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1 Introduction

There are many repeated game settings in which players move sequentially or asynchronously.

For example, capacity decisions in an oligopolistic industry which involve some inertia or

costly upgrading are difficult to synchronize. Maskin and Tirole (1988a) consider a model in

which each firm sets capacity given the (temporarily) fixed capacity of rivals.1 Birth/death

processes in evolutionary models provide another example. Replacements occur at indepen-

dent, random times, hence are generically asynchronous.

Since most asynchronously repeated games, including the alternating move game, are

stochastic games, Folk Theorems of Dutta (1995) and later Yoon (2001) show that if a full

dimensionality condition holds, then every stage game payoff above each player’s effective

minmax can be implemented by Subgame Perfect equilibrium when the players are suffi-

ciently patient. Hence, asynchronous timing does not, by itself, reduce the multiplicity of

equilibria.2

The present paper takes a different route by examining multiplicity of equilibria in alter-

nating move games when the strategy profiles are Markov Perfect equilibria (MPE). MPE

are Subgame Perfect equilibria in Markov strategies. The use of Markov strategies rules out

the possibility to extend memory beyond what is encoded in the states of the game. MPE is

a natural solution concept when players find it difficult or costly to coordinate their actions

on the past history of play. For example, Bhaskar and Vega-Redondo (2002) show that

any Subgame Perfect equilibrium of the alternating move game in which players’ memory

is bounded and their payoffs reflect the costs of strategic complexity must coincide with a

MPE.

Generally, Markov Perfect equilibria in games with alternating moves are different than

in games with simultaneous moves. In the latter case, MPE are trivial. With simultaneous

moves, there are no non-trivial state variables, and so Markov Perfect equilibria are merely

repetitions of Nash equilibria of the stage game.3 In the case of alternating moves, however,

non-trivial payoffs (different from stage game equilibrium payoffs) are sustainable. In Section

3, we show that MPE can support mutual cooperation in some Prisoner’s Dilemma games.

Therefore, while the restriction to Markov Perfect equilibria pares down the equilibrium set

in both the asynchronous and the simultaneous move repeated game, the state variables in

the asynchronous model admit enough flexibility to support desirable outcomes which could

not arise in MPE of the simultaneous move game.

1See also Maskin and Tirole (1987, 1988b).
2Lagunoff and Matsui (1997) prove a uniqueness result in the special case in which the stage game is a

pure coordination game (a game which violates the full dimensionality restriction).
3In that case, well known results of Rosenmüller (1971), Wilson (1971) and Harsanyi (1973) establish that

the number of Nash equilibria in any normal form (stage game) is generically finite with respect to payoffs.
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Hence, how “much” multiplicity is there with regard to Markov Perfect equilibria of

asynchronous choice games? A recent result of Haller and Lagunoff (2000) (HL from here

on) shows that Markov Perfect equilibria are generically finite in the state contingent payoffs

of the stochastic game.4 The HL theorem would appear to apply to asynchronous choice

games such as alternating moves. Yet, it does not.

To see why, notice that HL’s result applies to all stochastic games with n players, k states,

and `(j) action profiles in state j = 1, . . . , k. Letting q =
∑k

j=1 `(j), the HL result shows that

for all games except possibly a set of stochastic game payoff vectors with Lebesgue measure

0 in IRnq, the set of MPE is finite.

The problem in terms of the present model, is that all alternating move games are con-

tained in a Lebesgue measure 0 subset of IRnq! Consider, for example, the alternating move

game derived from the stage game in Figure 1.

2
L R

T 5, 3 20, 2
1 M 10, 1 0, 4

B 11, 6 9, 18

Figure 1

At the beginning of odd periods, player 1 has a chance to revise his action, whereas at

the beginning of even periods player 2 has a chance to revise her own action. In an odd

period, if, for example, player 1 takes T and if player 2 took L in the previous period, then

the realized payoff of this period to player i = 2 is u2(T, L) = 3. Payoffs in even periods

are similarly defined. The state space is the set {T, M, B, L, R}, corresponding to possible

actions taken in the previous period. If the current state is R, for example, then this means

that player 2 moved in the previous period and took action R. A Markov strategy for this

game is a mapping for each player from states to mixed strategies.

The payoffs in the alternating game represent a point in IR24. To see this, observe that

Player 1 has three moves when the state is L or R, and none when the state is T, M or B.

By contrast Player 2 has two moves when the state is T, M , or B, and none in the other

states. Hence, `(T ) = `(M) = `(B) = 2, and `(L) = `(R) = 3, and so q = 12. Consequently,

there are nq = 24 payoff dimensions in this game.

The “full dimensional” Genericity Theorem of HL asserts that on a set of full Lebesgue

measure in IR24, there are finitely many MPE of the alternating move game. A key to that

4Subsequently, Herings and Peeters (2004) applied homotopy theory to select and compute MPE. As a
by-product, they obtained that generically, the number of MPE is odd.
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result, it turned out, is the ability to rewrite stochastic game payoffs as a linear function of

the 24 × 1 state-dependent payoff vector of the stochastic game. This facilitates the use of

standard perturbation techniques to prove the genericity result. Unfortunately, that result

does not apply to asynchronous move games. In IR24, the repeated alternating move game

is clearly not a “generic” stochastic game: for instance, the payoff profile (5, 3) from actions

(T, L) may be reached from both state L and state T . This creates redundancies in the

payoff space in IR24. In fact, the alternating move game admits not more than 12 degrees of

freedom — the dimension of the original stage game.5

This paper therefore proves a lower dimensional genericity theorem. Our main result

(Theorem 1) asserts that the set of Markov Perfect equilibria for the alternating move game

is generically finite in the set of stage game payoffs. Applying this paper’s result to the

example would show indeed that there are finitely many MPE on a generic set in IR12, rather

than in IR24. We also establish a secondary result that the set of fully mixed MPE, i.e., those

MPE in which individuals choose completely mixed strategies in each state in which they

have a move, is generically empty (Theorem 2). Hence, generically, the set of MPE will be

finite, and each such MPE will exclude some action from its support in some state.

The key to the main result is to encode payoffs in such a way that each Markov strategy

profile induces a Markov transition matrix that has lower dimension than in the standard

stochastic game formulation. The encoding entails that states be identified with stage game

strategies, and, consequently, asynchronous move game payoffs may be expressed as linear

functions of the stage game payoff vector. With this encoding, a modification of standard

generic finiteness techniques of Debreu (1970) can be applied.

Apparently, a crucial feature of the alternating move game is that stage game actions

play a dual role since they also define the current state. For this reason, this encoding does

not extend to other stochastic games. Nevertheless, we hope the current result might yield

some insight toward a general “lower dimensional” genericity theorem with applications to

other nongeneric yet useful stochastic games. Exactly how to proceed is an open question.6

An extension of the current result to asynchronous games with more than two players is

straightforward. But we refrain from doing so, because there are numerous ways to write

down asynchronous models with n > 2 players and the general n-player asynchronous game

is notationally intensive. Since the logic applies directly, such an extension would therefore

lengthen the paper without adding much insight. 7

5There is an alternative “standard representation” of a stochastic game in which action spaces are invariant
across states by creating redundant moves. However, this creates an additional layer of redundancy by
replicating payoffs in those states in which a player does not have a “real” move.

6This explains, in part, why our attempts at a meta-theorem encompassing both this and the HL (2000)
result have failed so far.

7For other types of games and equilibrium concepts, some lower dimensional genericity results exist.
Examples are Govindan and McLennan (1999) for extensive game forms, and Park (1997) for signalling
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The balance of this paper is organized as follows. Section 2 defines the canonical alter-

nating move game, defines MPE, and states the main result. Section 3 gives an example of

a 2× 2 in which we show that cooperation can be sustained in MPE if the game is a certain

Prisoner’s Dilemma game. We also show that completely mixed MPE cannot hold generi-

cally, providing some useful intuition for the theorem. Section 4 elaborates on an alternative

specification of payoffs that facilitates the proof. Section 5 gives the proof. Some of the

details of the proof (i.e., proofs of the lemmata) are contained in the Appendix, Section 6.

2 The Canonical Model

2.1 Preliminaries

Consider the alternating move game associated with the stage game given as G = 〈S1, S2, u1, u2〉
where Si, i = 1, 2, is a finite set of actions of player i, and, letting S = S1 × S2, ui : S → IR

is the utility function of player i. Alternatively, let Ui denote i’s |S|×1 utility vector so that

Uis = ui(s). Then U = (U1, U2) is an element of IR2|S|.

After the first decision node, which occurs for all players at time zero, the two players

alternately have chances to revise their actions. At the beginning of odd periods, player 1

has a chance to revise his action, whereas at the beginning of even periods player 2 has a

chance to revise her own action. In an odd period, if player 1 takes s1 and if player 2 took s2

in the previous period, then the realized payoff of this period to player i = 1, 2 is ui(s1, s2).

Payoffs in even periods are similarly defined. Players have common discount factor δ with

0 ≤ δ < 1.

Let st = (st
1, s

t
2 ) denote the profile of actions in period t. As in ordinary repeated games,

individuals seek to maximize the discounted sum
∑∞

t=0(1− δ)δtui(s
t). Let H1 denote the set

of all histories ending in odd numbered periods and H2 denote the set of all histories ending

in even numbered periods. Let H = H1∪H2. A standard notation denotes the history ending

in period t by ht. A strategy for player i = 1, 2 is a function fi : Hj → ∆(Si) where ∆(Si)

denote the set of mixed strategies on Si. We write fi(si|h) to denote the probability weight

assigned si when the current history is h. A Subgame Perfect Equilibrium f ∗ = (f ∗1 , f ∗2 ) is

a strategy profile in which for each i = 1, 2, f ∗i is a best response to f ∗j , j 6= i, after every

history h ∈ H.

We restrict our attention to the special class of Perfect Equilibria known as Markovian or

Markov Perfect Equilibria (MPE). A Markov Perfect Equilibrium is a Perfect Equilibrium in

Markov strategies, that is, strategies that depend only on payoff relevant information. In the

games.
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alternating move game the payoff relevant state at time t is the action st−1
j of the previous

mover j at time t− 1. It will later prove useful to distinguish states from actions, although

they are in one-to-one correspondence. Formally, a Markovian strategy can be expressed

(abusing notation somewhat) as a strategy fi : Sj → ∆Si. We use the notation fj(sj|si) to

denote the probability that j assigns to sj given that the current state (the action taken by

the previous mover) is si.

Rewriting the expression for payoffs now as a function of only the state rather than the

entire history gives for i = 1 the recursive expression,

V1(f |si) =
∑
sj

fj(sj|si) [(1− δ)u1(si, sj) + δV1(f |sj)] (1)

A similar expression for i = 2 is obtained by switching subscripts.

A Markov Perfect equilibrium f ∗ = (f ∗1 , f ∗2 ) is a strategy profile in which for each i = 1, 2,

after every state sj ∈ Sj,

Vi(f
∗|sj) ≥ Vi(fi, f

∗
j |sj)

for any possibly non-Markov strategy fi. Clearly, a Markov Perfect Equilibrium is a Subgame

Perfect equilibrium in which the strategies are Markovian. Existence of Markov Perfect

Equilibria is a standard result. See, for example, Friedman (1986) and Fudenberg and Tirole

(1991).

2.2 Results

The main result of this paper is:

Theorem 1 The set of MPE is a finite set on a full measure subset of U ∈ IR2|S|.

Notice, first, that the conclusion does not depend on the discount factor. The set of

MPE is finite regardless of how patient are the players. Naturally, the players’ patience does

determine which finite set of payoffs can be supported. Second, notice that, unlike in normal

form games, strategies do not enter linearly in payoffs. Since players’ payoffs are expected

discounted sums of stage game payoffs, players’ payoffs are shown to be rational functions

of Markovian strategies. For this reason, a direct application of Harsanyi’s (1973) proof is

not possible. The logic is elaborated on in Section 4 where we give the Proof.

5



One may consider, as suggested by a referee, alternating move games where the set

of actions available to a player depends on the previous choice of the other player. Like in

models of abstract economies or generalized games à la Debreu (1952) and Arrow and Debreu

(1954), there exist constraint correspondences η1 : S2 → S1 and η2 : S1 → S2. When it is

Player i’s turn to move and Player j’s previous action was sj, then the support of Player i’s

randomized choice is restricted to elements in ηi(sj). The proof of Theorem 1 is structured

in such a way that it yields the following

Corollary 1 In an alternating move game where supports are restricted by exogenously given

constraint correspondences, the set of MPE is finite on a full measure subset of U ∈ IR2|S|.

The proof is given at the end of Section 5.

A secondary, but still interesting result concerns the generic impossibility of completely

mixed Markov Perfect equilibria:8

Theorem 2 The set of completely mixed MPE is empty in a full measure subset of U ∈
IR2|S|.

The proof is straightforward. We leave it for the Appendix. The argument given there does

not imply that all MPE are in pure strategies for a full measure subset of U ∈ IR2|S|. However,

the argument does show that the following holds for a full measure subset of U ∈ IR2|S|: If

f is an MPE, si, s
′
i ∈ Si, si 6= s′i, sj, s

′
j ∈ Sj, sj 6= s′j, then fi(sj|si), fi(sj|s′i), fi(s

′
j|si), fi(s

′
j|s′i)

cannot all be positive.

8We are grateful to a referee for suggesting that such a result should hold.
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3 An Example

We illustrate the logic of the result as well as some key differences between MPE of asyn-

chronous and simultaneous play. Consider the stage game below.

1

2
C D

C a1, a2 b1, d2

D d1, b2 c1, c2

Figure 2

We examine some properties of MPE of the alternating move version of the stage game

in Figure 2. Fix a strategy profile f and let βi = fi(D|D) denote the probability that each

player plays D whenever the other did. Let αi = fi(C|C) denote the probability that C is

played by i after j chose C.

Let ViC denote the value of player i’s randomization when it is his turn to move and

player j chose C in the previous period. Let WiC denotes the value to i when it is the other

player’s turn to move and i chose C previously. Define ViD and WiD similarly. Using the

expression for payoffs in (1), observe that

ViC = αi ((1− δ)ai + δWiC) + (1− αi) ((1− δ)di + δWiD) (2)

and

ViD = βi ((1− δ)ci + δWiD) + (1− βi) ((1− δ)bi + δWiC) (3)

Example 1. Prisoner’s Dilemma. Suppose the stage game is a Prisoner’s Dilemma game,

i.e., di > ai > ci > bi for each i, and suppose ai + ci > bi + di for each i. Then, unlike

in simultaneous move games, we show that there is a MPE that sustains long run average

payoffs arbitrarily close to ai if δ is close to one.

To see this, consider the following strategy. Let αi = 1 for both i. Each player chooses

C for sure when the other chose C previously. For each i and each j 6= i, let

βj =
(ci + di)− (ai + bi)

(ai + di)− (ci + bi)

It is easy to verify that 0 < βj < 1 for each j. To verify that this Markovian strategy is

an MPE, we verify that it satisfies the three conditions which characterize MPE converging
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globally to (C, C):

ai > (1− δ)di + δWiD (4)

ViD = (1− δ)ci + δWiD = (1− δ)bi + δai (5)

WiD = βj[(1− δ)ci + δViD] + (1− βj)[(1− δ)di + δai] (6)

The first inequality defines the incentive constraint to remain in (C,C) once it is reached.

The second is the equality constraint for using a mixed strategy βi. The last is the payoff

after choosing D when the other player will use his mixed strategy βj. If ai +ci > bi +di then

all three conditions are satisfied for the MPE which we constructed. Under this strategy, all

payoffs above converge to ai as δ → 1.

Example 2. No Generically Mixed MPE. Finally, we show that strictly mixed MPE are

generically impossible. That is, except on a set of payoffs (ai, bi, ci, di) with measure zero in

IR4, there are no MPE in which any player uses a strictly mixed strategy, i.e., there are no

MPE in which 0 < αi < 1 and 0 < βi < 1 for any i.

If 0 < αi < 1, i.e., i strictly randomizes after j chose C, then a standard property of

equilibrium is that:

ViC = (1− δ)ai + δWiC = (1− δ)di + δWiD, (7)

since i must be indifferent between C and D in state C. Similarly, if 0 < βi < 1, i.e., player

i strictly randomizes after j chose D then

ViD = (1− δ)ci + δWiD = (1− δ)bi + δWiC . (8)

However, equations (7) and (8) are mutually consistent only if di + bi = ai + ci. The 4-

tuples of payoffs for which di + bi = ai + ci span a 3-dimensional hyperplane in IR4. This

conclusion illustrates the general result of Theorem 2. It contrasts with the fact that repeated

2× 2 games with synchronous moves have completely mixed MPE for a set of payoff vectors

U ∈ IR8 which has positive (but not full) measure.

4 Payoff Representation

In this example, dynamic payoffs V are linear functions of stage payoffs. It is not hard

to show that this is generally the case. Generally, an alternative to the expression (1) for

payoffs will prove more convenient. Observe that any Markovian profile f may be expressed

as a Markov chain on the space of profiles S. Let P i
f , i = 1, 2 denote an S × S transition

matrix in which fi(s
′
i|sj) denotes the element corresponding to row s and column s′. The
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rows are then indexed by the current states, while the columns are indexed by subsequent

states. For each profile ŝ define the set of player i’s adjacent states of ŝ by:

Θi(ŝ) ≡
{
s ∈ S

∣∣∣ ŝj = sj

}

In words, the adjacent states are action profiles from which the profile s can be reached by

Player i by unilateral decision. Clearly s ∈ Θi(s
′) iff s′ ∈ Θi(s). It is clear that if P i

f is any

transition matrix derived from a strategy fi, then for any two adjacent profiles s, s′ we must

have for any column of the matrix that the entries corresponding to the two rows s and s′

are equal.

As an example, suppose that in the stage game above in Figure 2, both players choose a

deterministic Markovian strategy in which each player chooses C given that the other chose

C, player 2 chooses D after 1 chose D, and player 1 chooses C after 2 chose D. In this case,

the Markov chain may be expressed as the arrows of a directed graph as seen in Figure 3a

below. The corresponding transition matrix for each player is given by Figure 3b.

a1, a2 ← b1, b2

↑ ↑
d1, d2 → c1, c2

Figure 3a

a d c b a d c b

P1
f =




1 0 0 0
1 0 0 0
0 0 0 1
0 0 0 1


 , P2

f =




1 0 0 0
0 0 1 0
0 0 1 0
1 0 0 0




Figure 3b

Let π denote any 1 × S distribution of initial profiles s = s0. Let π(s) denote the value

of the sth component of π, and let πs denote the particular (Dirac or unit) vector which

assigns 1 to component πs(s) and 0 elsewhere. Then i’s payoff of any Markovian profile f

when it is i’s turn to move given j’s choice of sj in the previous period is given by:

Vi(f |sj) = πs ·
[ ∞∑

t=0

(1− δ)δ2t[P i
f · Pj

f ]
t · P i

f · [I + δPj
f ]

]
· Ui (9)

where I is the S×S identity matrix, πs is the initial distribution placing unit mass on initial

state s, and Ui denotes the S × 1 vector of utilities over profiles s ∈ S. Let
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Ai
f =

[ ∞∑

t=0

(1− δ)δ2t[P i
f · Pj

f ]
t · P i

f · [I + δPj
f ]

]

= (1− δ)[I − δ2(P i
f · Pj

f )]
−1 · P i

f · [I + δPj
f ]

(10)

where the inverse [I−δ2(P i
f ·Pj

f )]
−1 exists because [I−δ2(P i

f ·Pj
f )] is a matrix with a strictly

dominant diagonal. Equation (9) can now be rewritten as

Vi(f |sj) = πs · Ai
f · Ui. (11)

From (11) it is clear that although the dynamic payoff is not multilinear in strategy profiles, f ,

it is linear in stage game payoffs Ui. The proof of the main result utilizes this key observation.

It follows then that a certain Jacobian matrix derived from the first order conditions of (11) is

linear in stage game payoffs. After fixing supports (carriers) and normalizations of Markovian

profiles and narrowing the domain of stage game payoff matrices first to small neighborhoods

and further to sections of those, we arrive at a local and lower-dimensional genericity result,

using the Implicit Function Theorem and Sard’s Theorem. Application of Fubini’s Theorem

helps lift the result to higher dimensions. A countability argument turns the local result

into a global one. While the conclusion of Sard’s Theorem is about regular values, it can be

converted into a statement about locally isolated points which, combined with compactness,

yields finiteness. The possible co-existence of MPE with different carriers complicates, but

does not invalidate the argument.

5 Proof of the Main Result

Let E(U) denote the set of MPE given payoff vector U . Theorem 1 asserts that E(U) is a

finite set for almost all U ∈ IR2|S|. The proof is established in a series of steps. We begin with

some necessary notation which is required for partitioning the set of MPE by their supports.

Step 1. Fixed Support

Let F = F1×F2 denote the set of all Markov profiles. Clearly, F is a compact and convex

subset of IR2|S|. Since MPE are defined by weak inequalities, with payoffs given by (11) being

smooth functions of f (as well as Ui), it follows that E(U) is a closed, and therefore compact

subset of F .

We follow Harsanyi (1973) and partition the set F with respect to carriers or supports.

The support of fi ∈ Fi is defined as the set Ci(fi) = {s ∈ S : fi(si|sj) 6= 0}. A joint Markov

strategy f = (f1, f2) ∈ F has support C(f) = (C1(f1), C2(f2)).
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Given a fixed support C = (C1, C2), let FC denote the set of f ∈ F with support

C = (C1, C2), i.e., f ∈ FC if and only if C = C(f). Observe that FC is the interior of a face

of F , hence is an open subset of IR|C1| × IR|C2|.

Let EC(U) denote the set of MPE with support C. Observe that

⋃

C

FC = F and
⋃

C

EC(U) = E(U). (12)

For the remainder of the proof, we therefore fix a support, C, and then proceed to show that

EC(U) is a finite set on a full measure subset of U ∈ IR2|S|. Since there are only finitely

many supports, the conclusion of the Theorem must then follow from (12).

Step 2. Full Rank Conditions

For any f ∈ FC , define Bi
f (si|sj) to be the S × S matrix given by

Bi
f (si|sj) =

∂

∂fi(si|sj)

[
Ai

f

]
. (13)

Note that because fi(si|sj) for (si, sj) ∈ Ci is just an interior probability number, the partial
∂

∂fi(si|sj)
[·] is well defined.

Given the support C, fix a normalization for this support. Specifically, for each i and

sj ∈ Sj, we fix some action d(sj) ∈ Si for Player i. Let Di = {(d(sj), sj) : sj ∈ Sj} and

D = (D1, D2). Notice that |D1| = |S2| and |D2| = |S1|. Varying sj ∈ Sj for j 6= i, i = 1, 2,

we pin down |S1|+ |S2| normalizing equations satisfying

fi(d(sj)|sj) = 1− ∑

si 6=d(sj)

fi(si|sj), d(sj) ∈ Si, sj ∈ Sj, j 6= i, i = 1, 2. (14)

We point out two implications of this normalization for the matrix Bi
f (si|sj) defined in (13).

First, using the equations in (14), the probability fi(si|sj) also appears when fi(d(sj)|sj)

appears in the matrix Bi
f (si|sj). Second, by varying the fi(si|sj) terms, every term in the

matrix Bi
f (si|sj) is potentially affected.

Let Ri = Ci\Di. Notice that Ri = ∅ conforms to the special case in which Player i always

chooses a pure strategy in every state. Clearly the set of pure strategy MPE must be finite.

The case of, say, R1 = ∅ and R2 6= ∅ can also be handled analogously to the case of Ri 6= ∅
for both i = 1 and i = 2. Hence, we restrict attention to supports in which Ri 6= ∅ for both

i. Notice |R1| = |C1| − |S2| and |R2| = |C2| − |S1|.

The first, and perhaps most critical step in the proof is:
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Lemma 1 Let f ∈ FC. Then for each i,




πs1

...

πs|Ri|




·Bi
f (si|sj) has full rank of |Ri|.

Note that in the expression above, the bracketed term is an |Ri| × |S| matrix (since each πs

is the vector that places a 1 in state s ∈ Ri and zeroes elsewhere.) Lemma 1 is a key step

since it establishes full rank with respect to the “lower dimensional” set Ri. The Proof of

the Lemma, as well as the proofs of all other Lemmata, is contained in the Appendix.

Now define, for each i = 1, 2, the Jacobian map Ji : FC × IR|S| → IR|Ri| of the payoff

function Vi on the support C by: For all s ∈ Ri,

Ji s (f, Ui) = πs ·Bi
f (si|sj) · Ui. (15)

Lemma 2 Let f ∈ FC. Then for all Ui ∈ IR|S|,

DUi
Ji(f, Ui) has full rank of |Ri|.

Observe that for the mapping J defined by J(f, U) ≡ (J1(f, U1), J2(f, U2) ), it clear that

DUJ is of the block matrix form

DUJ(f, U) =




DU1J1(f, U1) 0

0 DU2J2(f, U2)




.

Figure 3

Consequently, Lemma 2 implies that DUJ has full rank of |R1|+ |R2|.
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Step 3. Locally Isolated MPE.

Lemma 3 Fix (f ∗, U∗) ∈ FC × IR2|S| such that J(f ∗, U∗) = 0. Then, for each i there exists

a partition, (Pi, Qi), of Ci (i.e., Pi ∪Qi = Ci and Pi ∩Qi = ∅) with the following properties:

1. |Pi| = |Ri| and |Qi| = |Ci| − |Ri| with corresponding notation for subvectors of U∗,

U∗
P ≡ (U∗

P1
, U∗

P2
) and U∗

Q ≡ (U∗
Q1

, U∗
Q2

),

2. there are open sets F , UP and UQ that contain f ∗, U∗
P and U∗

Q, resp., and a locally

smooth mapping Ψ : F ×UQ → UP ×UQ such that for all (f, UQ) ∈ F ×UQ, the vector

(UP , UQ) = Ψ(f, UQ) is the unique solution to DUJ(f, (UP , UQ)) = 0.

As before, the proof is in the Appendix. For the next two lemmata, fix (f ∗, U∗) satisfying

the properties of Lemma 3, and fix the corresponding neighborhoods F , UP and UQ and the

smooth mapping Ψ.

Call (f, UQ) ∈ F×UQ an f -regular point of Ψ, if ∂Ψ/∂f has full rank |R1|+|R2| at (f, UQ).

Call (f, UQ) an f -critical point of Ψ otherwise. Call (UP , UQ) ∈ UP × UQ an f -critical value

of Ψ, if (UP , UQ) = Ψ(f, UQ) with (f, UQ) an f -critical point of Ψ.

Lemma 4 The set of f -critical values of Ψ has Lebesgue measure zero in UP × UQ.

Clearly, then, the set of f -regular values has full Lebesgue measure in UP × UQ.

Lemma 5 Let U be an f -regular value of Ψ. Then, the set

{f ∈ F : J(f, U) = 0}

consists of isolated points.

Step 4. Extension to the Compact Domain.

Lemma 6 The foregoing definition and analysis of the mapping J can be extended to a

domain GC × IR|S| where GC ⊆ IR|C1| × IR|C2| is open and contains the closure of FC.

13



Let us fix a set GC with the properties asserted in Lemma 6. Without loss of generality,

we may assume that a set as above F is an open box with rational-valued end points. Thus,

by varying over all pairs (f ∗, U∗) with J(f ∗, U∗) = 0 and suitable partitions (P,Q), we obtain

a countable collection of open sets {Fn}∞n=1 and a corresponding sequence of locally smooth

functions {Ψn} and open sets {Un
Q} and {Un

P}, with Ψn : Fn × Un
Q → Un

Q × Un
P such that:

(a) The set

WC ≡ IR2|S|\
(⋃

n

{
U ∈ Un

Q × Un
P : U is an f -critical value of Ψn

})

has full Lebesgue measure in IR2|S|; and

(b) for each U ∈ WC (with WC defined as in (a) ), the set

X (U) ≡ {f ∈ GC : J(f, U) = 0}
consists of isolated points, and each f ∈ X (U) is contained in some Fn.

Step 5. Generic Finiteness.

Because all points in X (U) are locally isolated, without loss of generality we take the

open sets Fn sufficiently small so that

|Fn ∩ X (U)| = 1.

In other words, each such f ∈ X (U) is contained in a distinct Fn.

Lemma 7 For each U ∈ WC, the set X (U) ∩ FC is finite.

Lastly, we establish:

Lemma 8 For each U ∈ WC, EC(U) ⊆ X (U) ∩ FC.

By combining Lemma 7 with Lemma 8, it follows that for each U ∈ WC , the set EC(U)

is a finite set. Finally, recalling that
⋃

C EC(U) = E(U) with the union over finitely many

supports, it follows that E(U) is a finite set whenever U ∈ W =
⋂

C WC . Since each of the

finitely many sets WC has full Lebesgue measure, so has W , which concludes the proof.

Proof of Corollary 1 Let η1 : S2 → S1 and η2 : S1 → S2 be the exogenously given

constraint correspondences that restrict supports in the alternating move game. Set Γi =

{s ∈ S : si ∈ ηi(sj)} for i = 1, 2. Confining the proof of Theorem 1 to supports C = (C1, C2)

with C1 ⊆ Γ1 and C2 ⊆ Γ2 yields the result.
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6 Appendix

Proof of Lemma 1 Observe that

Bi
f (si|sj) =

∂

∂fi(si|sj)

[
Ai

f

]

=
∂

∂fi(si|sj)

[
(1− δ)[I − δ2P i

f · Pj
f ]
−1 · P i

f · [I + δPj
f ]

]

= (1− δ)

(
[I − δ2P i

f · Pj
f ]
−1 ·

[
∂P i

f

∂fi(si|sj)

]
· [I + δPj

f ]

− [I − δ2P i
f · Pj

f ]
−1·

·
[
−δ2 ∂P i

f

∂fi(si|sj)
· Pj

f

]
· [I − δ2P i

f · Pj
f ]
−1 · P i

f · [I + δPj
f ]

)

= (1− δ)[I − δ2P i
f · Pj

f ]
−1 · [ ∂P i

f

∂fi(si|sj)
]

·
[
I + δ2Pj

f · [I − δ2P i
f · Pj

f ]
−1 · P i

f

]
· [I + δPj

f ].

(16)

In the definition of Bi
f (si|sj),

∂Pi
f

∂fi(si|sj)
denotes the entry by entry derivative of P i

f with

respect to fi(si|sj). The term
∂Pi

f

∂fi(si|sj)
is a |S|× |S| matrix that assigns value 1 to the entries

in P i
f in column s = (si, sj) in which the row profiles s′ are adjacent to profile s, i.e., those

rows s′ in which s′ ∈ Θi(s). It also assigns value −1 to entries of column (d(sj), sj) which are

adjacent to profile s (which are also, by construction, adjacent to profile (d(sj), sj)). Zeroes

occur everywhere else in the matrix. Hence, this matrix has the form:

∂P i
f

∂fi(si|sj)
=




0 0 · · · · · · · · · 0 0

0 0 · · · · · · · · · 0 0

0 1 0 · · · 0 −1 0

0 1 0 · · · 0 −1 0
...

...
...

...
...

...

0 1 0 · · · 0 −1 0

0 0 · · · · · · · · · 0 0
...

...
...

...
...

...

0 0 · · · · · · · · · 0 0




Figure 4
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Let Λs(i) denote the 1 × |S| row vector πs · [I − δ2P i
f · Pj

f ]
−1 · [ ∂Pi

f

∂fi(si|sj)
]. Now let as′s′′

denote an entry in matrix [I − δ2P i
f · Pj

f ]
−1 =

∑
t δ

2t(P i
f · Pj

f )
t. Given the form taken by

matrix
∂Pi

f

∂fi(si|sj)
in Figure 4 one can verify that

Λs(i) =


0, . . . , 0,

∑

s′∈Θi(s)

as′s, 0 . . . , 0,− ∑

s′∈Θi(s)

as′s, 0, . . . , 0


 (17)

with potential nonzero entries in the sth and the (d(sj), sj)th position.

We assert that
∑

s′∈Θi(s) as′s 6= 0. To see why, observe that the entries as′s′′ are nonnegative

since they are discounted sums and products of probability numbers. Moreover, ass ≥ 1 since

the first term in the sum
∑∞

t=0 δ2t(P i
f ·Pj

f )
t is the identity matrix I. Finally, recall that Θi(s)

is the set of profiles s′ reached by player i’s unilateral departure from s in the stage game,

and so s ∈ Θ(s) trivially. Hence,
∑

s′∈Θi(s) as′s 6= 0. In fact,
∑

s′∈Θi(s) as′s ≥ 1.

Therefore, any linear combination
∑

s λsΛs(i) for a nonzero weight vector λ = (λs) cannot

be the zero vector. This means that the |Ri| × |S| matrix Λ(i) ≡ [Λs(i)]
T
s∈Ri

has full row

rank of |Ri|.

Now since [
I + δ2Pj

f [I − δ2P i
f · Pj

f ]
−1 · P i

f

]
=

[
I − δ2Pj

f · P i
f

]−1
,

it follows that [πs]
T
s∈Ri

·Bi
f (si|sj) is given by

Λ(i) ·
[
I − δ2Pj

f · P i
f

]−1 · [I + δPj
f ] (18)

Clearly, since
[
I − δ2Pj

f · P i
f

]−1
is invertible it must have full rank of |S|. Also, since [I+δPj

f ]

has a dominant diagonal, it is invertible and therefore has full rank of |S|.

To complete the result, a standard fact about matrix algebra is used for any two matrices

A and B whose product is defined: Rank(AB) = Rank(A) if B is square and nonsingular.

By this fact, Λ(i) ·
[
I + δ2Pj

f [I − δ2P i
f · Pj

f ]
−1 · P i

f

]
has rank of |Ri| while [I + δPj

f ] has rank

of |S|. Applying this fact again to the product of these two establishes that the matrix in

(18) has full row rank, and so we conclude the proof.

Proof of Lemma 2 Observe that each entry in DUi
Ji(f, Ui) assumes the form

∂Ji s(f, Ui)

∂Ui s′
= πs ·Bi

f (si|sj) · 1s′ (19)

where s = (si, sj) ∈ Ri and 1s′ is the |S| × 1 Dirac vector with a 1 in the s′ position and

zeroes elsewhere.
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Hence, from Equation (18), we have

DUi
Ji = (1− δ)Λ(i) ·

[
I − δ2Pj

f · P i
f

]−1 · [I + δPj
f ] · I (20)

Using once again the fact that for any two matrices A and B whose product is defined:

Rank(AB) = Rank(A) if B is square and nonsingular, gives the result that this matrix has

full row rank of |Ri|.

Proof of Lemma 3 Let (f ∗, U∗) ∈ FC × IR2|S| satisfy J(f ∗, U∗) = 0. By Lemma 2, the

matrix DUi
Ji(f

∗, U∗) has full row rank |Ri| for each i. Relying on the fact that row rank

and column rank of a matrix coincide, we can find a partition (Pi, Qi) of Ci for each i such

that |Pi| = |Ri| and |Qi| = |Ci| − |Ri| with notation U∗
P = (U∗

P1
, U∗

P2
), U∗

Q = (U∗
Q1

, U∗
Q2

) and

such that
∂J

∂UP

has full rank |R1|+ |R2| at (f ∗, U∗).

We therefore apply the Implicit Function Theorem to obtain open neighborhoods F , UP

and UQ of f ∗, U∗
P and U∗

Q, respectively, and a locally smooth mapping φ : F × UQ → UP

satisfying

J(f, (φ(f, UQ), UQ) ) = 0

where UP = φ(f, UQ) is the unique solution to J(f, (UP , UQ) ) = 0 in UP for all (f, UQ) ∈
F × UQ. Consequently, the mapping Ψ : F × UQ → UP × UQ defined by

Ψ(f, UQ) = (φ(f, UQ), UQ) (21)

has the requisite properties.

Proof of Lemma 4 Let Y denote the set of f -critical points of Ψ and Z denote the set

of f -critical values of Ψ. Then Z = Ψ(Y ).

Let φ denote the locally smooth mapping that defines Ψ in Equation (21). For each

UQ ∈ UQ, the restricted map φ(·, UQ) : F → UP is also locally smooth. By Sard’s theorem,

the set of critical values of φ(·, UQ) constitutes a subset, VP (UQ) ⊂ UP , with Lebesgue

measure zero in IR|P1|+|P2|. By construction,

Z = {(UP , UQ) ∈ UP × UQ : UP ∈ VP (UQ)}

We proceed to show first that Z is a measurable set in IR2|S|, and second, using Fubini’s

Theorem, that Z has measure 0 given that it is measurable.
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Regarding measurability of Z, we follow a lead in the proof of Sard’s theorem in Milnor

(1965), p. 18. The set (F × UQ)\Y is open relative to F × UQ and thus Y is closed relative

to F ×UQ. Let Q2|S| denote the set of points in IR2|S| with rational coordinates and let Q++

denote the set of strictly positive rational numbers. For a point (x, r) ∈ Q2|S|×Q++, let Kr(x)

denote the closed ball in IR2|S| with center x and radius r. For any y = (f, UQ) ∈ F×UQ, there

exists (x, r) ∈ Q2|S|×Q++ with y ∈ Kr(x) ⊂ F ×UQ. Hence the closed set Y in F ×UQ can

be covered by a countable family of compact subsets Kn, n ∈ IN, of F ×UQ. For each n ∈ IN,

Ln ≡ Ψ(Kn) is a compact subset of Z and Z = Ψ(Y ) = Ψ(
⋃

n Kn) =
⋃

n Ψ(Kn) =
⋃

n Ln.

Hence Z is a countable union of compact sets and therefore measurable.

Now set Z(UQ) = {UP ∈ UP : (UP , UQ) ∈ Z} for each UQ ∈ UQ. An element UP ∈ UP

is a critical value for the mapping φ(·, UQ), if there exists a critical point f ∈ F of φ(·, UQ),

with UP = φ(f, UQ). But

Ψ(f ; UQ) = (φ(f, UQ), UQ) = (UP , UQ)

Hence UP is a critical value of φ(·, UQ) if and only if (UP , UQ) is an f -critical value of Ψ.

Therefore, Z(UQ) = VP (UQ). Since, by construction, VP (UQ) is a measure 0 subset of UP

(in the space IR|P1|+|P2|), it follows that the section Z(UQ) of Z has Lebesgue measure zero

in IR|P1|+|P2|. Since this holds true for any choice of UQ and since Z is measurable, Fubini’s

Theorem implies that Z is a Lebesgue measure zero subset of UP ×UQ in the space IR|C1|+|C2|.

Proof of Lemma 5 Recall the open sets F ,UP ,UQ, and the mapping Ψ : F×UQ → UP×UQ

with the measure zero set Z of f -critical values to which Lemma 5 applies. Suppose that Û

is an f -regular value of Ψ. That is, suppose Û /∈ Z. We proceed to show that each f̂ with

f̂ ∈ {f ∈ F : J(f, Û) = 0}
is an isolated point in this set.

Because of Û /∈ Z, (f̂ , ÛQ) is an f -regular point of Ψ, i.e. DfΨ has full rank of |R1|+ |R2|
at (f̂ , ÛQ) . Hence the derivative Dfφ(·, ÛQ) has full rank at f̂ . Therefore, by the Inverse

Function Theorem, there exist open neighborhoods F̂ and ÛP with f̂ ∈ F̂ ⊆ F and ÛP ∈
ÛP ⊆ UP , respectively, such that φ̂(·, ÛQ), the restriction of φ(·, ÛQ) to F̂ , is a diffeomorphism

from F̂ onto ÛP .

We now claim that f̂ is the only point in the set

f̂ ∈ {f ∈ F̂ : J(f, Û) = 0}
For suppose otherwise. Suppose that g also lies in this set. Then g, f̂ ∈ F̂ and J(f̂ , Û) =

J(g, Û) = 0 where ÛP ∈ ÛP . Therefore ÛP = φ̂(f̂ , ÛQ) = φ̂(g, ÛQ). Since φ̂(·, ÛQ) is a
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diffeomorphism from F̂ onto ÛP , it follows that g = f̂ as asserted.

Proof of Lemma 6 An element f ∈ GC \FC does not necessarily represent a Markov

strategy. But the established properties of Ai
f , i = 1, 2 and J are preserved if f does not

differ too much from a Markov strategy:

Let ‖ ·‖¦, ‖x‖¦ =
∑

s |xs| denote the taxicab or Manhattan norm on IRS and ‖M‖ denote

the linear operator norm of an S × S-matrix M with respect to ‖ · ‖¦. If M is a stochastic

matrix, then ‖M‖ = 1. Moreover, ‖MN‖ ≤ ‖M‖‖N‖ for any two matrices M and N .

In case f is a Markov strategy, the matrices P1
f and P2

f are stochastic and, consequently,

the matrices of the form Mij
f = δ2P i

f · Pj
f have norm ‖Mij

f ‖ = δ2 < 1. If the distance

of f ∈ IR|C1| × IR|C2| from the closure of FC is sufficiently small, then the associated (not

necessarily stochastic) matrices Mij
f have norm ‖Mij

f ‖ = µij
f < 1 and ‖(Mij

f )t‖ ≤ (µij
f )t for

all t ≥ 0. Therefore, by the Cauchy criterion, the geometric sum
∑

t≥0(Mij
f )t converges and

equals [I −Mij
f ]−1.

The rest of the analysis of J does not rely on the fact that P1
f and P2

f are stochastic,

with one exception. Namely, we argue that the s-th term in (17) is strictly positive because

it is the sum of certain entries of
∑

t≥0(Mij
f )t. Indeed, the argument shows that the term

is at least ass ≥ 1. Therefore, if the distance of f ∈ IR|C1| × IR|C2| from the closure of FC is

sufficiently small, then the term in question remains strictly positive.

Proof of Lemma 7 Fix U ∈ W . Suppose that X (U)∩ FC is infinite. Then there exists a

sequence {fk}∞k=1 of pairwise distinct elements of X (U) ∩ FC . Now X (U) ∩ FC is contained

in the closure of FC , a compact set. Passing to subsequences if necessary it follows that

fk → f with f belonging to the closure of FC . Hence f ∈ GC . Since J(fk, U) = 0 for

all k and since J is smooth, J(f, U) = 0. Therefore, f ∈ X (U) and there exists an open

set Fn with Fn ∩ X (U) = {f}. But since each fk belongs to X (U), fk → f and Fn is

open, it must also be the case that fk ∈ Fn∩X (U) for infinitely many k. However, this con-

tradicts the fact that Fn∩X (U) = {f}. Hence to the contrary, X (U)∩FC has to be finite.

Proof of Lemma 8 Fix U and let f ◦ be an MPE with support C. Choose the normalization

D = (D1, D2) and Ri = Ci\Di for each i as before. Recall that J is defined by equation

(15). In particular, f ◦i (si|sj) > 0 for each i and each s = (si, sj) ∈ Ri. By (11),
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Ji s(f
◦, U) =

∂Vi(f |sj)

∂fi(si|sj)

∣∣∣
f=f◦

= 0. (22)

Since (22) must be satisfied for each each i = 1, 2 and each s ∈ Ri, it follows that

EC(U) ⊆ X (U) ∩ EC .

Proof of Theorem 2.

Suppose that the MPE f is completely mixed. Let `i = |Si| ≥ 2 for each Player i, and

order the actions: s1
i , s

2
i , . . . , s

`i
i . If in some state sj ∈ Sj, j 6= i, Player i chooses sr

i for

some r = 1, . . . , `i, write V r
i ≡ Vi(f |sr

i ). Then his payoff may be expressed recursively as

(1− δ)ui(s
r
i , sj) + δV r

i . In any completely mixed MPE, a player must be indifferent between

any two choices of pure strategies. That is,

(1− δ)ui(s
r
i , s

q
j) + δV r

i = (1− δ)ui(s
r+1
i , sq

j) + δV r+1
i

for all r = 1, . . . , `i − 1; q = 1, . . . , `j or, after regrouping terms,

(1− δ)[ui(s
r
i , s

q
j)− ui(s

r+1
i , sq

j)] = δ[Vi(f |sr+1
i )− Vi(f |sr

i )]

for all r = 1, . . . , `i − 1; q = 1, . . . , `j. Variations in sj do not affect the right-hand side of

any of these (`i − 1)`j equations. Consequently, we must have

ui(s
r
i , s

q
j)− ui(s

r+1
i , sq

j) =
δ

1− δ
[Vi(f |sr+1

i )− Vi(f |sr
i )] = ui(s

r
i , s

q+1
j )− ui(s

r+1
i , sq+1

j )

for all r = 1, . . . , `i − 1; q = 1, . . . , `j − 1. This in turn implies that some stage payoffs for

Player i are linear combinations of other stage payoffs, which is possible only for a set of Ui

with Lebesgue measure zero in IR|S|.
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