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Repeated interactions between animals can generate stable patterns of 
collective behavior (Couzin 2009). For example, colonies of eusocial insects can 
make collective decisions about where to build their nests, and where to forage 
(Reid et al. 2015; Sasaki et al, 2013; Seeley 1995; 2010). And people working 
together develop the skills that are required to fly commercial airplanes, and to 
navigate modern Naval vessels (Hutchins 1995a; 1995b). In each of these cases, 
and in many others as well, computational models have provided useful insights 
about the nature and structure of group-level behavior; and some philosophers have 
suggested that such models provide a plausible foundation for thinking about 
collective mentality. But while group structure often impacts individual 
computations, and shapes individual mentality, it is substantially less clear whether 
these group-level computations ever yield forms of group-mindedness. By looking 
to coordination dynamics, we can begin to understand how the strength of 
informational relations between the components of distributed systems can stabilize 
collective behavior (Anderson, Richardson, & Chemero 2012). But it is more 
difficult to say when such relations yield collective mentality.  

In addressing the issue of collective mentality, some philosophers have 
adopted a dynamical approach. They have focused on patterns of self-organization, 
and argued that collective mentality requires neither collective computation nor 
collective mental representation (Palermos 2016). Others have focused on the ways 
that group members acquire, store, transmit, and manipulate information as they 
perform collaborative tasks; they hold that collective mentality emerges as a result 
of informational transactions, which can occur even in the absence of collective 
mental representations (Theiner 2013; 2014). And still others have suggested that 
we should only posit collective mentality “where no subsystem is capable of 
producing an authoritative representation and where the representations of multiple 
subsystems can be coordinated and integrated to yield flexible, goal-directed 
system-level behavior” (Huebner 2014, 14). Stepping back from these 
disagreements, we can begin to see substantial overlap between ‘pure’ cases of 
dynamic coordination and more complex forms of coordination that depend on 
mental representations and informational relations (cf., Dale et al 2013). And from 
this perspective, it becomes possible to discern cases that don’t fit nicely within any 
of these perspectives, but which seem to play a role in biologically significant forms 
of cooperative behavior. Our aim in this paper is to clarify the variety of different 
ways in which individual and collective computations unfold in cooperative 
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contexts. While we offer some reflections along the way, our aim is not to establish 
where collective mentality occurs; instead, we hope to clarify the variety of 
different ways in which a computational approach can be used to understand 
collective behavior, and the possibility of collective mentality. 

Throughout the paper, we treat dynamic forms of coordination as physical 
computations, which are best modeled using differential equations (Piccinini & 
Scarantino 2011). This is consistent with the rapidly expanding empirical literature 
on collective behavior, which often appeals to dynamical computations without 
specifying what is represented—or whether anything is. We believe that many of 
these collective computations are likely to occur in the absence of group-level 
representations (cf., Piccinini 2008). And for this reason, we adopt a mechanistic 
account of computation that requires: 1) a functional mechanism that processes 
variables that can change states, 2) in accordance with rules that map inputs to 
outputs, 3) in ways that are sensitive to the properties of these variables and to 
differences between different portions of them (Piccinini & Bahar 2013, 458; 
Piccinini & Scarantino 2011, 10). By paying attention to the precise nature of the 
computations that have been posited to explain different kinds of group behavior, 
we hope to show that there is a continuum between minimal forms of 
coordination—such as synchronous flashing in fireflies—and maximal forms of 
coordination—such as collective decision-making on the basis of distributed 
sources of information.  

 
1. Individual computations 
 

Let’s begin with the form of dynamic updating that allows some colonies of 
fireflies to synchronize their flashing behavior. Individual fireflies flash to attract 
mates. But in one colony in the Great Smoky Mountains, stable patterns of 
synchronization reliably emerge for two weeks each summer. Each insect functions 
as an intrinsic oscillator that tracks the distribution and frequency of nearby flashes, 
and adjusts its rate and frequency of flashing against the observed value (Ramírez-
Ávila et al 2003, 255). Individuals flash within a fixed period (965 ± 90 ms); but if 
another firefly flashes within the first 840 ms of a cycle, this will inhibit the 
upcoming flash, and cause a one second delay before the next one; and if an insect 
flashes within the last 160 ms of this period, the next flash will occur normally, and 
subsequent flashes will advance to synchronize with observed flashes (Buck et al 
1981). This pattern of individual updating yields coordinated collective behavior. 
At the beginning of the night, flashing is chaotic; but order emerges as each firefly 
tracks the locally observable firing patterns, and uses this information to update its 
own behavior (Mirollo & Strogatz 1990). As the night goes on, one or two 
individuals will produce one or two flashes, triggering synchronized flashing in 
every member of a colony. In most cases, a “burst of five to eight species-specific 



flashes is produced, and then group flashing abruptly ends” (Moiseff and Copeland 
1994, 403); but after a brief period of inactivity the process repeats.  

We contend that this is a relatively pure case of dynamical updating, which 
occurs in the absence of mental representations. Individual fireflies act as functional 
mechanisms (intrinsic oscillators), which track nearby flashes, and mechanically 
adjust their behavior in ways that yield stable patterns of coordinated behavior. 
Since these insects are functioning as intrinsic oscillators, the behavior of nearby 
insects will become dynamically coupled. Finally, the emergence of synchrony 
yields a transition from a collection of independent and randomly flashing 
individuals, to a well-ordered system with stable collective dynamics.  

Significantly, this means that individual behavior sustains group-level 
coordination because individuals update their behavior in light of the behavior of 
other group members. But while this allows groups of fireflies to function as 
coordinated systems, the resulting patterns of emergent behavior play no further 
computational role in the unfolding of individual or collective behavior. None of 
the individuals tracks the emergent state of the system; instead, each insect changes 
its behavior in response to flashes that occur nearby. Moreover, the group doesn’t 
track any changes in internal or external variables, and it doesn’t update its state in 
ways that are sensitive to the properties of such variables, or to differences in their 
portions. Nonetheless, coordinated behavior bubbles-up through patterns of 
individual behavior, yielding interesting group-level stabilities. We claim that this 
kind of dynamic, group-level behavior is sustained by individual computations that 
occur in the absence of representations, and that only the most minimal form of 
group-level computations is being carried out. Put differently, synchronously 
flashing fireflies reveal the power of simple tracking mechanisms for creating and 
sustaining stable patterns of collective behavior.  

This point is more significant than it might initially seem, as humans and 
other animals often “‘dance’ like fireflies” (Schmidt & Richardson 2008, 287), 
taking perceptually available information as input to behavioral oscillatory systems 
that facilitate behavioral entrainment. A well-known dynamical model (The HKB-
model) explains how such ordered states emerge, why they stabilize, and why shifts 
occur between different coordinative states (Kelso 2008). For example, people can 
wag their fingers in parallel at low frequencies; but increasing the speed of this 
movement triggers a switch to an anti-parallel pattern of movement. Something 
similar appears to hold across a wide range of interpersonal phenomena, where each 
person’s behavior constrains the activity of the other, and each person allows their 
activity to be so constrained (Walton, Richardson & Chemero 2014, 12). Through 
this process, people draw one another into robust patterns of coordination. For 
example, in the context of improvisational jazz, musicians are "constrained by the 
sonic and kinesthetic results of the activities of the other improvisers”, and their 
coordinated interactions yield a musical system that is constituted by the 



improvisers and their ongoing patters of interaction (Walton, Richardson & 
Chemero 2014, 19).  

There is good reason to believe that dynamical updating of this sort is “a 
universal self-organizing strategy that occurs at multiple scales of nature” (Schmidt 
& Richardson 2008, 285). And we contend that it is driven by a minimal form of 
collective computation: rhythmic oscillations become synchronized through 
dynamic coupling between individuals, yielding group-level regularities that 
accord with the HKB-model. Across many cases, individuals can reasonably be 
seen as components in computational systems, which track changes in each other’s 
states, and update their behavior in accordance with behavioral rules that are 
sensitive to such changes. But many kinds of mutual alignment require more robust 
forms of information processing, which go beyond oscillatory resonance. Colonies 
of insects, schools of fish, flocks of birds, and herds of mammals often move 
together as groups, as individuals adjust their behavior in light of the observed 
behavior of nearby organisms. And behavioral alignment emerges as individuals 
adjust their behavior in light of “locally acquired cues such as the positions, motion, 
or change in motion, of others” (Couzin 2009, 36). And as we argue in the next 
section, this is true even where nothing is represented by the group.  

 
2. Group-level information processing 
 

Individuals within a school, a flock, or a herd typically adjust their direction 
of travel to avoid isolation, and these adjustments reliably scale to yield stable 
forms of collective behavior. But in some cases, animals also exploit the 
information about unobserved resources or predators that is embodied in the 
movement decisions of nearby neighbors, treating observed directional changes as 
evidence of a biological salient object or event (Kao et al. 2014). Where the location 
of resources and predators is known to a subset of a population, naïve individuals 
who track the movement of nearby neighbors, and treat their behavior as 
information about inaccessible features of the local environment, expand their 
‘effective range’ of perception (Couzin 2007, 715). And where animals adjust their 
willingness to commit to a course of action in light of the number of committed 
animals, this can generate cohesive forms of group-level behavior that reduce the 
cost of seeking new information for all individuals (Hein et al 2015; Sumpter et al 
2008, 1775).  

Understanding these kinds of phenomena doesn’t require adding much to 
the form of dynamical updating that we discussed in the previous section. But 
particular forms of information processing are important to the kind of 
computational phenomena that occurs in these kinds of cases. Individuals adjust 
their direction of travel, using simple behavioral rules that map inputs to outputs, 
in ways that are sensitive to the movements of others and to differences in the 



distribution of such movements. But just as importantly, they treat observed 
behavior as a source of natural information that provides evidence about the 
presence of resources and predators. Consequently, these behavioral adjustments 
often cascade through a group, allowing each animal to update its own decisions in 
ways that are sensitive to the group’s overall informational state. As animals move 
toward a foraging location, or away from a predator, they provide a signal that can 
be interpreted by others as behaviorally relevant. And as individual animals change 
their state in light of this information, using simple interaction rules to map the 
distribution and value of observed movements onto behavioral outputs, their 
behavior constitutes a signal for further observation. To understand these kinds of 
collective behavior, it is thus necessary to examine both the behavioral rules that 
are employed by individuals, as well as the sensitivity to the information encoded 
in observed behavior.  

Consider the way that colonies of Olive baboons make decisions about 
where and when to forage. These baboons are “most likely to follow when there 
are many initiators with high agreement. However, when agreement is low, having 
more concurrent initiators decreases the likelihood that a baboon will follow 
anyone” (Strandburg-Peshkin et al. 2015, 1361). Within colonies, group-level 
cascades of information help individuals make decisions that will guide them 
toward preferable foraging locations, while reducing the cost of leaving the group 
to seek new information. The decision an individual makes thus depends on the 
decisions that others are making; and since all individuals adjust their decisions in 
light of the changes in group-level properties, these shifts can be seen as inputs into 
a parallel processing algorithm that reliably moves the group toward consensus 
(Sumpter & Pratt 2009, 743). Here, as in many different species, a simple “quorum-
response” rule is used to effectively integrate multiple sources of information about 
a course of action; uninformed and misinformed individuals then correct their 
behavior in light of group-wide behaviors; and since individuals raise their decision 
thresholds as group size increases, being in a larger group improves the accuracy 
of such decisions (Sumpter et al 2008, 1776). Where this pattern of tracking and 
updating occurs in the context of a relatively stable group, it yields a group-based 
computational process, where small changes in individual states yield large changes 
in group-level behavior, and where cascades of biologically significant 
information—embodied in the prevalence and distribution of movement 
decisions—lead individual preferences to converge on the best available option, in 
ways that would otherwise be impossible (Sumpter & Pratt 2009). 

Similarly, consider the case of predator avoidance in Golden Shiners, which 
emerge as individual fish adjust their speed and direction to align with their nearest-
neighbors (Berdahl et al. 2013). Golden Shiners are skittish, and they often display 
spontaneous avoidance behavior in the absence of predators—but crucially, the 
effect of this behavior is dampened in schools (Rosenthall et al. 2015). Within a 



school, fish respond to the avoidance displays of any fish they can see. And since 
few fish will see the spontaneous avoidance behavior of a single fish, skittishness 
only triggers a limited response in the school. By contrast, the presence of a 
predator leads multiple fish on the same edge of a school to produce simultaneous 
avoidance signals. This yields a threat signal that cascades through the school, as 
each fish will observe several simultaneous avoidance displays. Where this occurs, 
the information that is embodied in predator avoidance triggers group-wide 
avoidance behavior, as the information cascades through the entire school. The 
important thing to notice, here, is that informational signals are amplified by 
parallel patterns of behavioral resonance. And information processing cascades 
occur when “the growing number of adherents to an option increases its 
attractiveness to undecided animals” (Sumpter & Pratt 2009, 745). Likewise, 
informational signals are dampened by behavioral dissonance, and negative 
feedback prevents uninformed individuals from guiding group-level behavior.  

In each of these cases, adjustments to individual behavior unfold 
dynamically in real-time, and they are sensitive to the value of food resources, and 
to the presence or absence of predators. But as with the cases we addressed above, 
the most salient computations are those that are carried out by individuals. Each 
animal adjusts its behavior in light of its own observations, with patterns of mutual 
adjustment yielding a computational process that governs group-level behavior. As 
information cascades through a group, this generates successful forms of individual 
and collective behavior—without individuals needing to know that a collective 
computation is occurring. But here, we think it is substantially less clear whether 
these group-based computations yield collective mentality. Perhaps colonies of 
baboons and schools of fish should be treated as cognitive systems, as they are 
carrying out classically cognitive tasks (i.e., avoiding predators, and finding 
foraging patches), and they are doing so in a way that depends on integrated 
networks of computational processes. Or perhaps the individuals are carrying out 
these cognitive tasks, by tracking the distributed computation that is being carried 
out by the group; on this latter approach, each animal is looking for the best foraging 
option, and their success depends on using the information that other animals have 
broadcast. Of course, acting in the context of a group is a good way to succeed in 
this task—and it may be the only biologically feasible way for such organisms to 
track preferable food sources and dangerous predators.  

In general, we prefer this second approach, which focuses on the ways that 
individuals use the information embodied in the structure of the group. There are 
likely to be many cases where aggregate success depends on the independence of 
decision-makers (Surowiecki 2004). And in such cases, tendencies toward local 
control should be preserved, even in species where collective action is common. 
More importantly, where consensus is reached too rapidly, informational cascades 
can often generate forms of groupthink, and “when individuals sense too much of 



the group, the result is a filtering of the local influences and an averaged 
(compromised) collective response” (Leonard et al. 2012: 232). Consequently, it is 
biologically plausible that individual-level computations will tend to retain a high 
degree of salience in many cases, as they are necessary to prevent group-level 
processing from repeatedly leading to sub-optimal decisions (Torney et al. 2015). 
But there are cases where the properties of a network become just as important as 
individual computations, and in the remainder of this chapter, we turn to forms of 
collective behavior where this seems to be the case.  
 
3. Network structure and informational processing 
 

Simple responses to the position and motion of others produce many forms 
of group-level behavior. But in well-organized groups, network structure, as well 
as flows of information, and relations of independence and interdependence can 
play critical roles in individual and group-level computations (Derex & Boyd 
2016). In some groups, individuals learn to track the network structure of the group 
they belong to; and this can open up novel individual strategies, which in turn 
transform the structure of the group. This kind of computational phenomena is 
complex, but it is pervasive. And to see what it amounts to, it will help to work 
through a particular case in detail. Here, we consider the way that pigtailed 
macaques track and maintain stable dominance hierarchies.  

A smart animal should only compete for resources if their chance of 
winning is high—otherwise they should acquiesce. However, in competitive 
colonies, such decisions are often made under conditions of uncertainty: success is 
subject to numerous environmental factors, and immediate past successes or 
failures are often unreliable predictors of future outcomes. To solve this problem, 
pigtailed macaques have arrived upon an ingenious strategy for collectively 
determining the “temporally stable factors that predict who will be the winner on 
average” (Flack 2012, p.1804). Over the course of repeated dyadic and polyadic 
conflicts, macaques generate information about their relative fighting ability, as the 
less adept fighters are sure to lose more often over multiple bouts. After losing 
numerous fights, a monkey will begin signaling submission by baring its teeth 
toward the previous winner. This shift to subordination signaling consolidates the 
information generated by the fights, and communicates a general willingness to 
acquiesce, functioning as a kind of contract that allows the macaques to interact 
without fighting. So through repeated interactions, these monkeys are able to 
compute a measure of relative fighting ability and encode it in a subordination 
signal; and when these signals are expressed across multiple overlapping pairs of 
monkeys, they generate a subordination signaling network, whose overall structure 
encodes the dominance hierarchy of the group. Thus, while noisy signals are 
produced by the result of any single competition, the integration of these signals 



into a larger network of mutually adjusted responses produces a stable hierarchy 
organized according to a robust measure of relative fighting ability. 

What is the nature of the computation that occurs in this case? As with the 
golden shiners, the interactions between colony members have the function of 
producing a robust measure of a biologically salient value: relative fighting ability. 
Moreover, the distributed nature of this process allows for the emergence of a stable 
collective order. But unlike the cases we have examined thus far, this subordination 
signaling network allows each macaque to locate its position within the larger group 
structure, by determining its own rank within the dominance hierarchy (Flack & 
Krakauer 2006). Each macaque can estimate its social power, as well as its position 
in the hierarchy, by tracking the number of monkeys that signal subordination to 
them, and the frequency with which they do so. And by integrating over this 
information, each macaque can obtain a reliable estimate of how much power it has 
within the group. Thus, the subordination signaling network gives the individual 
macaques access to the output of multiple parallel competitions—they not only 
acquire a position in the hierarchy, they also obtain knowledge of that position.  

To summarize, individual monkeys continually generate information about 
relative fighting ability, and encode that information through their patterns of 
signaling behavior within the subordination network. By tracking their history of 
agonistic interactions, they can determine the likelihood they will win in a fight 
against a given conspecific and then use the resulting representations to decide 
when to signal subordination, and to whom. Since multiple monkeys are doing this 
in parallel, this yields multiple interaction networks, with individual monkeys as 
nodes, and fights and subordination signals as edges (i.e. the connections between 
the nodes). Within these networks, altercations constitute physical computations, 
which collectively determine the dominance relations within the colony. Once 
stabilized, these dominance relations are encoded as constitutive features of the 
subordination signaling network; and in this context, individual monkeys can use 
the information encoded in the subordination signaling network to infer their own 
location within the hierarchy (Flack & Krakauer 2006, E93). This is possible 
because each macaque can average over multiple signals to accurately measure its 
position in the colony and track its social power.  

In this way, these monkeys become able to “see” the output of the 
computations that are occurring across the colony and use this information to guide 
colony-relevant actions, making it possible to feed the output of the collective 
process back into the dynamics of the process. As Jessica Flack and her colleagues 
(2006) argue, the computations carried out within this signaling network guide 
forms of individual decision-making that make new and valuable forms of social 
decision-making possible. Specifically, the ability to determine one’s own position 
in the overall hierarchy increases the stability and cohesiveness of the group by 
allowing for a form of policing, where dominant macaques monitor the behavior of 



their group-mates, and intervene in conflicts that would destabilize the group. Such 
interventions are generally risky, making this kind of policing biologically unlikely. 
However, since these monkeys can reliably evaluate their own power within a 
group, dominant monkeys can engage in policing behavior with minimal risk of 
being harmed; for after all, the dominance hierarchy ensures that other monkeys 
will acquiesce to them. This form of policing stabilizes the network structure that 
allows policing to occur, and this means that the stability of the group structure is 
both the cause and the effect of effective policing. As a result, colonies where 
policing occurs are larger, and they have higher rates of partner diversity, as well 
as increased possibilities for forms of socially contagion and cooperation; by 
contrast, colonies without policing have high rates of conflict, yielding less 
integrated groups, with less stable social interactions (Flack et al., 2006).  

Similar forms of computational phenomena are ubiquitous within human 
groups; and the expressive power of language allows us to exchange signals about 
an indefinitely large class of topics, far beyond considerations of social dominance. 
Humans can identify useful environmental stabilities that can be signaled, and they 
can establish robust network structures that are capable of processing collective 
information about these stabilities (Barkoczi & Galesic 2016). This yields a kind of 
social learning that can contribute to individual- and group-level performance by 
providing a way to diffuse successful strategies through a communication network 
(e.g., Apicella et al 2012; Hill et al 2011; Rand et al 2011). However, in complex 
adaptive environments, communities of social learners risk settling on locally 
optimal strategies, while being unable to successfully explore superior strategies; 
and whether the most successful strategy can be identified and spread across a 
network largely depends on the structure of the network and the social learning rule 
used by the agents (Derex & Boyd 2016).  

This brings us to an intriguing fact about human sociality: Where multiple 
agents execute a social learning routine in parallel, it is possible for a network of 
interacting agents to efficiently search for the best strategy, in ways that go beyond 
what would be possible for a lone individual (Derex & Boyd 2016). This happens 
as individual agents repeatedly sample the group-level process to identify better 
strategies, and use these strategies as the basis for further individual search. When 
superior strategies are found individually, these feed back into the group-level 
computational process, ratcheting up the overall performance of the network. This 
is possible because the agents are embedded in a signaling network that allows other 
agents to communicate both the strategy they are using and its value. A focal agent 
can then integrate over the signals they receive, to infer the relative value of their 
own strategy, and this in turn can guide decision-making. Although the integration 
algorithm is different from the one that undergirds macaque policing, it yields a 
similar type of phenomena: an agent uses their position in a signaling network to 
infer their own position with respect to that network, and uses this information to 



guide their own individual decisions. The outcome of these individual decisions 
then feeds back into the signaling network, altering the dynamics of the collective 
computation. This process creates complex computational processes that are 
optimized by striking a balance between independence and interdependence; and 
this capacity provides a foundation for a more robust form of collective decision 
making, which we examine in the next section (List et al 2008).  
 
4. Decisions 

 
Identifying cases of group-level cognition is, at least in part, “a matter of 

determining how a cognitive system at a higher level can subsume cognitive 
systems at a lower level, and how the systems at multiple levels can strengthen 
rather than diminish one another” (Goldstone & Theiner 2017). Thus far, we’ve 
argued that dynamic forms of coupled processing allow animals to engage in 
flexible and adaptive forms of behavior; but do coupled systems ever “instantiate 
cognitive mechanisms in virtue of which a variety of systems perform important 
cognitive functions associated with flexible, adaptive, and intelligent behavior” 
(Goldstone & Theiner 2017)? In a recent paper, Rob Goldstone and Georg Theiner 
(2017) have argued that diffusion-based computations facilitate the accumulation 
of evidence, and generate rapid and accurate decisions; they also contend that the 
computational processes that allow individuals to make perceptual decisions under 
uncertainty are realized in the decision making of social insect colonies. In each 
case, interacting populations use competitive algorithms, arriving at decisions when 
one population exceeds an uncertainty threshold, which is adjusted in light of the 
salience of speed and accuracy (Marshal et al 2011). We think that Goldstone and 
Theiner are on the right track. 

Colonies of ants and honeybees are often able to function as “parallel 
information-processing systems capable of intricate collective decision-making 
during essential tasks such as foraging, moving home or constructing a nest” 
(Couzin 2009: 39). In each case, collective decisions arise through a process that 
parallels the winner-take-all algorithms that are used to explain how the visual 
system categorizes objects (Riesenhuber & Poggio 1999), or by forms of diffusion-
based processing that yield rapid and accurate perceptual decisions (Marshal et al 
2011). By enhancing the activity of some computational units (here, ants or 
honeybees), while inhibiting or suppressing the activity of others, responses can be 
pooled in ways that will achieve an accurate representation of the biologically 
salient features of an object (here a foraging location or a nest site). Consequently, 
decisions are reached that are relevant to group-level behavior by way the friendly-
competition between group members. 

One of the clearest examples of this kind of phenomena occurs when a 
honeybee hive splits, scouts carry out a random search for a new nest site, 



evaluating each alternative in terms of “cavity volume, entrance height, entrance 
area, entrance direction, entrance position relative to the cavity floor, and presence 
of combs from a previous colony” (Seeley & Buhrman 1999, 31). Few bees visit 
more than one site, but the colony settles on a decision by representing the variety 
of different options and selecting among them. Each option is evaluated in terms of 
its attributes (as listed above), and the group’s choice is typically optimal with 
respect to the value of each attribute for colony survival and reproduction (Seeley 
& Buhrman 1999). When scouts return to the hive, they dance in support of the site 
they visit, using a waggle dance that varies in intensity as a function of the quality 
of the site. Few scouts dance in support of more than one site; and “most bees that 
dance initially for a site other than the ultimately chosen site terminate their dancing 
for this site by ceasing their dancing altogether, not by switching their dancing to 
the chosen site” (Seeley & Buhrman 1999, 30). Some bees that dance for the 
ultimately chosen site stop before consensus is reached; but in general, scouts who 
find a preferable site tend to recruit others to inspect the same site; and the 
increasing levels of recruitment to a site further increase support for that site (List 
et al 2008; Seeley et al 2012). Decisions are thus made by “quorum”, with colonies 
settling on a preferred alternative as soon as there is sufficient support for it (Seeley 
& Visscher 2003). Importantly, their “independence in assessing the various sites’ 
quality and their interdependence through communication are both necessary and 
sufficient for the reliability of the bees’ decision process” (List et al 2008, 758).  

A similar consensus-based algorithm is used by ants to compare multiple 
potential nest sites, which differ with respect to cavity volume, interior dimness, 
and entrance size (Pratt et al. 2002; Sasaki et al. 2013). But more intriguingly, when 
army ants build bridges to create a shortcut in a foraging trail, for example, they 
make adjustments to the length of the bridge in response to the flow of traffic across 
their bodies (Reid et al. 2015: 15114). As traffic decreases, ants abandon their 
position; and as traffic increases, ants are recruited to the bridge. But bridge 
expansion will often stop before the maximum foraging shortcut has been achieved. 
This phenomenon is interesting because no individual can represent the costs and 
benefits to the colony—yet the variations in recruitment underwrite a form of 
parallel information processing that is sensitive to “the diminishing returns of 
shortening the trail to avoid the cost of locking up an increasing number of workers 
in the structure” (Reid et al. 2015: 15116).  

The important thing to notice about these two cases is that both group-level 
computations, and group-level representations, play a critical role in the production 
of collective behavior. In contrast to the cases that we have discussed above, the 
individuals are serving as nodes in an integrated computational network that solves 
a group-relevant task. Individual bees observe informationally-rich dances, and 
adjust their behavior in light of what they perceive; but the colony chooses the best 
nest site, for a large range of parameter conditions, by aggregating over individual 



patterns of behavior. Likewise, individual ants join or abandon their position in a 
bridge, in a way that is sensitive to the number of ants currently using the bridge; 
but the colony determines the optimal bridge-length for successful hunting. While 
an account of the independent decisions of individual animals would be interesting, 
it is only by understanding the trade-off between independence and 
interdependence that we can understand what these colonies are doing, and why 
(cf., List et al. 2008) 

There have been speculative extensions of these types of models to human 
decision-making. For example, John Dyer and colleagues (2008) has argued that 
the motion of crowds is likely to be driven by a computational process like his. But 
while there is a computation at the group-level according to his account, the 
relevant forms of motion-guidance aren’t used by the group for any group-relevant 
ends. Bryce Huebner (2014, 69ff) has suggested that a stock market could display 
computational properties that were best modeled in terms of a competitive 
algorithm; but he worries that all of the relevant representations would be used for 
individual decision-making, not for any sort of collective decision-making. And 
Bernard Grofman and Scott Feld (1988) have argued that democratic group 
decisions could arise through a process of Condorcet aggregation (using a process 
of recruitment like the one suggested by List et al 2008). But here too, there is little 
evidence that successful democratic decision-making relies on these specific kinds 
of computations.  

Against this backdrop, it’s worth asking what other kinds of system-level 
computations might lead to the production of group-level behavior in human 
groups, and whether any of these might yield stable forms of collective mentality. 
Much of the existing research on distributed cognition has focused on the ways that 
representations are passed between small numbers of people to yield higher-level 
regularities. For example, research on collaborative retrieval (Harris et al 2011, 
2013, 2014; Michaelian & Sutton 2013) and transactive memory (for reviews, see 
Ren & Argote 2011; Theiner 2013) has examined the ways that groups of two or 
three people broadcast and receive semantic information to one another. These 
projects often proceed at a relatively high level of abstraction; and as Mateo 
Colombo (2015) suggests, emerging research on hierarchical Bayesian algorithms 
may offer an interesting, biologically plausible model of collective learning and 
agency that can be used to flesh out these proposals. But at present, this suggestion 
remains quite speculative.  

One way of moving forward on this speculative suggestion is to examine 
cases of top-top cognition. As Andreas Roepstorff and Chris Frith (2004) argue, we 
are able to communicate with one another (both linguistically and non-
linguistically), in ways that allow us to draw one another into patterns of mutual 
alignment. Where this process is successful, it does seem to yield shared 
representations of a situation or an event, and there is some recent evidence that 



these similarities are grounded in patterns of overlapping neural activity (Clark 
2015, 286-287; Friston & Frith 2015; Gallotti, Fairhurst, & Frith 2017; Dikker et al 
2017). Perhaps this is a way of linking the top-level structures of multiple 
interacting agents, and perhaps this allows for the possibility of treating people as 
computational nodes in an integrated computational network. At present, this 
remains a theoretically interesting possibility, which is only beginning to be 
demonstrated empirically—but it does recommend a fruitful path for future 
exploration, which we examine in the final section of this paper.  
 
5. A Speculative Conclusion 

 
It would be incredibly interesting if human forms of collective mentality 

were implemented by powerful forms of machine learning, such as hierarchical 
Bayesian algorithms. But which algorithms produce collective mentality, and 
whether they are the same kind across forms of biological cognition, are open 
empirical questions. We contend that mentality is likely to emerge wherever self-
organizing systems achieve enough unity and stability to process information that 
is relevant to group-level ends, and to adjust group-level behavior in accordance 
with a group’s representation of the world. This can be achieved in many different 
ways, and this is why we refrain from making claims about the class of algorithms 
and the kinds of representations that are necessary for collective mentality. We are 
unaware of cases where group-level cognitive capacities have been shown to 
depend on hierarchical Bayesian algorithms, but ants and honeybees do exhibit 
forms of collective mentality implemented by consensus algorithms and winner-
take-all algorithms. And while it would be premature to attempt to pull all forms of 
collective mentality under the hierarchical Bayesian umbrella, there are interesting 
questions in this vicinity. 

Collective behavior of various sorts is ubiquitous in human life. For as long 
as we have been human, we have been immersed in a integrated network of 
interaction, which is integral to the human phenotype, and to the possibility of 
human lifeways (cf., Jebari & Huebner in press); furthermore, there is good reason 
to believe that our ability to flexibly exploit the forms of collective computation 
that are carried out within this network structure are central to our capacity to 
sustain increasingly complex social systems and acquire increasingly complex 
understandings of the world (Dedeo 2013; Goldstone & Theiner 2017). One of the 
major attractions of the hierarchical Bayesian framework in computational 
neuroscience is that it promises to unify within a single framework the mosaic of 
algorithms that have been proposed to explain neural function. And one tantalizing 
possibility is that something similar could be achieved with respect to human social 
systems. As we noted in the previous section, the research investigating the nature 
of human collective computation has been largely exploratory, emphasizing the 



vast array of different (and perhaps complementary) mechanisms that plausibly 
undergird the various dimensions of human sociality. We believe the question of 
unification should be taken up more seriously; it is possible that there is a universal 
algorithm characterizes the basic processing structure of all human social 
systems—and it may be a hierarchical Bayesian process, or something like it. If this 
were established, it would revolutionize sociology, political science, and public 
policy. And recent empirical results suggest a way of moving forward on this 
approach to collective computation.  

We already know that human social systems preserve certain network 
properties across scales, and that this is a feature of human social organization 
(Derex & Boyd 2015, 2016; Salali et al 2016). Analyzing a range of data involving 
multiple different measures of social network structure, Wei-Xing Zhou and 
colleagues (2005) have found that social networks across the developed world 
observe a hierarchical fractal-like scaling ratio, with units at each level of analysis 
constituted by ~4 units from the level below. Specifically, they show that small 
groups composed of ~4 closely-associated individuals tend to associate with ~3 
other groups of similar size, forming larger, more loosely associated groups. Larger 
groups then associate with ~3 similarly structured groups, etc. If they are right that 
various human groups conform to this scaling property, this would suggest that 
human social systems tend to form self-similar structures at multiple levels of 
organization.  

This scaling property has been confirmed in the social organization of 
contemporary hunter-gatherers (Hamilton et al. 2007) as well as in online 
multiplayer games (Fuchs et al. 2014) indicating that it may be a universal feature 
of human sociality. Perhaps this kind of structure may have developed to deal with 
the demands of maintaining efficient resource and information exchange (Hamilton 
et al. 2007), and to preserve collective adaptability in the face of changing 
environments (Flack et al. 2013). If basic forms of human sociality are adapted to 
this structure, in a way that parallels the phenomena in macaques that we discussed 
above, then perhaps the ability to exploit the information that is encoded in the 
dynamics of social interaction may prove to be an essential feature of efficient 
information processing across human groups. If this is right, then hierarchical 
network structure may function analogously to a hierarchical neural network, with 
information acquired at the individual level being aggregated and refined as it 
spreads through the network. Put differently, something like the following might 
be the case: network structure may provide constraints on the flow of information 
through human groups of various sizes; patterns of informational exchange within 
these structures may then yield local sources of knowledge, which can be fed 
upward through the group (using an aggregation function that strikes a balance 
between independence and interdependence); finally the information encoded in 
these aggregated signals may feed downward into individual-level computations, 



allowing individuals to locate themselves within larger structures, and to update 
their behavior in light of this information. This process would yield a bidirectional 
flow of information, which would allow groups of interacting individuals to search 
for the linked set of hypotheses that would make the most sense of the group’s 
current situation.  

If this analogy goes through, then collective computation in humans may 
reflect the implementation of the same type of hierarchical information processing 
scheme that is found in the brain. If so, it may be possible to develop a unified 
theory of human collective computation that is continuous with computational 
neuroscience. More research would be necessary to confirm this hypothesis; but no 
matter how the data turn out, we will gain a much clearer understanding of the 
computational structures that support patterns of stability, and patterns of variation 
in human sociality. Discovering a basic computational structure would have 
significant ramification for the design of effective social interventions, and for the 
development of efficient social institutions. Likewise, if no basic computational 
structure can be found, understanding the diversity inherent in human collective 
computation will have equally important consequences for good social design. 
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