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1 Background

Most of our students can quickly learn the techniques we teach and can apply
them to problems that are similar to the ones we have worked in class.
On the other hand, these same students often have difficulty generalizing
techniques both to multi-step problems and to problems that are somewhat
different from what they have seen. They often exclaim “You haven’t shown
us how to work this.” In other words, most of our students are not adept
at either problem solving or at constructing simple proofs.

I will first describe what I mean by problem solving and how that dif-
fers from constructing proofs. Consider a two-person game in which there
is a pile of n beads, and on each turn a player can pick up one, two, or
three beads. The winner is the person who picks up the last bead. If each
person plays optimally, who wins the game, the person who goes first or sec-
ond, and what is the optimal strategy? Problem solving consists of the
students determining the winning strategy and developing insight into why
the strategy works. They might play the game using different sized piles
of beads. Eventually, they discover that the key is whether n is divisible
by 4 or not. If n = 4k, then the person who goes second should win. If
n = 4k + 1, 4k + 2,or 4k + 3, then the first person should win. The reason
depends on the fact that no matter how many beads the first player takes,
the second player can take a number of beads so that the total picked up by
the two players is 4. This is problem solving. Once the problem has “been
solved”, the next task is to construct a proof that the solution is correct.
In this case, we could use induction to prove that the second player wins
when n = 4k. Then we could prove that the first person wins as a corollary
of the first result, that is, if n = 4k + i, i = 1, 2, or 3, then the first player
takes i beads, and we then apply the n = 4k result to the remaining pile
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of beads. Our students have had very little practice in constructing proofs.
They think that once they have found the solution, they are finished.

In watching students try to construct proofs, it is clear that they are
missing many key ideas when they don’t go any further than gaining insight.
For example, I might ask the students to prove the implication that if the
product of two integers, nm, is odd then each of the integers must be odd.
They might say that if each of the integers is odd, then the product must
be odd. They might even write the equation

nm = (2k + 1)(2i + 1) = 2(2ki + k + i) + 1

and claim this proves the result. Many do not to realize that they have
proven the reverse implication, that the product of two odds is odd, which is
not what they were asked to show. They may not even realize the statements
are different. To gain insight they should consider the false implication that
if nm is even, then n and m must be even.

We have tried numerous approaches to improving our students’ ability to
understand and construct proofs, such as presenting more proofs in calculus
and requiring a proof based course, Foundation of Mathematics. These
efforts have failed to achieve their objectives for many reasons. If we didn’t
test our calculus students on proofs, they would not pay attention when
we presented a proof. If we did test the students, they would memorize
the proofs with little understanding. In Foundations, the students saw the
proofs as content specific and did not generalize the approaches to their
other courses. Also, many students took Foundations in their senior year,
so faculty teaching other courses could not build on what was learned in
Foundations. But one of the most important reasons that we failed is that
none of us really knew how students learn to solve problems.

2 The Research Study

In 2001, I began teaching the Foundations course. Simultaneously, I began
a research program to try to understand how students learn to problem
solve, and what I could do to enhance that learning. I was reminded of a
story about some scholars during the Middle Ages who were arguing about
the number of teeth in the mouth of a horse. Finally, one of the scholars
suggested they actually go look at a horse. So it was with me: if I was
going to understand how students learned to problem solve, I would have to
actually watch them solve problems.
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As a pure mathematician, I was not sure where to start. Fortunately,
I was aided by a small grant from the University, and the support of staff
from our Center for New Designs in Scholarship and Learning (CNDLS),
particularly, Susannah McGowan. Over the past 4 years, with CNDLS help,
I have been conducting video Think Alouds (TA), in which I videotape
students doing their homework. The particular structure is to videotape
each student working on the problem alone, then bring the students together
and videotape them while they continued working on the problem in a group.
Someone would be there to encourage the students to verbalize what they
are thinking while they work on the problem, and to give them hints or
prompts if they became stuck.

Through watching and rewatching the TAs, and discussing them with
others, I have gained a better understanding of our students’ difficulties.
Using this understanding, I have experimented with the structure of Foun-
dations, and continued use of TAs has helped me judge which approaches are
more effective in supporting students as they become independent problem
solvers. In the following, I will share some of what I have learned.

3 Initial Observations

From observing my students on videotape, it appears that students 1) are
more than willing to do the work we require of them, 2) get stuck near the
beginning of many problems, 3) cannot change directions when they are
using an unproductive approach, and 4) do not use examples to help under-
stand either the question or what approaches might help with the answer.
Let me discuss each of these points in more detail.

Observation 1: Students are willing to work. I had the misconception
that poor quality or missing homework was the result of students not making
sufficient effort. Early on, I discover this is not always the case. For my first
TA, I asked a group of students to find all values for a and b such that the
function

f(x) =

{
1

ax+b x 6= − b
a

−1
b − b

a x = − b
a

has a 3-cycle, that is,
f(f(f(x))) = x

for some x. The solution is to algebraically simplify the equation f(f(f(x))) =
x to

(a + b2)(ax2 + bx− 1) = 0
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For a 3-cycle to exist, we would need 3 x-values, but solving the quadratic
gives only 2. Alternatively, if a+ b2 = 0, then we have a 3 cycle for (almost)
any x. This answer makes sense, since the problem asks about a and b values,
and not x values. This seemed to be a reasonably straight forward problem
to me, requiring a little algebra and some thinking about the question being
asked.

Each of four students was videotaped for 30 minutes working on this
problem on their own. They then continued working on this problem as a
group for another hour. The idea is to have each of them think about the
problem separately, then let them come together to share ideas. This is the
system I have used over the entire 4 years.

After working for 90 minutes, the group did not even understand the
question. They would solve for x, then note that this wasn’t the answer
since it asked for a and b. They would then substitute some values in hop-
ing to magically find a 3-cycle, then would go back and solve for x again.
What was surprising was that the students wanted to continue working on
this problem, even though they had accomplished little in the 90 minutes.
Thus, I learned my first general principle that I have seen repeatedly in TA’s:
A lack of results does not mean there is a lack of effort. Sure, there are some
students who put in a minimum amount of work or quickly stop working
when they get stuck. But I have found that most of our math students are
willing to put a great deal of effort into their work if they find the question
interesting. The sad part is that this effort is often wasted time, with the
students gaining little from the experience. From this, I developed my first
goal in revising Foundations.

Goal 1: Help students spend their time more productively.

Observation 2: Students are often stuck at the very beginning of
a problem. The students who were trying to determine the a and b values
that resulted in 3-cycles never even understand the question being asked.
In another situation, one of these students was videotaped working a graph
theory problem. For 40 minutes, the student just kept repeating the ques-
tion, but never made a first step.

Goal 2: Help students get started on their problems.

Observation 3: Students keep repeating the same steps, even when
they clearly do not help. In watching my students work, I noticed they
were like a wind-up toy car that is stuck in the corner, wheels spinning but
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not going anywhere. Once students decide how to approach a problem, they
have difficulty trying a new approach.

One group of students was trying to show that the Power Set Pn+1 on
n + 1 objects contains twice as many sets as the Power Set Pn on n objects.
I suggested they try constructing P1, P2, P3, and P4, the Power Sets on 1, 2,
3, and 4 objects, respectively. The strategy the students used to construct
each Power Set was to first list the null set, then all the sets of size 1, then
all the sets of size 2, and so forth. They did not use the Power Set on 2
objects to help construct the Power Set on 3 objects.

I had thought the students would see that they could use P2 to construct
P3 by listing P2, all of the sets on the first 2 objects,

∅, {1}, {2}, {1, 2}

plus all those sets with the third object added,

{3}, {1, 3}, {2, 3}, {1, 2, 3}

The students had not observed this connection between Power Sets. So I
suggested that the students look for connections between the Power Set on
2 objects and the Power Set on 3 objects, again hoping they would see how
one could be used to construct the next one. Instead, the students tried
comparing sets according to how many elements were in the set, so P2 and
P3 both contain the null-set, and there is one more subset of size 1 in P3

than in P2. This approach becomes more complicated when comparing the
number of subsets with 2 or 3 elements, or when looking for the relationship
between P3 and P4. This approach would clearly be difficult to generalize
from Pn to Pn+1. Once these students developed a strategy for constructing
Power Sets, they were having difficulty changing to another approach.

Goal 3: Help students learn how to try a variety of approaches.

Observation 4: Students avoid looking at examples and instead
try to solve the general problem. One group of students was asked to
show, if the integer n has an odd factor greater than 1, then 2n + 1 is not
prime. During the individual portion of the TA, one student was juggling
symbols, not getting anywhere. We then had the following conversation.

I said, “You seem to be wandering around hoping something will pop
out.” He replied, “Yeah, that’s what I usually do.” I said, “Did you think
about checking a few examples to see if the statement is correct?” to which
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he replied, “Yeah, heh heh, ummh, that would also have been helpful for
problem 3 (a problem assigned earlier).”

Once this student starting checking some values, he discovered that
whenever n was odd, then 3 was a factor of 2n + 1. This helped him prove
part of the result. Continued work with examples helped the student dis-
cover the general pattern, which his group was finally able to solve (after
several more prompts to keep them going in a productive direction).

Students are not only reluctant to try examples, but when they do try
examples, they tend not to reflect on how the examples can help them solve
the problem, just as the group working on Power Sets did not reflect on how
finding P3 could be used to find P4.

Goal 4 Help students learn to use examples to develop a better understand-
ing of the problem and to reflect on examples to help them understand the
general situation.

4 What helps?

Of the numerous approaches I have used to help accomplish my goals, the
most successful strategies have been 1) to give prompts or hints that help
the students structure their approach to a problem, 2) to have the students
submit multiple drafts of their solutions, 3) to have students develop their
own conjectures through the use of examples, and 4) to have students write
each solution two ways, one which includes their thinking about the problem
and a second that is a formal proof. Let me discuss each of these strategies
in more detail.

Strategy 1: Give prompts. I have had more success with prompts than
with hints. Let me explain the difference. A prompt helps the students
organize their approach. They tend to be the questions that we ask ourselves
when we are solving a problem, and they tend to be the same, regardless of
the problem, such as

What is given?
How can I rewrite what is given in a form that is easily used, possibly

using a definition?
What must I show?
How can I rewrite what I must show in a form that is usable?
What method of proof seems most likely to work, and why?
On the other hand, a hint is specific to the particular problem. It may
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suggest how to accomplish one of the steps of the problem. I gave the
students a hint to look at the difference between the Power Set on 2 objects
and the Power Set on 3 objects. As another hint, I might have suggested
that the student determine common factors of 2n + 1 when n is odd.

What I discovered as I began teaching this course is that prompts are the
questions I ask myself, almost subconsciously. To develop good prompts, I
have learned to observe my own thinking as I work problems, somewhat of
an internal Think Aloud, and focus on what I am asking myself as I work
problems. Until I started observing myself, I didn’t even realize I was asking
myself questions. It had developed to the point that it was subconscious.

Let me give an example of how these questions work. Students generally
do not know the difference between what is given and what must be shown,
and they are also reluctant to use definitions. For example, students intu-
itively know what it means for an integer n to be odd, but it rarely occurs
to them to use a definition of odd, such as there is an integer k such that
n = 2k + 1. Suppose students are to show that the product of two odd
integers is odd. In response to the questions, what are we given and how
can we rewrite it in a usable form, the students would write, “We are given
that n and m are odd. A usable form of this statement is that there are
integers i and j such that n = 2i + 1 and m = 2j + 1.” In response to the
questions, what must we show and what is a usable form of that statement,
the students would write, “We must show that nm is odd. A usable form
of this statement is that there exists an integer k such that nm = 2k + 1.”
From here the students would compute

nm = (2i + 1)(2j + 1) = 2(2ij + i + j) + 1 = 2k + 1

where k = 2ij + i+ j. What is amazing is that for many students, I need to
keep repeating these questions throughout the course. It takes most students
a long time to internalize these questions.

Even though the prompts seem obvious, the students tend not to think in
this way. They have usually approached mathematics as a series of equations
that need to be rewritten, and they do not pay close attention to the specific
words in a problem, especially the words “for all” and “there exists.” They
start learning that if a statement begins, “for all x · · · ”, then the method of
proof will probably begin “choose x · · · .” If the statement includes “there
exists · · · ”, then at some point, we will probably have to find it. Some good
early exercises for the students are to give them statements such as

p = {∀ x, ∃ y such that the equation is satisfied}
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q = {∃ y such that ∀x, the equation is satisfied}
and ask them for which of the following equations each of these statements
is true.

2x + y = −2

x + y2 = 3
(x− 2)(y + 3) = 0

These are later followed up with the use of prompts that focus students
attention on the phrasing of the problem.

When students begin to work on a proof they usually wander around
with no direction. They hope for luck. It is particularly important to give
prompts that help students focus on what type of approach might work.
Among the types of proofs they know are direct proofs (in which we may
work forwards and/or backwards), contraposition, contradiction, and in-
duction. When I give the prompt, “what type of proof seems most likely
to work and why?”, the students know that: 1) if the statement is to show
the existence of something (for every x, there exists a y such that), then a
direct proof may work, in which we actually “find” y; 2) if the conclusion
of the statement includes the word “not”, then contraposition or contradic-
tion might work (there does not exist an x such that) because it is difficult
to show something doesn’t exist, so let’s assume it does exist and find a
problem; and 3) if the conclusion is that something is true for every positive
integer n, then induction might work.

Strategy 2: Multiple drafts: For difficult problems, hints will clearly
help the students. The problem is that a hint may help one student and be
of no use to another. In one TA, students were asked to show that a graph
G on n vertices can be isomorphic to its complement Gc only if

n = 0 or n = 1 mod 4

The complement of a graph on n vertices is the graph Gc which has edge
uv if and only if uv is not an edge in G. The idea behind the proof is that
for G and Gc to be isomorphic, they must have the same number of edges,
which means the complete graph on n vertices must have an even number
of edges, which can only occur if there exists an integer k such that

n = 4k or n = 4k + 1

I gave the students the following hint. What do you know about the total
number of edges in G and Gc? Answer: They are the same. At first, this hint

8



made no sense to the students. After a short period of time, the students
actually constructed some specific examples, finding isomorphic pairs, G
and Gc, with 4 vertices and again with 5 vertices. They noticed that the
complete graph on 6 vertices has 15 edges, which cannot be divided equally.
Then one student exclaims, “Oh, so when he asks what we know about the
total number of edges in G and Gc, he means the total number of edges in G
and Gc.” The hint finally made sense, and the students progressed quickly
to the solution. This hint worked well.

As described previously, when I suggested that students look at the
difference between the Power Sets on 2 and 3 objects, these students looked
for the wrong connections, and the hint was of no value.

Hints work better if they are somewhat student specific. Because of
this, I have instituted a multiple draft system. I the students will have a
problem with a given deadline. The problem will be structured in several
parts, with each part giving the students a prompt, such as clearly state,
in a usable form, what must be shown. The students are required to type
all solutions (most use Word with Equation Editor) and email the solutions
to me by the deadline. To ease in grading, I have each group of 3 or 4
students send me one solution. Because it is electronic, I can give each
group individual hints, depending on the problems I see with their solution.
My hints and comments are embedded within the document using the Track
Changes feature of Word.

Each problem is worth 100 points. For most problems, I do not expect
the first draft to be correct. If the students have made a good effort and are
going in a productive direction, I might not deduct any points. On the other
hand, if the students are going in the wrong direction, and need a major
hint, I will give a 5 or 10 point deduction, which will be deducted from the
grade of the final version of the solution. If it seems that the students did
not put much effort into their first draft, then I will deduct 10 points, and
but will not give a good hint. I want to encourage a good initial effort.

The students then have several days to write a second draft of the prob-
lem. I repeat this process, with additional possible deductions, until the
students essentially have the correct solution. This way, the initial problem
includes appropriate prompts, and I can individualize hints for each group
of students. At the end, each student must have a solution that is correct
except for minor details, but their grade may be in the 80’s or even 70’s if
it took several major hints for them to get this solution.

This system in which each problem is graded several times is time con-
suming for me. Because of this, I assign fewer problems, but they are gen-
erally harder and more involved. Having solutions typed also makes the
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grading easier. For each problem, there are often multiple places where stu-
dents make mistakes. I generally write a document with a collection of hints
that might be given, and then can just copy and paste the appropriate hints
into each group’s paper. This also saves time.

There are other advantages to having multiple drafts. Students do not
spend too much time working unproductively, since they can get feedback.
To insure that each student in a group is involved, I require each draft to be
typed by a different student. Having the electronic version of the solutions
allows me to use some papers for illustrations in the class in later semesters.
And if a student’s solution is too good, I can quickly and easily compare it
to solutions I have received in previous semesters.

Strategy 3: Making conjectures: Instead of asking students to prove
a statement, I now try to have more problems that cause students to ex-
plore a situation and construct their own conjectures. This helps combine
problem solving with construction of proofs. Students are encouraged to try
to understand why the examples work by reflecting on their construction.
When I began, I would have asked students to show that if n has an odd
factor greater than 1, then 2n + 1 is composite. I now ask students to look
for patterns in the factors of 2n + 1. They will quickly conclude that if n
is odd, then 3 divides 2n + 1, and will prove it using induction. After some
additional work, many students will observe that if n = 2(2k + 1), then 5
divides 2n + 1. Continued work will lead students to the result that if n
is not a power of 2, then 2n + 1 is not prime. The proof is still not easy
for the students, but they get the sense of discovery, and even the weaker
students can get some partial results. They also develop some ownership for
the problem.

One difficulty that often arises is that students have so much fun looking
for patterns, they forget to actually stop and prove some of their results. A
second problem is that the problem must be worded carefully so that the
students actually see some patterns. Many students are so disorganized that
they may work for a long time without making any discoveries.

I believe one of the greatest shortcomings of post-secondary mathemat-
ics education is the lack of development of our students’ ability to look for
patterns and make conjectures. And yet, this is the basis for mathematical
research.

Strategy 4: Two different types of proof: Students begin my course
with only a vague notion of what a proof is. I might give them an implication,
p ⇒ q. They will work from both ends until they get an equation that is
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known to be true. At that point, they think they have a proof. Consider
the statement, “if n and m are consecutive integers, then n2 + m2 − 1 is
divisible by 4.” The students confuse what is given with what needs to be
shown. They might turn the following in as their proof.

n2 + m2 − 1 = 4k

n2 + (n + 1)2 − 1 = 4k

n2 + n2 + 2n + 1− 1 = 4k
2n(n + 1) = 4k

so
k =

n(n + 1)
2

While a mathematician would realize this actually contains the proof
since n(n+1) must be even, it has become clear to me that students do not
know why this is a proof. They work the problem as n, m and k were all
given constants and that they only need to check that everything balances
in the equation n2 + m2 − 1 = 4k. They seem not to realize that n and m
can be treated as known integers and that we must show an integer k exists
that balances the equation.

I give problems that have several parts, corresponding to my prompts.
The first part would be to restate what is given in an usable form (as dis-
cussed previously), and the second part would be to state what is to be
shown in usable form. The third part has them show their “thinking”, that
is, write a solution such as the equations above. This helps them develop
insight into why the statement is true. In the last part, they must construct
a formal proof in which they begin with what is given and work forward un-
til they reach what was to be shown. This last part requires the students to
tie the other three parts together, and is crucial in helping students develop
a better understanding into what a proof actually is.

There may be another part to the problem asking the students what
proof method might work. This part usually follows the second part in
which they write what needs to be shown. If they decide on contraposition
or contradiction, then they would have to rework the first two parts, so that
they have the contrapositive of what is assumed and what must be shown.

Strategy 5: Presentations. I have had good success with having students
give group presentations. Early in the semester, groups will present simple
problems, taking around 10 minutes. At the end of the semester, each
group gives a larger presentation, usually consisting of the proof of a major
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theorem from the text and the solution to a problem. Students must learn
these proofs at a deeper level than usual so they can help other students
understand the problem. These presentations are similar in structure to the
assigned problems discussed previously; that is, the students will describe
what is given and what needs to be shown, and will present an informal
proof, describing how they thought about the problem. Then they will give
the formal proof. Most students now give Power Point presentations. The
use of animation makes their presentation come alive. Students used to
complain that they didn’t get as much from student presentations as they
got from my lecture. That is no longer a complaint.

Each group must meet with me twice before giving their presentation.
The first meeting is so I know they are on the right track. In the second
meeting, they actually give the presentation to me. This helps avoids em-
barrassing errors in the actual presentation. Several pointers that I give to
the students are 1) make sure slides or transparencies are in large enough
fonts, 2) each slide has one idea, 3) a computation is not continued from
one slide to the next, 4) each slide should have very few words, and 5) they
should engage the class, possibly asking questions about what the next slide
should be. The fourth pointer is critical. Cluttered slides are difficult to
follow. The goal is to only have the essentials on the slide and then fill in
the details with the verbal presentation.

For the presentations to work, the students know that they will be re-
sponsible for the material on a final exam.

5 What Problems Remain?

Learning to teach problem solving has been one of the most difficult chal-
lenges of my academic career. After teaching this class 7 times in the past
4 years, and watching hours of videotape, I still feel I am only beginning to
understand how students learn problem solving. And there are still many
obstacles preventing more success.

One obstacle is finding a significant number of good problems that are at
an appropriate level for my students. More often than not, a problem that
seems easy to me is too difficult for my students. Equally often, I assign
problems that are too easy, and the students gain little from working them.
Giving appropriate hints is also quite difficult to do. In an effort to not give
away the solution, my hints still tend to be too obtuse, and consequently,
not much help to the students. Giving good hints is an art that I have not
mastered.
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Teaching problem solving is quite time consuming. Each semester, I try
some variation in an effort to reduce the time I spend either meeting with
students or grading papers. The only short cut that has had some success is
the use of multiple drafts. This reduces the number of students who visit my
office and the grading of later drafts is usually not that time consuming since
they have already been given some direction. Most short cuts I have tried
have not reduced my time commitment, but have resulted in less success in
my students.

Each class presentation must be carefully prepared. For the students to
gain from my presentation, I must carefully construct the steps they need
to take through a problem. I must make sure that my presentations clearly
model what they should be doing. I must also carefully choose similar
problems for them to try in groups during class. The students need this
supervised practice.

When most students enter college, they are not nearly as competent
problem solvers as they should be. Some of this results from the lack of
time spent solving problems and reasoning in the elementary, middle, and
secondary mathematics classrooms. I do get the occasional student who
has had some experience in proof and problem solving, but most of our
students are just beginning to learn to reason when they take Foundations.
I have been somewhat disappointed in how little they can accomplish in one
semester. To be successful, we must reinforce what they have learned in our
other courses. This means faculty must talk among themselves and share
ideas, both those that work and those that do not work. And finally, we
should continue to carefully observe our students to make sure we improve
in our ability to help them.
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