec < — 10 as
z=-10—a, a € R"
Step 3, To Showy = {22 + 40 > 14z} or
q = {2* — 14z + 40 > 0}

When dealing with inequalities, it is often helpful to have all of the terms on the
same side.

The proof for Example 3.3 is relatively easy, once Steps 2 and 3 have been done.
Substitution ofr = 10 + a intar? — 142 + 40 gives, after simplification,

6a + a>

which is clearly positive since € R*. A similar result holds in the second case, where
r= —10—a.

Example 3.4: Let f andg be two real-valued functions with dom&i R.
Show that iff and are bounded, thes= f + ¢ is also bounded.

Step 1, ExamplesWe might begin with some real simple examples, such as

f(x) =3 andg(z) = 2. Clearlyf isboundedBy and isbounde? by . The
functionh(z) = f(z) + g(xz) = 5 is bounded by 5. We think we see what is
happening; the bound fér is the sum of the boundg for gatfdve try one

more simple example, sgyz) =3 agd) = —2 , then again, the bouryd for

is3 and the bound far B (remember, we are bounding|) . But the lowest
bound forh(z) = f(z) 4+ g(z) =1 is 1, not the sum of the bounds, 5. On the
other hand, 5 is still a bound far , and no one said we had to get the best bound.

As a second example, IBt= {0,1} and let

s ={5 57 fandgt = {3 770

The lowest bound fof is 5 and the lowest bound;for is 4. We see that the
lowest bound for

) = S +o0) = {3 22,

is 9, the sum of the two bounds. On the other hand, if
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f(x)_{z leandg(m)_{4 z=0
the bounds fof ang are the same, but the lowest bourfdfar is 8, not 9.

But 9 is still a bound fof + ¢ , and we were only looking for a bound.

Note: When constructing examples, it is usually best to begin with as simple an
example as possible. Once you think you understand the problem, try your
conjectures on progressively more complicated examples.

Step 2, AssumedWe go back to the definition, and assume that

IM eR" 3Vz e D, |f(z)| <M
INeR" oVz e D, g(z)| < N

From this point on, we can assume that Ahd are known numbers, and the
inequalities hold for every in the domain.

Step 3, To ShowAgain, from the definition, we must show that
JK € R" aVz e D, |h(z)| = |f(z) +g(z)| < K
The numberk is presently unknown, and must be found.

The actual proof of the statement in Example 3.4 just uses the ideas from the
examples, letting

K=M+N

Now K exists, and is "known." We then apply the triangle inequality from Problem 2.31,
and the two conditions from Step 2 to get that for exetyD,

h(z)] = [f(z) +9(z)] < [f(z)] +[g(z)] < M + N = K

so we are finished.

Note that while the conditions in Step 2 and Step 3 of Example 3.4 are similar since
they use the definition of bounded, the ways they are used in the proof are quite different.
In particular, the "there exisfd and " allowed us to treat them as if they were known,
while "show there exist& " implied  was unknown and had to be found.

Example 3.5:Leti, j € Z. Show that if = 2 angl? 5 ,then = 3 . (Recall

from Problem 2.20 thah?m, read as " equals mod "meansthat divides

n—m.)

Step 1, ExamplesWe need values far and such that divides2 jand.
Some values that work for are- , &= —5, and 30. Some values that
work forj arej = 12, j = —2, ang =47. Theclaimisthagt— 3 is divisible
by 7. We see that
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ifi=9 andj=12 thenj—3= 9(12)—3= 105 = 7(15)
if i = —5andj = 47 thenij — 3 = —5(47) — 3 = —238 = 7(—34)
if i = 30 andj = 47 thenij — 3 = 30(47) — 3 = 1407 = 7(201)

so the claim appears to be true, although the examples haven't helped in
understanding why. Let's consider one of the examples in a little more detail,
using the facts that= 7k +2 ano="71+5

30(12) = [7-4+2][T+5]=T*-4+7-2+7-20+ 10

Sincel0 = 7 + 3, we see that each term has a 7, with a 3 left over, so the product
is of the form

ij="Tk+3
which is what we wanted to show. This last example seems to be the key. It
seems a 3 is always left over after all the multiples of 7 have been combined.

Note: Sometimes you need to go into more depth in the example to understand the
process.

Step 2, AssumedUsing the definition of "'mod", we have assumed that
dJkeZ 3i=Tk+2
HNeZ>j=T1+5

At this point,k and can be treated as known integers.

Step 3, To ShowAgain, using the definition, we must show that

dIneZ >ij="Tn+3

Remember that is unknown and must be found. Often, we can write the
unknown in terms of the "knowns" given in the Step 2.

The proof for Example 3.5 is trivial from here. We substituté for jand from step 2,
and after a little algebra, get that

ij=(Tk+2)(71+5)=7(Tkl+5+2)+10=7(Tkl+7)+ 7+ 3="T(Tkl +8) + 3
We now letn = 7kl + 8 , and are finished singe= 7n + 3

Examples 3.4 and 3.5 had similar conditions in both Steps 2 (assumed) and Step 3 (to
show), but the variables were treated quite differently in the two steps. As in Examples
3.1 and 3.2, the variables introduced in Step/2, MNnd in Example 3/4,and and in
Example 3.5, were treated as known quantities, while the variables introduced in Step 3,
K in Example 3.4 and in Example 3.5, were unknowns that needed to be found. In
both examples, the unknowns were eventually written in terms of the "known" quantities
from Step 2,

K = M + N in Example 3.4, and = 7kl + 8 in Example 3.5

42



Direct Proofs Chapter 3

§ 3.2: Forward/Backward Proofs

Once we have worked some examples so that we understand the problem, and have
carefully written what we are assuming and what we have to prove, we are ready to begin
trying to construct the proof. This usually consists of two steps, 1) Thinking about the
problem and constructing an informal proof, and 2) Constructing a formal proof from the
informal proof in which we are careful with all of the details. These steps are analogous
to writing a rough draft for a paper, and writing a final draft. Often, there will be several
revisions before we get from our informal proof to a clear, well-written formal proof.

To show that an implication of the formn=- ¢ is true, it is simplest to try a forward
approach, replacing seamentp with other statements that follow from it, atil we reach
statemeny , thatig, = pi = p = ... = ¢ . Unfortunately, forward proofs are often
difficult to find. A variation on the forward proof is the forward/backward proof. In this
case, we proceed from both ends and work toward the middle, that is, we begin with
p= p, = ... and go as far as we can. Then we startgvith and go as far backwards as
we can g < q; < ... . Hopefully, at some point, we arrive at a common point. From
this, we can then rewrite the steps &srevard proof. This indicates two additional
steps in verifying statements.

Step 4, Thinking: From Steps 1-3 in Section 3.1, we think through why the
statement is true. For now, this means we use a forward/backward approach until
we have constructed an informal proof.

Step 5, Formal Proof:Using the ideas in Step 4, we construct a formal, forward
proof, being careful that all details have been taken care of.

Following are several examples in which the forwards/backwards approach is used. In
each of these examples, Steps 1-5 are described in detail. Until you become proficient in
constructing proofs, you should break the problem into these steps.

Example 3.6, Forward/Backward Proof: Show that iftx > 11 , then
z% > 9z + 22

Step 1, Examplesif z = 12, thenz? = 144 > 9z + 22 = 130 . We should
consider some extreme casesz # 11.01 , then
r? = 121.2201 > 9z + 22 = 121.09
On the other hand, if = 100 , then
z? = 10000 > 9z + 22 = 922

It is not clear what is happening yet. We might wonder why the condition,
x > 11, is important. Sowe try =11 and get that

22 =121 = 9z + 22

soz = 11 seems to be a rootof — 9z — 22.
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Step 2, AssumedQOur statement can be rewritten as
Vo> 11, 2° > 9z + 22
Using the choose method, we "choose® 11 . We could consider our given as
p={z>11}
We now considex as a known number greater than 11.

Step 3, To ShowWe want to show that
g={2?>9x+22} = {2 — 92 -22>0}

Step 4, Thinking: If we start withz > 11 , it is difficult to see what we should do
next. In this case, we begin wigh and rewrite it as

22— 92 —22>0

We factor this equation, giving: — 11)(z +2) >0 . We now see thatif 11
then each factor is positive, so the product is positive. Weunolerstand the
proof, but the proof is not clearly written. The simplest proof is to beginpwith
and arrive aty , as in the next step.

Step 5, Formal Proof:Assume that > 11 and show the&t > 9z + 22.
Proof: Chooser > 11 (Choose Method). Since- 11 | then
(x—11) >0
Sincex + 2 is positive foe > 11 , we can multiply both sides of our inequality by
x + 2 without changing the inequality sign, giving
(x—11)(x+2) >0
Expanding gives? — 92 —22 >0 or

2% > 9z + 2200

The proof in Example 3.6 could have been done in a different, but equally good
manner. We could let = 11 +a whete> 0. Substitution into- 9z — 22 gives
a®? 4+ 13a > 0 sincea > 0 . Often there are numerous ways of constructing a proof. It can
be instructive to see how different people approach a problem.

It is acceptable to work backwards when thinking out a proof as long as the finished
proof goes fronp tq . One reason to do this is to insure all of our steps are valid. The
forward proof often hides the thinking that went into developing the proof. If we showed
someone the finished proof of Example 3.6, they would have no idea how that proof was
developed. This is often the case in mathematics. We struggle for hours on different
parts of a proof, then when we organize it and write it as a forward proof, as in Example
3.6, the proof seems obvious if not almost trivial. Don't let that bother you.
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In the next example, we are going to investigate the boundaries of &set in . First, we
will develop an understanding of what the boundary of a set is.

If we have an open interval,
(a,b) ={z:a <z <b}

then our intuition tells us that the boundary pointg&b) are the end-points of the
interval,

B = {a,b}
This is also the boundary of the closed interval
[a,0] = {z:a <z < b}

Note that for the open intervai, b) , the boundary points were not in the set, but for the
closed intervala, b] , the boundary points were in the set.

If we have a finite collection of points, say
S =1{1,2,3}

then we would consider each of these points to be a boundéry of , soShe set equals
the set of boundary points f6r . But what would we consider as the boundary of a set,
such as

1
S={r:z=—,nel"}
n

Each of the points in this set would seem to be a boundary point, but since the points are
all "bounded" by , would = 0 also be considered a boundary point? Our intuition
should say, yes.

Intuitively, a boundary point seems to separate th8 set from thé set . This leads to
the following definition.

Definition: LetS C R. The numbes € R iskundary value foér if and only if
wheneveb € (z,y) , thef,y) NS #0 and,y)NS°#0

We call the set

Bs = {b € R: bis aboundary value f&f }
theboundary ofS .

To summarizeh is a boundary value if
q={{V (z,9), b € (z,9)), (SN (z,y) #O) AN (SN (2,9) # D)}

that is, every interval containilg also contains points in Both Sand
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Now let's discuss what it means to not be a boundary value. Thisbneans is nota
boundary value if-g is true. We can write this as

~a =={(7 (2,y), b € (z,9)), (5°N (2,y) # 0) A (SN (z,y) # 0))
={~(V (z,y), b€ (z,9)), (5N (z,y) # O A (SN (z,y) # 0)}
= {3 (&,y), b€ (2,9)), ~((S° N (,y) # 0) A (SN (,9) #0))}

We remember that
“(pAT)=—pVor
Also note that
~{S°N(z,y) #0) = 5N (z,y) =0

So we can summarize
~a ={(3 (2,), b € (2,y)), (SN (2,9) = OV (SN (z,9) = 0) )}

To put this another way, is not a boundary value if there exists an interval conbaining
that is contained entirely il 6f.

To showb is a boundary value, we must show something for every interval
containingb . To show is not a boundary value, we must find one interval that
satisfies a certain condition. Again, notice the careful use of ¥ and

In the next example, we show how to use the definition for boundary value.

Example 3.7:Let's see how the definition for boundary implies that # (0, 1) ,
then the boundary iB = {0,1}.  This consists of two parts. First, we must show
thatb = 0 and = 1 are boundary values. But we must also show that every other
real number is not a boundary value.

Part 1 We will show thab = 0 is a boundary value.

Step 1:We must show that every interval containing 0 also contains points in the
interval (0, 1) and points not in the interval, that is, points in

S¢={z:z<0o0rzx > 1}

The interval(z, y) = (—0.6,0.2) contains-0.3 aridl, the first beingsth  and
the second being ii . Similarly, the inter¢a)y) = (—1000,2000)  contains
—500 and0.5 , again, We construct some examples, the first beisfgin  and the
second being i¥ . It seems like we could also use half the lower hef{md as
a point inS¢ , or we could just use 0 as the poirtin . Notice we used a different
process for finding a point i . When the upper bound for the interval was
less than 1, we could ugg¢2  as the poirffin . Whenl , we could just use
0.5 as the point ity
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Step 2:We have assumed that
S =(0,1)

and using the choose method, we are assuming we have an arbitrary (nteyyal
containing 0. The usable form of this is

r<0<y
Remember that ang can be treated as known numbers.
Step 3:We have to show that
SN (z,y) £DandS N (z,y) #0

The usable form of this statement is that we have to show there exists two
numbersg andéd such that

a € S°N(z,y)andb € (0,1) N (z,y)

The numbergs, ankl are treated as unknown numbers we must find. We can give
them in terms ot ang

Step 4:Let's first think about the value far . We knew< 0 <y  and we want
r <a<y. Fora € §°, we mustalso have thak 0 P 1. We could let
a=00ra=z/2 (ora=z/n forany € R™ ). There are lots of choicesdor ,
but we only need one.

Now let's think about . We need
O0<b<landz<b<y

Here we have a problem. We could#r¢ 0.5 which satisfies the first condition,
but not necessarily the second condition, since  might be less than 0.5. On the
other hand, we could tly= y/2 , which satisfies the second condition, but not
necessarily the first, singe  might be larger than 2. This problem is easily solved
by letting

b =min{0.5,y/2}
Since we knowy , we can always fibhd
Step 5:We now construct the formal proof. L&t= (0,1) . Then
5¢ = (=00,0] UL, 00)

Choose an arbitrary intervdly, y)  such that (z,y) . We know0 <y
Leta = 0. Sincez € (z,y) and € S° , then

a€ (z,y)NSe

Letb = min{0.5,y/2}. Then we know that
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b<0.5andb < y/2

We also know thali > 0 sinag> 0. Therefore

b€ (z,y)
sincex < 0<b<y/2<y. Also,

be(0,1)
since0 < b < 0.5 < 1. Therefore

be(z,y)NS

We have now shown the conditions for being a boundary {@dlue.
The proof that = 1 is a boundary value is similar and will be left to the reader.

Note: When a proof has several similar parts, it is common practice to prove one
part and then just state that the other parts can be shown in a similar manner. You
must be careful that this is actually true.

Part 2: We now must show thatéf# 0 amdZ 1 ,theen is not a boundary
value.

Step 1:Supposé = —1 . We must find an interyal y) that contaihs and
which is entirely withinS oS¢ . Sinde is ¥ ,then

(z,y) CS°={z:z<0o0rz>1}
This is easy. Letz,y) = (—2,0) . There are lots of other equally valid intervals.

Suppose instead that= 0.5. Thea S (so0y) C S = (0,1). This again is
easy. Justldt,y) = (0,1).

Let's try one more extreme value, $ay 1.0001. SineeS*, then
(z,y) € S°. Theonlytrickisthat > 1 and< 1.0001 . There are lots of
choices, but we Idtz, y) = (1, 2)

Step 2: We assume that is not O or 1.
Step 3:We must find(z,y) such that

b e (@y)A( (2.9) S SV (zy) CS°)

Step 4:As we saw in the examples, how we chopse)) depends on whether
be Sorbe S°. There seem to be 3 natural cases,

b<0,0<b<1,b>1.
If b < 0, then we need to findz,y) C S¢ ,thatis, find apd such that
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r<b<y<o0

(We have just rewritten what needs to be shown in a usable form considering the
particular case we are trying.) One possibilitjzisy) = (b — 1,0) C S¢

The case in which > 1 is similafg, y) = (1,b + 1).
The case in which < b < 1 is the simplest of &l,y) = (0, 1).

Step 5:We now prove thatif #0 ankl# 1 |, thén is not a boundary value.
We consider 3 cases.

Case 1Assumeb < 0 . Lefz,y) = (b—1,0) . Then

be (b—1,0) and(b—1,0) C S° = (—o0,0] U [1,00)
sob is not a boundary value.
Case 2Assumed < b < 1. . Lefz,y) =(0,1) . Then

be (0,1)and(0,1) €S =(0,1)

sob is not a boundary value.
Case 3Assumeb > 1 . Letz,y) = (1,b+1) . Then

be (1,b+1)and(1,b+1) C S°=(—00,0]U[l,00)
sob is not a boundary value.
We have now shown that$f = (0,1) ,théh={0,1} O.

It is acceptable to work backwards when thinking out a proof as long as the finished
proof goes fromp tq . One reason to do this is to insure all of our steps are valid. The
forward proof often hides the thinking that went into developing the proof. If we showed
someone the finished proof of Example 3.2, they would have no idea how that proof was
developed. This is often the case in mathematics. We struggle for hours on different
parts of a proof, then when we organize it and write it as a forward proof, as in Example
3.2, the proof seems obvious if not almost trivial. Don't let that bother you.

We might recall from earlier courses that functions such(as= z, f(z) = 2* , and
f(z) = z° are symmetric about the origin. Another way of stating this is that these
functions have rotational symmetry with a 180° rotation. Such functions are cdtled
functions. The trigonometric functiof{z) = sin(z) is also symmetric about the origin,
and is considered odd. Similarly, functions suclf(@as = z?, f(z) = z* and
f(z) = 2% are symmetric about the -axis. Such functions are consideesd functions.
The trigonometric functiorf(z) = cogx) is also symmetric aboutithe -axis, and is
considered even. The precise definition for even and odd is:

Definition: The functionf iven ¥z € D f(z) = f(—z) . The function iedd f
zeD, f(z)=—f(-=).
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Note that the definition does not use the geometric property of even and odd, but the
equivalent algebraic property. This would allow the definition to be extended to other
dimensions where we couldn't use our geometric intuition.

It is clear that every polynomial can be written as the sum of an even function and an
odd function. The even function would just be the sum of the even powers in the
polynomial and the odd function would just be the sum of the odd powers. In the next
example, we consider what may be a surprising result; that any function with a symmetric
domain, no matter how strange, can be written as the sum of an even function and an odd
function.

Example 3.8:For this example, assunieC R such thatd D , thenc D.

The goal of this problem is to show that for any funcgion with doain , there
exists an even function and an odd function suchvthat D ,

f(z) = g(z) + h(z)
Step 1, Examples:For a complicated problem, such as this seems to be, we
begin with a very simple example. LBt={—-11}, and

11 z=1

f(w):{Q z=-1

We need to find an even functign and an odd fundétion such that

f(z) =g(x) + h(z) foreveryzr € D ={—11} . Thedomain fogr amd is also
D = {—1,1}. Therefore, we have four unknowns we need to (i, g(—1),
h(1), andh(—1).

Sinceg must be even, we must have that
9(1) =g(—1) (3.1)
Similarly, h is odd, so
h(1) = —=h(-1). (3.2)
We also want that

f(1) =11 =g(1) + h(1)
f(=1)=2=g(-1)+h(-1)

We now use equations (3.1) and (3.2) to get that
2=g(1) - h(1)
We now add the equation$ = g(1) + (1) ahe: g(1) — h(1)  to getthat
13 =2g(1) org(1) = 6.5

Substitution into the other equations gives that
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g(—1) =6.5, h(1) = 4.5, andh(—1) = —4.5.
We now see that the functions

g(z) = 6.5, z € {1,~1}, andh(z) = {‘fl ST

satisfy the desired conditions, thatgs, is even, is oddfaad + h.

Chapter 3

But this was just a simple example. Let's try a slightly more complicated

example.
Suppose
10 x=
3 r=1
flz)=¢15 z2=0
-7 x=-1
4 = -2

We want to find an even functign and an odd function such that
f(z) = g(z) + h(z) for everyz € D = {2, — 1,0, 1,2} . So we want the
following conditions to be satisfied:

f(x) =g(z) + h(z), z € {-2,-1,0,1,2}
9(2) = g(-2), g(1) = g(-1), g(0) = g(-0)
h(2) = —h(=2), k(1) = h(=1), h(0) = —h(~0)

The condition thak(0) = —h( — 0) = —h(0) givesthak(0) =0, so
h(0) = 0 and sof (0) = ¢g(0) = 15
As in the previous example, we solve the 2 equations

f(2) =10 =g(2) + h(2)
f(=2) =4 =g(=2) + h(=2) = g(2) - h(2)

to get that
g(2) =7andh(2) =3,sothag(—2) =7 and —2)=-3
Similarly, we get that
g(1) = —2andh(l) =5,sothag(—1) = -2 andd( —1) = -5
So if
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7 =2 3 =2
-2 xx=1 5 T =
gx)=<¢ 15 z=0 andh(z)=<0 =zx=
-2 xz=-1 -5 xz=-1
7 r=-—2 -3 x=-—

then we see that iseven, isodd, gndg+ hVz e D.

Step 2, Assumedtet f be a function with domai®? . We cannot assume much
at this point.

Step 3: To Show:We need to find functiong amd such that, for ewvesyD,

f(z) = g(z) + h(zx) (which also meang(—z) = g( — z) + h(—z) )
g(x) = g(—z)
h(z) = —h(—zx)

Step 4: Thinking: We now think ofr as a fixed value. We have four unknown
numbers to findg(z), g(—z), h(xz), and(—z) . This means we need 4
equations. So we will work backwards from the desired equations that we want to
show. Inthose equationg(z) ajff-z)  are treated as known numbers, so we
actually have 4 equations. The four equations that need to be satisfied are

f(z) = g(x) + h(z)
f(=z) = g(—z) + h(—z)
q(

h

We make the substitutiongz) = g(—z) and(z) = h(—z) inthe equation
f(—z) = g(— z) + h(—=z) to get the equation

f(=z) = g(z) — h(z)
We now have the 2 equations
f(z) = g(z) + h(z) andf(—z) = g(z) — h(z)
with the 2 unknowngy(z) anfdxz) . Adding the equations gives

f(x) + f(—=z) = 2¢9(x) org(z) = w
Substitution gives that
o(—z) = w hz) = 1@ —2f(—:v)’ h{—a) — f(—x)2— f(z)

We now think we have the correct even and odd functions.
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Step 5: Formal Proof: Let f be an arbitrary function with domaih . We will
show that there exists an even function and an odd furfiction such that

Vze D, f(x) =g(x)+ h(x)

For everyr € D, let

gla) = LEHICD) ) - 1) =S )
We now have to show, ¥)z) = g(z) + h(z) Vz € D, 3) Iiseven,and3) is
odd.
1) Clearly
g(z) + h(z) = f(z) +2f(—:v) i f(z) —2f(—:v) _ 2f2(x) _ ()

2) By substitution,

PRSI (G L (CIC (GO (G B

Since this is true for every € D, g is an even function.

3) By substitution,

ry = - [{EA=ICC] _ Sen) 20 _ St

Since this is true for evetye D h, is an odd function.

When presenting a proof to others, the formal proof in Step 5 is often all that is shown.
The proof makes it clear to the audience that the statement is true, but it hides all the
thinking that went into its construction. When reading proofs of others, remember that
while it may seem simple and obvious, a great deal of thinking and editing went into its
discovery.

The proofs in the examples in this chapter have been worked out in more detail than is
normally required. The reason for doing this is to help you develop good habits. If you
approach the simple problems in an organized manner, then you will find the same habits
will help you when the problems become more difficult. Many students avoid these steps
in the early chapters to save time when doing homework problems. These students then
find they are spending a great deal of time working problems in later chapters, and they
are not getting a correct solution after all of this time. A little extra work now will save a
great deal of time later, and in fact, many of the later problems will become quite
enjoyable to work. In shonpractice good technique on the easy problems.

§ 3.4: Exercises:
Problem 3.1: Suppose thai is divisible by 3. Thzw? — 3n  is divisible by 9.
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a) Try several values far , such as 3, 6, and 9 to check that the statement is reasonable.
b) Write what is assumed in usable form.
c) Write what is to be shown in usable form.

d) Prove this claim is true using the Choose Method. In this part, you should both think
through the proof and construct a formal proof.

Problem 3.2: Suppose that is the product of two consecutive even integers.nThen is
divisible by 8.

a) Check that the statement is reasonable by checking a few specific cases.

b) Write what is assumed in usable form.

c) Write what is to be shown in usable form.

d) Construct both an informal and a formal proof of claim. What methods did you use?
Problem 3.3:1f 3 dividesa? + b? , then 3 divides and 3 divides .

a) Check that this statement is reasonable by compuitingh? for several different
integer values o and

b) Write what is assumed in usable form.
c) Write what is to be shown in usable form.

d) What problems do you have trying to prove this claim using the Choose Method and
the forward/backward method?

Problem 3.4:1f n andm are consecutive integers, then 4 divides m? — 1

a) Check this statement for several examples. You might try valuesmwheren and are
consecutive positive integers and when they are consecutive negative integers. Does it
make a difference?

b) Write what is assumed in usable form.

c) Write what is to be shown in usable form.

d) Prove this result is true. What methods did you use?
Problem 3.5: Consider the statement

p = {if n € Z" dividesm , then there exists a unigue suchthat nk}

a) Check this statement for several appropriate values of mand
b) Write what is given, in usable form.

c) Write what is to be shown in usable form.

d) Construct the proof of this statement.

Problem 3.6:1f n is a composite number, thed +1  is prime.
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a) Write what is assumed in usable form.

b) Write what is to be shown in usable form.

c) Is this claim true or false and why?

Problem 3.7:If n is a power of 2, then + 8 is not prime.

a) Write what is assumed in usable form.

b) Write what is to be shown in usable form.

c) Prove this result is true using the Choose Method.

d) Why is the claim "lfn» is a power of 2, thert- 2 is not prime" not true?

Problem 3.8: Suppose we have a right triangle, and that is the length of the hypotenuse
andA isits area. Let={A =c?/4} andlets{ right triangle is isos¢eles .

a) Write the statement= { For a right triangle to be isosceles, it is sufficient that
A = c%/4} as an implication. Is the implication true and why? Go through the 5 steps.

b) Write the statement= { For a right triangle to be isosceles, it is necessary that
A = c%/4} as an implication. Is the implication true and why? Go through the 5 steps.

Problem 3.9: Letn € Z,c be the length of the hypotenuse of a right triangle, anad let
andb be the length of the legs of the triangle. get {c™ > a" + b" for all 2}

a) Check the validity gp on the right triangle where 5, a =4, b = 3 using several
different values for. . What happens to the inequality as gets larger? To get an idea of
why the inequality holds, you might try the example wita- 8 . The idea is to rewrite

5% = 5250

and use what you know abdift and the Pythagorean theorem. How do you know
5% > 48 4 3%, without using a calculator?

b) Check the validity op on another right triangle of your choice.
c) Isp true or false, and why? Go through the 5 steps.

Problem 3.10:LetS = [0, 1].

a) Show thatib =0 ob=1 ,thebh isa boundary valueSor

b) Show thatib # 0 and # 1 , then is not a boundary value&for

Problem 3.11:LetS = {0, 1, 2,3}. Show thab = 1 is a boundary value for . Use the
5 steps.

Problem 3.12:Let

S:{%:nEZJ’}:{l, , o)

|

1
’37

N | —

In this case,
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1
Scz{x:VnEZJ“,x#E}
a) Consider the set
T={z:3neZ" 9—1 <x<l}
v n+1 n

Show that

S¢=TU (—o0,0]U(1,00)
Remember to show® C T'U (—o00,0] U (1,00) arftf O T U (—o0, 0] U (1, 00)
b) Show that = ; is a boundary point.

c) Show thab = 0 is a boundary point. (You need to clearly write the 5 steps. In step 3,
you might need to recall from Glossary that we can assume that forai®y; In € Z
Sz <n)

d) Show that itz € T, them is not a boundary value.
Problem 3.13:If

thenf is bounded.
a) What is assumed is already in usable form. Write what is to be shown in usable form.

b) Prove this result is true.

Problem 3.14:1f n is odd them? is odd

a) Write what is assumed in usable form.
b) Write what is to be shown in usable form.
c) Prove this result is true.

d) How does the proof of the statementif is odd then is odd" compare with the
proof of "If n is odd them? is odd"?

Problem 3.15:If n is the product of 2 odd integers, then is odd.
a) Write what is assumed in usable form.

b) Write what is to be shown in usable form.

c) Prove this result is true.

Problem 3.16:If n is the sum of an even integer and an odd integenthen is odd
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a) Write what is assumed in usable form.
b) Write what is to be shown in usable form.
c) Prove this result is true.

Problem 3.17:If n € Z then 3 divides:® — n .

a) Check that this statement is reasonable by trying several different positive and
negative values fot

b) What is assumed is simple, that Z. Write what is to be shown in usable form.
c) Prove this result is true using the Choose Method. It might help to use cases.

d) Consider the statements= { nlfe Z  then 3 dividés- n} @ad{ n dfZ then
3 dividesn® — n} . Are either of these statements true or false? Give reasons for you
answers.

e) Make conjectures about valuesjof and for which n is divisible by 3.

Problem 3.18:1If ¢, j, andk are consecutive integers then 12 does not divide
P24+ 2+ k241,

a) Make a table of values for+ 52 + k> +1  whes 1, 2, 3, 4, 5, ad . Ineach
case, what is the remainder whén- 52 + k% + 1 is divided by 12? What pattern do you
see?

b) Write what is assumed in usable form.

c) Write what is to be shown in usable form.

d) Prove this claim is true using appropriate cases resulting from observations in part c).
Problem 3.19:Claim: The function

2z +1 <2
f(x)_{3x+2 > 2

is increasing on the intervdl, 5]

a) Write what needs to be shown in usable form.

b) Use cases to prove the claim is true.

Problem 3.20:If n is odd and not a multiple of 3 then 24 dividés— 1
a) Make a table of possibte values and resutithg 1 values.

b) Using patterns you observed in table, write what is assumed in usable form (cases).
Justify your assumption.

c) Write what is to be shown in usable form.

d) Prove this claim is true using the Choose Method.
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Problem 3.21:Consider the function

_|n+4 mneven
f(n)_{2n+1 n odd

Show thatf is one-to-one froth o . (See Problem 2.23 for definitionesfo-
one) Go through the 5 step process.

Problem 3.22:Consider the function

3n—1 mneven
f(n)_{n+5 n odd

Show thatf is one-to-one froth info

Problem 3.23:Consider the function

| n+3 mneven
I )_{n—S nodd

Show thatf mapZ ontb . (See Problem 2.24 for definitiamiaf .) Go through the 5
step process.

Problem 3.24:Consider the function

_ fn+6 neven
u )_{S—n n odd

Show thatf mapZ ontb . (See Problem 2.24 for definitiamiaf .) Go through the 5
step process.

Problem 3.25:0ur goal for this problem is to compare the two numbers
0.9999--- = 0.9 and1

In parts b) through e), make sure you carefully write what you are given and what you
must show is true. This might also consist of constructing a few examples.

a) Show there exists a number between 0.999 and 1.0.
b) ShowthaV¥ e c RT, dz e R 31 —e <z < 1.
c) Suppose,b € R and<b . Show= {3z € R >a <z <b}

d) Suppose,b e R and<b . Lét={z:a<z<b}. LeE{Vzye ,dz €l
> zg < x1}. Showp is true or construct a counterexample.

e) Suppose,b € R and<b . Lét={z:a <z <b}. lee {(Vaoe , Az €1
> zg < x1}. Showg is true or construct a counterexample.
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f) Leta = 0.999--- = 0.9 and leth = 1.0 . I3 (from part c) true or false in this case?
How does this correlate with the result of part c)? Is there a problem?

Problem 3.26:1f n is an integer, then 5 divides — n

a) Check that this statement is true for a few values.

b) What is assumed is clearc Z.  What has to be shown?

¢) What method seems most likely to work in proving this claim and why?
d) Prove the claim?

Problem 3.27:Letc € S C R

Definition: c is arinterior value ofS if and only if there exists an inter¢@lb) such
thatc € (a,b) C S'.

a) Which values: € [0,1] =S are interior values and which are not interior values?
Prove you claim. Make sure you go through the 5 step process.

b) LetS =R/{1,2} ={x € R:z # 1,z # 2} . Which values & are interior values
and which are not interior values? Prove you claim. Make sure you go through the 5 step
process.

c) Which valuess € S = {z: 2 =1 forsomec Z*} are interior values and which are
not interior values? Prove you claim. Make sure you go through the 5 step process.

Answers:

3.1a)Whenn = 3, 2n? — 3n = 9 which is divisible by 9. Similar results hold when
n =6 and9.

3.1b)Assume3 k € Z > n =3k .

3.1c)Show:3j € Z 2 2n®> — 3n = 9j

3.1d) Choosen divisible by 3. Thehk € Z 5 n =3k . Substitution gives
2(3k)* — 3(3k) = 18k* — 9k = 9(2k* — k)

s02n’ — 3n = 95 whergj = 2k — kO

3.3a) Seems reasonable when checking following Table 3.2
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a|b|a®+b*|a®+ b divisible by 3?| a and divisible by 3?
111]2 no no

1125 no no

13| 10 no no

22| 8 no no

23|13 no no

33|18 yes yes

34|25 no no

41 4] 32 no no

Table 3.2: Check for whea? + b*> is divisible by 3.
3.3b)Assumed k € Z > a® +b*> = 3k
3.3c)Show:di,j € Z >a=3i and =3j .

3.3d) Itis clear that i = 3i andél = 3; , thert + b> = 9k , but it is not clear how to
reverse the process. It seems it would be easier to begin with all the possibilities (cases)
that can occur foi and |, thatis—= 37, a =31+ 1, a = 371 + 2, ane 37,
b=3j+1,b=3j5+ 2. Butitstill seems as if we are working backwards. Not clear

how to rewrite in forward approach.

3.5a)lf n =5andm = 15, then we know divides . In this cases 3 is the only
integer such that: = kn.

3.5b)We are given that € Z* dividea whichmeansec Z > m = nk . We can
assumerm , ankd are known numbers.

3.5¢c)We must show that i, = jn, theh= k.

3.5d) If there is an integef€ Z such that=nj , dividingrby gives fhatm/n
But we are given thatk = m , so dividing hy gives that m/n = j which is what
we needed to show. (Note that simcég 0, we know we could divide by .)

3.7a)Assumedk € N > n = 2*

3.7b) This states that + 8 is composite. By the definition, sRay € {2, 3,---}
On+8=1J

3.7¢c)Choosen = 2¥ wheré € N . Then+8 =2% +8 . There are two cases)
andk >0. Case 1. k=0 ,then+8=9=3x3 ,86-57=3 amg 8 is
composite. Case 2:4>0 ,thent+8=2"+8=2(2"1+4) &e 2
j=2"144¢€{23, ...} andn + 8 is composite. (sinée>0 k—~1>0 ,so

j = 2F-1 4+ 4 is an integer greater than[T.)

3.7d)Inthiscasep +2=2+2=3 wheh=0 ,so0+2 isprime. Claimis not true.
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3.9a)lnequality holds. For larger valuesrof |, the left side is even larger than the right
side.

5% = 5250 = (32 +4?)5° = 3750 4 4255 > 3730 4 4245 = 3% 4 4°

3.9b) Inequality holds.
3.9c)c" = cF*2 = cF(a? + b?) = cFa?® + cFb? > aba® + bFb? = a"+b

3.11)Step 1: We try some intervals containing 1 . We must show each interval
contains a value i and a valueSfi . Kety) = (0.5,1.5), 1 € S had € S¢.

We found the value i8¢ by averagingbof and . ®oB) 1 €,S but the average of
andy is 2 which is not i§¢ . But in this case, we could iy S°. Step 2: We choose
(z,y)and assume < 1 < y. Step 3: We mustfind suchathata < y and
a=0,1,2,0r3. We mustfind suchthat<c<y and0,1,2,3. Step 4: We
assumer <1<y . Welet=1 whichisinthe interval andin . Now we mustfind
Normally, we would choose

since

1 1 1 Y Y Y
l=-t-<-+2 4,9 _
5Ty <gtg <oty =V

Thenc € S¢ unless =0,1,2,3 . Since we knew> 1 , the only problems are when
¢ =2orc=3 whichoccurwhep =3 aq =5 . Butinthese cases, we could just let
c=1.5. Step5:Choose < 1<y do€ (z,y) . We mustfind valwes candz,in)
suchthat € S ande€ S¢. Let=1 . Then

ac (:Cay) 0{0,1,2,3}

To find ¢ we consider 2 case€ase 1. Suppgsé 3 b c £etl + y)/2.
We know that

14
1<Ty<y

soc € (z,y). Sincey 23 ang#5 ,and>1 ,theg S cse S°. Case 2:
Supposey =3 oy=5 . Let=1.5. Clearlye S¢ ,andsiace 1 <c <y,

c € (z,y).

3.13a)Show3 M € R* suchthatz € R, |f(z)| < M

3.13b)From the graph below, it appears thétr)| < 1 forrall . So we willdet 1

The problem is that this function is defined differently for different -values. So we will
take cases.
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0.5 4

-1 1
0.5 4

™~
Case 1Chooser € R such that| > 1 . Dividing both sideg:by  gives that
1> 1/|zx| =|f(z)|.- Soin this casé.f(z)| < M.

Case 2.Chooser € R such that| <1 . Multiplying both sides|by  gives that
|z|*> < |z|, which combined with the first inequality, gives thétz)| = [z]* < 1= M

So in both case$f(z)| < M andf is boundefl
3.15a)Assumedi,j € Z 5 n=(2i+1)(2j+ 1)
3.15b)Show: 3k € Z s n=2k+1

3.15c)We chooser € Z > n = (20 +1)(2j+ 1) forsomej € Z.  Multiplying out
givesthatn =4ij+2i+2j+1=2k+1 whek =2ij+i+ 5 . Therefore,c O 0O.

3.17a)lt is easy to check that this statement is true for several values, but it is not clear
why the statement is true. Let's consider one example in more detail, say when
Then

n—n=T7—-T=77-1)=77-1)(7+1) = 7(6)(8)

We note that? — n  simplifies to the product of 3 consecutive integers, one of which
must be divisible by 3.

3.17b)Show:3j € Z > n® —n = 3j.
3.17c)Choosen € Z . We knowk € Z 5n=3k,n=3k+1, or=3k+2

Case 1:Supposer = 3k . Substitution give$ —n = (3k)* — (3k) = 3(9k* — k) = 3j
wherej = 9k% — k .

Case 2:Supposer = 3k + 1 . Substitution gives

n? —n=(3k+1)3— 3k + 1) = 27k> + 27k? + 6k = 3(9k>® + 9k> + 2k) = 35 where
J = 9k® + 9k* + 2k.

Case3 :Supposer = 3k + 2 . Substitution gives

nd —n = (3k +2)% — (3k + 2) = 27k® + 54k* + 33k + 6 = 35 where

j= 9k + 18k> + 11k + 2.

Thus,n® — n is divisible by &1
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Alternate proof.n® —n = (n — 1)(n)(n + 1) . Now, using the assumption
JkeZ s5n=3k,n=3k+1,0rn=3k—1

only one substitution needs to be made in each case. In Case 1,
n®* —n=(n—1)(3k)(n+1), in Case 2p* — n = (3k)(n)(n+ 1) , and in Case 3,
n?—n=(n-1)(n)(3k).)0

3.17d)Whenn = 2 n* — n = 14 which is not divisible by 3, o is false. We can factor
n’ —n=n(n—1)(n+ 1)(n? + 1) and use the same substitutions as in part c) to get that
this is divisible by 3, sq@ s true.

3.17e)lt appears that i, c R angd is odd, theh— n is divisible by 3. If is even,
thenn/ — n is divisible by 3when =3k a@r=3k +1 for some valuéof , butis not
divisible by 3 whem = 3k — 1 for some value bf . See if you can prove these results.

3.19a)Show that ifd < =z < y < 5 , therf(z) < f(y) .

3.19b)We will consider cases.

Case 10 <z < z3 < 2. Thenf(zy) =2z; +1 and(zy) =2z, + 1 . Therefore
f(z1) = f(22) = 2(z1 —29) <O OF f(21) < f(22)

so condition is satisfied.

Case 22 < z; < x5 < 5. This case is similar to Case 1, except wefiis¢ = 3z + 2.

Case 30 < z; <2< zy <5. Then, fromcases 1 andfdz;) < f(2) =5 and
f(zg) >3%x242=28,s0f(z1) < f(z2) .

In all three caseg,(z1) < f(z2) , so the function is increaBing.

3.21)Step 1: We must show thatif£A m , thém) # f(m) . We can try different

pairs of integers and see that they are mapped onto different values. One thing we notice
is that even integers are mapped onto even integers and odd integers are mapped onto odd
integers. Step 2. We are given the function,

fy={nT4 meven
n) = 2n+1 mnodd

and also assume that~ m.  Step 3: We must showfthat# f(m) . Step 4: Let's
assume: angh are both odd, that is,

n=2k+1, m=2j+1
We want thatf (n) # f(m) , thatis
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2n+1#2m+1 (3.3)
2E+1)+1#2(25+1)+1

4k +3 #4543

4k + 45

k#J

The caseswhem amd are both even, and where one is even and the other odd are
similar. Step 5: Assume thatm . Case 1: Assume nand are both odd. Then
there exist%, j € Z suchthat=2k+1 amd= 2;+ 1. Simcg m , then

2k + 1 # 25+ 1. Subtracting 1 from both sides giv&#s# 2;. Dividing by 2 gives

k # j. We then have (notice the following is just (3.3) in reverse)

Ak # 45

Ak +3 445+ 3

22k +1)+1#£2(2j+1)+1
2n+1+#2m+ 1
f(n) # f(m)

which is what we needed to show. Case 2: and both even is similar to case 1. Case
3: One integer is even and the other odd. By symmetry, without loss of generality we can
assume: isevenamd isodd. Then there exjigts Z suoh thatk and

m = 25+ 1. (The following are the reverse of the statements we would have written
using a backwards proof in step 4 for this case.) Since is odd,

1#2(2j— k) =4j— 2k
Adding 2k + 3 to both sides of the equation gives
2k +4 #£4j+3=2(2j+1)+1
or, after substitution,
n+4#2m+1 orf(n) # f(m)

3.23)Step 1. We try picking some integer , and see if we can find an integer such that
f(n) = k. Letk =20. Thenwe wantam such that either 3 =20 ner5 =20

In the first casep = 17 , byf(17) =17—-5=12 sind& is odd. In the second case,

n = 25. Checking, we see thi{25) =25 —-5=20 si@e isodd. Step 2: We are
given the function

| n+3 neven
I )_{n—S nodd

We are also given af{n) -value, . The vatue is treated as a known number. Step 3:
We must find am such thg@tn) =k . The value is unknown. Step 4: In checking
some values, it seem as if finding depends on whéther is even or odd. So we do
cases. Case 1: Assuihe is odd, that is, there gxists sugh-=hgt+ 1 . We
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know f(n) =n+3 orn —5. We try each. If
n+3=2j+1,thenn=2j—2=2(j—1)
On the other hand, if
n—>5=2j+1, thenn =2(j+ 3)

In either casep is even. Butif is even, tfién) = n + 3. %o if is odd, we let
n=2(j—1). (Notethal(j—1) =k —3 sincé =25+ 1.) Similarly, we find that if
k is even, that is, there exigtg Z  such that 2; , thenk + 5. Step 5: Choose
keZ. Let

| k-3 kodd

N { k+5 keven

If kis odd, therk — 3 is even, so
f(n)=n+3=(k—3)+3=k

If kis even, therk + 5 is odd, so
f(n)=n—-5=(k+5)—5=5.

So for evernyt € Z , there exists anc Z  such that) =k  fso isdnto
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