
Macro I

Homework 3- Finite Dynamic Programming

1. Consider the optimal growth problem.

V ∗(k) = max
∞∑

t=0

βtu(ct) s.t. ct + kt+1 ≤ F (kt), given k0 = k > 0

This problem has a known solution when u(c) = ln(c), F (k) = Akα, A >
0, α ∈ (0, 1), β ∈ (0, 1). The solution is V ∗(k) = E + F ln(k) and the stationary
optimal decision rule for the choice of capital is k′ = αβAkα. The constants
equal E = 1

(1−β)
[lnA(1 − αβ) + βα

1−αβ
ln Aβα] and F = α

1−αβ
.

(a) Write a program to solve the (closely related) finite dynamic programming
problem indicated below. Include your program with your homework. A
finite dynamic programming problem has a finite number of states and
controls.

V (x) = max
y∈Y (x)

u(F (x)− y) + βV (y)

X = {x1, ..., xN}

Y (x) = {y ∈ X : 0 ≤ y ≤ F (x)}

(b) Compute a solution V (x) when you set A = 18.5, α = .3 and β = 0.9. Set
the state space X = {x1, ..., xN} so that N = 100 and xi = 20(i)/(N).
Thus, the state space has 100 grid points on the interval [0, 20].

(c) Graph the function V (x) and V ∗(x) over grid points in X on the same
graph.

(d) Graph the computed decision rule solving Bellman’s equation and the
optimal decision rule over gridpoints in X on the same graph.

(e) Graph the function V (x) and V ∗(x) when N = 200 and the gridpoints xi

are evenly spaced according to the rule used above.

SUGGESTIONS FOR PROBLEM 1:
1. Create arrays U(NX, NY ), V (NX, NJ), Y (NX, NJ). Initialize V (NX, NJ)

to a vector of zeros.
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[Note: (i) NX = NY = 100]
2. Compute the array U(NX, NY ) once, assigning sufficiently small negative

values to choices of controls that are not feasible.
3. Iterate backwards on Bellman’s equation NJ times, where NJ is a choice

(say NJ = 100). The right-hand-side of Bellman’s equation involves terms with
V (NX, j + 1), whereas the left-hand-side solves for V (NX, j). Let V (NX, 1)
that results from (backwards) interations on Bellman’s equation be the com-
puted candidate for V (x) in Bellman’s equation in Problem 1. Let Y (NX, NJ)
be the matrix of decisions solving the right-hand-side of Bellman’s equation
from the initial guess specified in suggestion 1 above.

3. The main program will consist of two DO LOOPS. The outer DO LOOP
iterates (backwards) over time (NJ). The inner DO LOOP iterates over states
(NX). Inside these two DO LOOPS there is a maximization operation. Perform
the maximization operation on the right-hand-side of Bellman’s equation with a
built-in vector maximization operation. Note: Fortran DO LOOPS are Matlab
FOR LOOPS.

4. Check whether or not your value function V (NX, NJ) and decision rule
Y (NX, NJ) resulting from NJ = 100 iterations on Bellman’s equation changes
in an important way as the value of NJ is doubled to NJ = 200. This is a low
tech means of assessing convergence.
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