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Abstract

This paper analyzes a dynamic strategic model of carbon consumption among nations.
Each period, countries extract carbon from the global ecosystem. A country’s output de-
pends both on its carbon usage and on the stock of carbon biomass (stored carbon) in the
ecosystem. The output elasticities of extracted and stored carbon vary across countries and
evolve stochastically over time.

A Business-as-usual (BAU) equilibrium characterizes each country’s carbon footprint in
the absence of an effective international agreement. Under non-concave carbon dynamics,
depletion of the carbon stock in a BAU equilibrium may reach a tipping point below which
the global commons spirals downward toward a steady state of marginal sustainability.
These tipping points emerge endogenously. We show that if the number of carbon extractors
is large enough, the commons always tips, regardless of the initial stock. We find that
countries will accelerate their rates of carbon usage the closer they are to reaching the low-
end steady state. By contrast, in the socially efficient plan the commons never tips if the
initial carbon stock is large.
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1 Introduction

Human consumption is based on carbon usage. Alarmed by increases in anthropogenic
greenhouse gas emissions, many scientists and policy experts focus on finding an
effective international response to limit carbon emissions.1

This paper formulates a dynamic model of carbon consumption in the absence of
such a response. Our objective is to understand the strategic incentives of nations in
a “business-as-usual” (or “BAU” from here on) scenario. Our approach integrates a
strategic model of emissions into a non-concave dynamic model of carbon. A key fea-
ture of this model is that consumption and economic output may shrink if a key state
variable falls below some critical threshold, a tipping point, determined endogenously
in equilibrium.

We construct a dynamic stochastic game with heterogeneous countries. Each
country produces a composite consumption good for its citizens. Production depends
on two carbon-based inputs. One input comprises the country’s extracted carbon
from fossil fuels, forestry, and agricultural practices. The other input, which we refer
to as the carbon-based ecosystem, consists of the stock of stored or preserved carbon
in biomass, soil, or below-ground sources. This carbon stock is a productive input as
it prevents soil erosion, pollution, and climate change.

Thus, for purely economic reasons a country seeks to balance its need to use carbon
against its desire to preserve the ecosystem. A country’s optimal mix of extracted
and preserved carbon is determined by its relative output elasticities with respect
to each input. These elasticities differ across countries and are assumed to evolve
stochastically. At any given date a country with high output elasticity with respect
to extracted carbon (i.e. a “pro-extractive” country) prefers to extract more than
a country with lower elasticity (a “pro-conservation” country). The assumptions on
elasticities capture a common feature of greenhouse gas emissions: both environmen-
tal costs and factor composition vary over time, are difficult to forecast, and often vary
widely across countries. Heterogeneity reflects variation in geographic, demographic,
and politico-economic influences.2

The driving force of the model is a non-concavity in the transition law for carbon.
The non-concavity introduces a bifurcation in the stock dynamics. Given any level
of global carbon extraction, when the stock of preserved carbon, denoted here by
ωt, is large enough the natural process of sequestration and respiration produce a

1e.g., IPCC Fourth Assessment Report: Climate Change 2007.
2Burke, et. al. (2011) find, for example, widely varying estimates of the effect of climate change on

US agriculture when climate model uncertainty is taken into account. Desmet and Rossi-Hansberg
(2014) document substantial cross country variation in a calibrated model of spatial differences in
welfare losses across countries due to global warming.
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stable carbon cycle. However, a low enough stock can destabilize the cycle, leading
to a precipitous decline toward a carbon floor — a low end steady state of marginal
sustainability. The threshold at which this decline begins is referred to as a tipping
point.

Because the global extraction of carbon is determined endogenously by the coun-
tries’ strategic decisions, the tipping point will be as well. We study a business-as-
usual (BAU) equilibrium, defined as a smooth Markov Perfect equilibrium profile of
carbon usage across countries.

We derive the boundary points of the support of a distribution that describes the
likelihood of reaching the carbon floor starting from an initial given stock. The tipping
point, denoted here by ωtip, is lower bound of the support. The upper bound of the
support, denoted by ωsafe, is the threshold at which the low end is never reached.
The region above ωsafe is thus often referred to as the safe operating space (SOS))
in the planetary boundaries literature (Rockstrom et al. (2009) and Steffan, et al.
(2015)). In this region, the stock converges to a high end, “sustainable” stationary
distribution of carbon stocks. The regions are displayed below.3

ωtip

uncertain decline,
unsafe operating spaceinevitable decline

ωsafe

safe operating space

In the knife-edged case where the equilibrium distribution is degenerate (i.e., if
all sources of stochastic variation are removed), then ωtip = ωsafe. In that case a
single tipping point divides the space into tipped and non-tipped regions, analogous
to Skiba points in non-convex optimal control problems.4

We compare extraction rates and tipping properties of any BAU equilibrium to
those coming from a concave (“no-tipping”) transition model. We further compare
the BAU equilibrium to the solution of a standard utilitarian planner’s problem.

We first show that, relative to the concave model, countries in a BAU equilibrium
actually accelerate their rates of carbon usage the closer/sooner the commons comes to
reaching the carbon floor. This is done unevenly, as persistently pro-extractive coun-
tries accelerate sooner than pro-conservation ones. Relative to the concave model,
countries extract more slowly the further/later they are to reaching the floor.

3The schematic display in Steffen, et al. (2015 and reprinted in the Washington Post, January
15, 2015) uses emissions rather than stocks and so the direction of risk is rightward rather than
leftward.

4Skiba (1978).
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The intuition is reminiscent of the Green Paradox (Sinn (2013)) which posits that
firms increase their extraction of fossil fuels if more stringent regulations are expected
in the future. In the Green Paradox, the future regime change is exogenous from the
firms’ perspectives. In our model, regime change is endogenously determined by the
strategic actors themselves. Each actor expects his marginal continuation value of
preserving the carbon stock to vanish when the likelihood of tipping is high due to
the strategic play of others. Hence the actor accelerates his extraction which, in turn,
feeds back to the tipping likelihood itself.

Second, we show that if the number of countries in the BAU equilibrium is at
or above some threshold number, the tipping point ωtip is infinite. This means that
there is no safe operating space, and the global commons reaches the low end state
with certainty. This happens even if countries are pro-conservation most of the time.

Third, we show that the tipping properties of the Planner’s problem are fun-
damentally different. Not surprisingly, prescribed carbon is usage lower under the
Planner’s solution, and the relative difference grows over time. More strikingly, un-
der the Planner’s solution, both the tipping point and the safe operating bound are
finite and invariant to the number of countries. This means that in the Planner’s so-
lution, there is a threshold level of carbon stock above which the countries remain in
safe operating space. This last result highlights the potential value of an international
climate agreement that limits global carbon usage.

The paper may be compared to a number of related literatures on climate tip-
ping. Tipping is discussed and modeled in the earth science literature. For instance,
Lenton, et al. (2008), Kerr (2008), Rockstrom, et al. (2009), Anderies, et al. (2013),
and Steffen, et al. (2015) posit nonlinear dynamical systems that describe the safe
operating space (SOS) for humanity, i.e., a region in a multi-dimensional space con-
sisting of levels of methane and CO2 concentrations, degrees of biodiversity, and so
on,... that sustains human innovation, growth, and development. Tipping points are
the planetary boundaries of these regions (see Rockstrom et al. (2009)).

The earth science models contain a detailed account of the different forms of
carbon mass and their movements throughout the carbon cycle. Human incentives
are not usually modeled explicitly. The present paper complements these by modeling
the dynamic incentives of nations to extract carbon in an, albeit rudimentary, model
of the carbon cycle.

Economic incentives appear in the integrated assessment models of Nordhaus
(2006, 2007, 2008), Lemoine and Traeger (2014), Hope (2006), Stern (2006), and
Cai, Judd, and Lontzek (2012), etc., all of whom integrate tipping dynamics into
atomistic GE market economies.5 They also appear in the shallow lake models of

5See also Krusell and Smith (2009), Acemoglu et al. (2012), and Golosov et al. (2014) for useful
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Carpenter, et al. (1999) and Maler et al (2003) who analyze open loop Nash equilib-
ria of a symmetric game with non-linear accumulation of pollutants, and Kossioris,
et. al. (2008) and Sakamoto (2014) who examine symmetric closed loop equilibria in
related models.

Our focus on strategic incentives of heterogeneous state actors is, to us, a sensible
addition to the literature since the most critical policy choices are made by large,
powerful nations with divergent interests.

In the rest of the paper, Section 2 introduces the model. Section 3 analyzes the
strategic incentives of countries in a BAU equilibrium. Section 4 examines its tipping
properties. Section 5 introduces the Planner’s solution and compares it to BAU.
Section 6 concludes with a discussion of international agreements. Section 7 is an
Appendix with proofs and detailed calculations.

2 A Tipping Model of Carbon Usage

This Section lays out a rudimentary model of carbon usage and follows it up with a
discussion of the key assumptions of the model.

2.1 Output and Carbon Extraction

An infinite horizon global economy consists of n countries. At each date t, a composite
good yit is produced and consumed by the citizens of country i (i = 1, . . . , n). The
long run payoff to the representative citizen of country i from consuming yit at each
date t is

∞∑
t=0

δt u(yit) (1)

where u is strictly increasing, differentiably concave, and u′ → ∞ as yit → 0. The
main equilibrium results will assume u(yit) = log(yit). All countries discount the
future according to δ.

Country i’s production of yit requires two inputs, both made of carbon and both
derived from a carbon-based “global ecosystem.” The first input comprises extracted
carbon denoted by cit. Extracted carbon cit produces cit units of emissions, and so the
terms “extraction,” “consumption,” and “emissions” of carbon are used interchange-
ably.

quantitive assessments of carbon taxation and cap and trade policies.
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Let Ct =
∑

i cit represent the level of global carbon consumed/emitted at t. Emis-
sions come from various sources, including fossil fuels, forest biomass, and agricultural
practices. All of these are taken from a stock ωt representing the carbon-based ecosys-
tem. This ecosystem consists of known reserves of stored or “preserved” carbon in
soil, biomass, and fossils. It represents all usable sources of non-atmospheric carbon.
Thus, carbon that is not emitted into the atmosphere is preserved in this ecosystem.6

The second productive input is the ecosystem itself. Preservation of the ecosystem
enhances production by maintaining soil and plant health and reducing the scope
for damage from runoff, erosion, pollution, and climate change. A more detailed
discussion of the ecosystem’s role is contained in the next subsection.

The production technology for yit is

yit = cθitit (ωt − Ct)1−θit . (2)

In (2), θit ∈ (0, 1] is the output elasticity of extracted carbon, while 1 − θit is the
output elasticity of the global ecosystem net of aggregate consumption. Cross-country
differences in the θit reflect differences in geography and demography. We refer to
countries with larger θit as “pro-extractive” in date t since they will typically extract
and emit more carbon, other things equal.7 Countries with smaller θit are referred
to as “pro-conservation.”

The elasticities are assumed to vary both over time and between countries. Thus,
a pro-extractive country at one point in time may become pro-conservation in the
future.

A type profile in date t is a vector

θt = (θ1t, θ2t, . . . , θit, . . . θnt),

and is publicly observed at the beginning of each period t. The profile θt of country-
specific elasticities, together with the carbon stock ωt constitute the state of the
system.

Let θt = {θ0, θ1, . . . , θt} be the history of realized type profiles up to and including
date t, and let

θ∞ = {θ0, θ1, . . . , θt, . . .}

the infinite time path of elasticity profiles.

6This definition excludes marine carbon which plays no role in the model.
7The assumption of linearly homogeneous production is purely for tractability. None of the results

depend on it. One can work with general coefficients αit and βit and derive the same qualitative
conclusions.
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Fixing the initial profile θ0, the profile θt is assumed to evolve according to a
stationary Markov process π(θt|θt−1). In what follows, “almost everywhere” will refer
to the paths θ∞ in the probability space (Θ∞,F , P ) such that π is the Markov density
associated with a filtration {Ft} on the space (Θ∞,F , P ). We allow for π to exhibit
both persistence across time and correlation of carbon elasticities across countries.

We assume that there is some ε > 0 such that for all T , π places mass of at least
ε on the n-dimensional cube (1 − ε, 1]n for T consecutive periods. Formally, assume
that π satisfies: there exists ε > 0 such that for any integer T and a.e. θ∞,∫

θt+s∈(1−ε,1]n
π(θt+s|θt+s−1)dθt+s ≥ ε (3)

for all s = 1, . . . , T and infinitely many t.

The inequality in (3) is a natural ergodic property. It requires that the process
will eventually hit the upper ε-interval of elasticities and remain there for T periods
or more. This will hold, for example, for any number of processes that have full
support uniformly bounded away from zero. The assumption also holds for a wide
class of supermartingales where the θ’s trend upward, reflecting the historical pattern
of increased reliance on fossil fuels.

2.2 Discussion of the Production Technology

In the classic common pool model of Levhari and Mirman (LM) (1980) identical
users choose how much of a depletable, open access resource to consume each period.
Examples include fisheries or forestry. There are no direct costs or externalities from
usage. More importantly there is no tangible constraint on consumption/production
until the resource stock literally hits zero. Conservation is thus valued in LM only
for instrumental reasons: preserving the stock allows one to smooth consumption.

Here, we propose a production technology where the carbon-based ecosystem en-
ters as an input. This means that, unlike a pure commons, there are incentives to
conserve even if there is no threat of full depletion. The formulation accounts for
the fact that all countries’ economies have carbon requirements, but production also
requires that countries draw upon a viable ecosystem. Stored carbon stock represents
a “flip side” of carbon emissions, and so the assumption that the stored stock is a
productive input is equivalent to modeling carbon emissions as a GDP-reducing cost.

By design, the production function in (2) excludes the traditional inputs of capital
and labor on the grounds that carbon would be double-counted.8 The simple dis-

8Labor, for instance, is derived from carbon usage (caloric intake, respiration, etc). Many if not
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tinction between stored and released carbon forms the basis for all dynamic changes
introduced later in the model.

Two features of the model warrant further discussion. First, the model lumps
all forms of carbon stock into a single state variable. One might argue that the
accumulation of geological carbon, for instance, is a long term process and should
therefore be considered separate from the ecosystem. Our inclusion of fossil fuels is
based on evidence that extraction of fossil fuels can deplete the ecosystem (Rockstrom,
et al. (2009)). Fracking, strip-mining, oil drilling all involve potential depletion of
biomass or limits on its growth. Avoiding emissions is thus equivalent to preserving
the stock — including fossilized carbon. By separating out the various stocks, the
game theoretic aspects of extraction versus preservation are obscured.

Second, one could argue that fossil fuels are not open access resources; their
distribution around the world is non-uniform. Yet a full accounting for all forms of
emittable carbon makes open access a defensible approximation. Countries like Brazil
and Tanzania have large rain forests and agricultural production. Other countries like
Russia and Saudi Arabia extract fossil fuels. Along these lines, asymmetries in access
are incorporated indirectly by assuming heterogeneous technologies across countries.
Warmer average temperatures resulting from GHG emissions are viewed differently
in Greenland than in Sub-saharan Africa.

The next subsection, we posit a carbon dynamic with a low-end non-concavity
capable of tipping the system.

2.3 Carbon Stock Dynamics

In the absence of human consumption (i.e., Ct = 0), the stock dynamics will balance
the dynamic forces of release and recapture of carbon to produce a stable carbon cycle
if the stock ωt is not too low. However, the law of motion contains a non-concavity
so that high levels of human consumption can destabilize the cycle.

Expressed formally, the ecosystem evolves according to:

ωt+1 =


A(ωt − Ct − b)γ if A(ωt − Ct − b)γ > F

F otherwise

(4)

with the initial stock ω0. By assumption, γ < 1 which allows for depreciation (e.g.,

most types of capital embody carbon, including metal alloys (steel), plastics, and organic inputs
(rubber, cotton, wool, wood, livestock, etc.). These would be included in the stock ωt.
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plant respiration), while A > 1 which allows for accumulation due to natural reab-
sorption (e.g., plant photosynthesis).9

The parameter b ≥ 0 describes the exogenous “off-take”, the subtraction of carbon
from the stock that is independent of human decisions. If b > 0 the carbon-based
ecosystem can dramatically shrink if the stock falls below some critical carbon thresh-
old — a tipping point — a concept explicitly defined and characterized in Section 3.

The parameter F is the carbon floor — a lower bound on the stock below which
stock depletion cannot occur. Payoffs that might otherwise hit −∞ as the stock is
depleted are bounded below when F > 0. When F > 0 carbon stocks are never fully
depleted.10 W assume that there is some stock ω̃ > F for which A(ω̃ − b)γ = ω̃.
That is, in the absence of human behavior, there is at least one steady state carbon
stock above the floor F . The assumption means that without human consumption,
a stable carbon stock or carbon cycle (if noise is added) exists.

Finally, we assume that F is small, specifically F ≤ b, so that F sustains very
low output.11 From here on, the model with b ≥ F > 0 will be referred to as the
“non-concave model” — as distinct from the benchmark concave model of b = F = 0.

Figure 1 illustrates the dynamic in (4). For illustrative purposes, Ct is exogenous
and constant in the Figure but is endogenous in the model. There are three fixed
points, one of which is unstable. In a non-stochastic world with fixed exogenous
human behavior, the unstable fixed point (ω◦ in the Figure) would correspond to a
“tipping point.” The carbon floor F represents an “environmental poverty trap” since
a stock that reaches F remains stuck there forever.

Let ct = (c1t . . . , cnt) denote the date t profile of carbon consumption. The entire
dynamic path profile of resource consumption is then given by

c = {ct}∞t=0

A consumption path c is feasible if it is consistent with the dynamic constraint (4)
and Ct ≤ ωt − b at each date t.

9For tractability, A is assumed to be exogenous and constant. However, the model can be
generalized to allow for a time-varying ergodic process {At}, in which case there is a stable carbon
cycle if the stock is large enough. An even richer model would allow A to depend on the existing
stock.

10Specifically, because log(yit) = −∞ when ωt = 0, a floor F > 0 rules out full depletion, thus
avoiding the limit at ωt = 0.

11The condition F ≤ b also ensures that the non-concavity model has non-trivial implications for
tipping. Specifically, F ≤ b ensures that there is an unstable steady state above F . If F > b then
it could be the case that the unstable steady state of ωt+1 = A(ωt − Ct − b)γ would lie below F , in
which case the floor would never be reached from any stock above F .
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ωt+1

ωtb+ Ct

F

ω◦

F

Ct = human off-take

b = exogenous off-take

F = carbon stock floor

45◦

Figure 1: Carbon dynamics with Fixed, Exogenous Consumption

2.4 Discussion of the Carbon Stock Dynamics

The dynamic in (4) is not intended to be a literal description of an earth system.
Rather, we view it as a tractable heuristic that incorporates a local instability at
the low-end of the carbon stock. Specifically, the carbon dynamic allows for growth,
depreciation, and/or sudden decline in the stock, depending on parameters.

Overall, the model presents a simplification of the geophysical dynamics of carbon.
It nevertheless captures what Cai, et al. (2012, p.2) argue are two critical features
that should be included in a reasonable representation of tipping. Namely, “(i) a fully
stochastic formulation of abrupt changes, and (ii) a representation of the irreversibil-
ity” of the decline. Regarding (ii), the law of motion in Equation (4) converges to a
low but finite steady state F whenever the carbon stock falls below a critical point.
The fact that the low steady state is independent of human activity is roughly consis-
tent with simulations by Hansen et. al (2013), demonstrating a “soft” or “low-end”
greenhouse damage.12

12Their simulations “indicate that no plausible human-made GHG forcing can cause an instability
and runaway greenhouse effect” in which extreme, amplified feedbacks fully dissipate the stored
carbon stock and evaporate all planetary surface water — as believed to have happened on Venus.
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3 Business-As-Usual Equilibria

In any period, the state of the global carbon economy is summarized by the pair
(ωt, θt) consisting of the ecosystem and the elasticity profile. A Markov-contingent
plan is a state-contingent profile

c∗(ωt, θt) = (c∗1(ωt, θt), . . . , c
∗
n(ωt, θt))

that specifies each country’s usage c∗i (ωt, θt) as a function of the state (ωt, θt). The
corresponding aggregate consumption is C∗(ωt, θt) =

∑
i c
∗
i (ωt, θt).

The long run payoff of a Markov-contingent plan c∗ to the representative citizen
of country i is expressed as

Ui(ωt, c
∗, θit) ≡ Et

[
∞∑
τ=t

δτ−tu
(

(c∗iτ (ωτ , θτ ))
θiτ (ωτ − C∗τ (ωτ , θτ ) )1−θiτ

) ∣∣∣ ωt, θt] (5)

where the expectation Et is taken with respect to the process π, conditional on θt and
the transition equation (4).

A Markov Perfect equilibrium (MPE) is a Subgame Perfect equilibrium in which
each country’s strategy is a Markov-contingent plan.13 The MPE is often interpreted
as a “ business-as-usual” benchmark since it represents a scenario that prevails in
the absence of any agreement or coordination among the participants. The MPE
requires no special coordination, no monitoring beyond the initial quota, and no
explicit sanctions.14 The definition is fairly standard in the dynamic common pool
literature (e.g., Dutta and Radner (2009)).

We further restrict attention to smooth MPE, that is, Markov-contingent plans
that are both Subgame Perfect and smooth functions of the state (smooth every-
where except possibly at the floor F ). This restriction rules out certain MPE that
use discontinuities in the state to create triggers on which participants can tacitly
coordinate. Consequently, we refer to any such MPE as a Business-as-usual (BAU)
equilibrium.

13In any MPE each country’s Markov-contingent plan c∗i maximizes Ui(c
∗, ωt, θit) given c∗−i in

any state (ωt, θit) over the set of full history-contingent consumption plans. For brevity, we omit
the specification of full history contingent strategies. Payoffs corresponding to infeasible paths must
be formally defined as well. For our purposes, the simplest approach is to define the payoff on the
extended real line, setting flow payoffs equal to −∞ whenever Ct ≥ ωt + b.

14Without the Markov restriction, a version of a Folk Theorem can be applied (see, for instance,
Dutta (1995) for a general statement), and efficient plans can be implemented by international
coordination on the appropriate punishments.
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3.1 Euler equations

Using the parameterization u(yit) = log(yit) in (5), the BAU equilibrium consumption
c∗i (ωt, θt) for country i is a solution to the Bellman equation

Ui(ωt, c
∗, θit) = max

cit

{
θit log cit + (1− θit) log(ωt − Ct) + δ E

[
Ui(ωt+1, c

∗, θi t+1)
∣∣∣ ωt, θit]}

(6)
subject to (4) after for every state (ωt, θt).

To calculate the BAU it is simpler to work with extraction rates rather than levels.
Extraction rate eit is defined implicitly by cit = eitωt. The global extraction rate is
denoted by Et =

∑
i eit. With this transformation, the Bellman equation can be

expressed in terms of a Markov-contingent extraction rate, e∗. The payoff in (6) is
rewritten as

Ũi(ωt, e
∗, θit) = max

eit

{
θit logωteit + (1− θit) log(ωt(1− Et)) + δ E

[
Ũi(ωt+1, e

∗, θi t+1)
∣∣∣ ωt, θit]}

(7)

subject to (4). By construction, Ũi(ωt, e
∗, θit) = Ui(ωt, c

∗, θit).

In the subsequent analysis, we also employ the following notation. Let X(ωt) =
{Et : A(ωt(1 − Et) − b)γ > F} denoting the aggregate extraction rates that do not
force the stock down to the floor given stock ωt. Then let 1{Et∈X(ωt)} be an indicator
function taking value “1” whenever Ei ∈ X(ωt) and taking value zero otherwise.

Our first result, Proposition 1 stated below, shows that the BAU equilibrium
solves a system of Euler equations in extraction rates. As usual, the Euler equations
are derived from each country’s first order conditions for (7):

θit
eit
− 1− θit

1− Et
− Aδγωt ((1− Et)ωt − b)γ−1 Et

[
∂Ũt+1

∂ωt+1

]
1{Et∈X(ωt)} = 0

The first two terms correspond to the country i’s marginal flow payoff in period t
from its extraction of carbon in that period. The third term represents the country’s
marginal value (gained or lost) in future periods from its period t extraction. After
some calculations and the standard application of the Envelope Theorem to future
decisions, the first order condition can be expressed conveniently as an Euler equation
described in the following Proposition.

Proposition 1 Let c∗ be a business-as-usual (BAU) equilibrium. Then c∗i (ωt, θt) =
e∗i (ωt, θt)ωt for each i, where e∗(θt, ωt) is a profile of extraction rates that implicitly
solve a system of n equations. Each equation is given by

11



θit
eit

(1− E−it )− 1 =
δγ(1− Et)ωt

(ωt(1− Et)− b)
Et
[
θit+1

eit+1

(1− E−it+1)
(
1 + σ−it+1

)]
1{Et∈X(ωt)} (8)

where E−it =
∑

j 6=i ejt and

σ−it+1 ≡
ωt+1

1− Et+1

∂(1− E−it+1)

∂ωt+1

=
% reduction other countries’ extraction rates

% increase in stock

is the overall elasticity of other countries’ extraction rates due to an increase in carbon
stock.

Generally, the equation system in (8) yields no closed form solution and is nec-
essary but not sufficient to characterize BAU equilibria. The full derivation of (8) is
contained in the Appendix. In an external appendix, an existence result is obtained
in a robust class of parameters.15

The Euler equation in (8) displays the marginal rate of substitution between the
current and future payoff from current extraction. Not surprisingly, each country i’s
consumption/emissions is decreasing in the effective discount factor δγ, increasing in
its own current output elasticity θit.

The Euler equation (8) takes a standard form in the concave model (b = F = 0).
In the concave model 1{Et∈X(ωt)} = 1 and the Euler equation is then solved by guessing
and verifying that σ−it+1 = 0. In this case, the marginal rate of substitution equals the
effective discount factor δγ (the “golden rule”).

To understand how the non-concave model departs from the golden rule, observe
that if 1{Et∈X(ωt)} = 1, then b > 0 results in the overweighting of future payoffs, ceteris
paribus. The overweighting will result in lower extraction rates in period t than in
the concave model. The magnitude of this “excess caution” depends on σ−it+1 which
measures the responsiveness of countries to a change in the stock brought about by
i’s current rate of extraction. If the countries are not in imminent danger of hitting
the floor F , then σ−it+1 will be negative: an increase in the current stock decreases
the future incentives of countries to preserve the stock (or increases their incentives
to extract more). A large |σ−it+1| dampens the incentives for conservation even to the
point at which underweighting future payoffs can occur.

The extreme case of underweighting the future occurs when 1{Et∈X(ωt)} = 0, i.e.,
the countries will hit the carbon floor in period t + 1. Then, the right-hand side of
(8) is zero and so future payoffs are underweighted in the extreme. The country then

15See faculty.georgetown.edu/lagunofr/BAU4-External-Appendix.pdf.
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treats the extraction decision as a static problem, and so extraction in period t will
be higher than in the concave model.

Since countries will revert to static optimization whenever the floor is reached,
each country’s relative weighting of present versus future depends on the timing and
likelihood of 1{Et+s∈X(ωt+s)} = 0 at each future date t+ s, s = 1, 2, . . .. This intuition
forms the basis for a later comparison between the concave and non-concave models.

4 The Tipping Problem

In the concave model, the solution to Equation (8) admits a simple closed form
solution for the BAU equilibrium:

c∗i (ωt, θt) = ēi(θ)ωt (9)

where

ēi(θ) =

θit(1−γδ)
1−θit(1−γδ)

1 +
∑n

j=1
θjt(1−γδ)

1−θjt(1−γδ)

(10)

This derivation can be obtained directly from the Euler equation in the Proposition
when b = F = 0.16

Observe that if θit = 1 for all i and t then the equilibrium coincides with the
Levhari-Mirman (LM) (1980) fish war model as a special case. In the LM model,
θit = 1 for all i and t, and the transition is concave.17 In other words, there is no
tipping problem, no direct value from preserving the ecosystem, and no heterogeneity.

Even without the non-concavity, the BAU equilibrium calculated in (10) reveals
both aggregate and distributional effects that are not present in the standard common
pool problem. Extraction rates exhibit cross-sectional dispersion in which countries
with either very high or very low resource elasticities have larger consumption than
those with intermediate elasticities. This is due to the fact that a country’s output
y∗i (ωt, θ) is U -shaped in θit, ceteris parabis. The U -shape also helps explain why

16In general the Euler equations cannot rule out multiple solutions even in this case. The set of
solutions are reduced by our restriction to continuously differentiable linear MPE. The restriction
rules out nonlinear and/or discontinuous solutions or implicit trigger in which countries implement
punishments by using the stock itself as a trigger.

17Namely, for all i and t,

c∗it(θ = 1) =
( (1−γδ)
1−(1−γδ) )

1 + (1−γδ)
1−(1−γδ)n

ωt =
(1− γδ)

n(1− γδ) + γδ
ωt.
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reversing course is problematic: starting from a high elasticity θit, the output of a
pro-extraction country initially falls as it makes the transition to a pro-conservation
technology.

When b ≥ F > 0 the non-concavity gives rise to potentially multiple steady
states, including one at the carbon floor F . The Theorem below describes both how
equilibrium incentives of each country are altered by the non-concavity. We later
show how the non-concave model leads to a tipping problem.

Theorem 1 Let e∗ be a BAU equilibrium in the non-concave model and ē the BAU
equilibrium in the concave model given in Equation (10). Then for each country i,
there exists ω1 and ω2 with ω1 ≤ ω2 such that for all θt,

1. if ωt ≥ ω2 then e∗i (ωt, θt) < ēi(θt) and e∗i (ωt, θt) is non-decreasing in ωt, and

2. if ωt ≤ ω1 then e∗i (ωt, θt) > ēi(θt).

Part 1 asserts that, relative the concave (“no-tipping”) model, countries’ extrac-
tion rates in the non-concave model are lower when ωt is large, i.e., when the stock is
far from the floor F . Part 2 asserts that countries’ extraction rates are higher than
in the concave model when ωt is low, i.e., when the stock is close to F . The likelihood
of reaching the floor in any given interval of time is endogenous.

The proof is in the Appendix. The logic, however, is intuitive and mirrors our
earlier discussion of the Euler equation. Specifically, suppose that the initial stock
ω0 is sufficiently large so that 1{E∈X(ωt)} = 1 with probability one for all t = 0, . . . , T
where T is large. For the dates in this interval of time, the carbon dynamic reduces
to ωt+1 = A(ωt − Ct − b)γ. Moreover, because the initial stock is large, ωt(1−Et)

(ωt(1−Et)−b)
is approximately one in which case extraction elasticities in the time interval are
approximately zero, i.e., σ−it+1 ≈ 0. A small increase in the bound b therefore increases
the marginal cost of extraction, and so e∗i (ωt, θt) < ēi(θt). That is, countries exhibit
greater caution in the non-concave model when ωt is high.

Next, suppose that ωt is small enough so that 1{E∈X(ωt)} = 0. But this means
∂ω+1

∂eit
= 0. In other words, the global commons has reached the floor F in which case

each country’s marginal extraction cost is zero. Since current extraction rates do not
affect future stocks, each country solves the one period first order condition

θit
eit
− 1− θit

1− Et
= 0.
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Country i’s BAU equilibrium extraction then is estatici (θt) = θit
1−θit

(
1 +

∑
j

θjt
1−θjt

)−1
.

In the static equilibrium, countries extract carbon as if the future is irrelevant.

It is not difficult to verify that estatici (θt) > ēi(θt) where the latter is the closed
form expression (10) in the concave model.

Intuitively, if the constraint 1∗{ωt,Et} = 0 holds or will hold with high probability in
the near future, countries have little to lose by extracting as much as possible for the
present. In this case, other countries’ future responses to i are negligible, and thus
have a negligible effect on the current extraction of country i. Thus i extracts as if
tipping is a fait accompli, something that occurs independently of its own decision. It
follows that when ωt is small enough that the low end steady state F will be shortly
reached, e∗i (ωt, θt) > ēi(θt).

To summarize, the off-take parameter b reduces the incentives to extract carbon
when the stock ω is large, but increases the incentive to extract when ω is small.

Figure 2 demonstrates this non-monotonicity of a country’s equilibrium extraction
as the current stock varies. For low enough stock, the extraction resembles a static
solution estatic where current extraction has no effect on future payoffs. For large
enough stock, the extraction resembles the BAU equilibrium in the concave model
(b = 0 and F = 0). Because the equilibrium extraction rates approach each constant
rate from below, the lowest extraction rate in equilibrium occurs for some intermediate
stocks, as shown in the Figure.18

Figure 2 indicates that proximity to F leads countries to accelerate their rate of
extraction. The result is reminiscent of the “Green Paradox” (Sinn (2008)), whereby
the extraction increases when more stringent emissions regulations are anticipated
in the future. In that case, the tipping event — the policy change — is taken as
exogenous. Sakamoto (2014) obtains a related result in a model where an exogenous
threshold determines a stochastic shift from a good environmental state to a bad one.

4.1 Tipping Points and Safe Operating Bounds

The previous section compared BAU equilibria in the non-concave commons to the
concave benchmark. Incentives hinged on whether and/or how soon it is that the
commons reaches the floor F . This Section examines that likelihood in more detail.

Let ω∗t+1(ωt, θt) denote the realized BAU equilibrium law of motion when the stock

18The hole in the middle is due to the fact that we cannot determine the precise shape of e∗ for
intermediate values.
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e∗i (ωt, θt)

Figure 2: Non-monotonicity in extraction rates

transition rule in (4) is evaluated at c∗(ωt, θt). Transition law ω∗t+1(ωt, ·) is a random
variable endogenously determined by equilibrium behavior. Hence, from the point
of view of the participants, tipping is a stochastically and endogenously determined
phenomenon, formally defined as follows.

First, ω∗ can be iterated forward, generating realizations ω∗ t+s(ωt, θ
t+s−1), s =

0, 1, 2 . . .. These determine a realized equilibrium path starting from ωt.
19 Depending

on trends in elasticities over time, both growth or contraction in output and carbon
stock can occur in equilibrium.

Recall from Figure 1 that when b > 0 there is a possibility that the stock can
depreciate down to the floor F . More precisely, we are interested in the probability

µ(ω0) = P
({
θ∞ : lim

t→∞
ω∗ t(ω0, θ

t−1) = F
})

This defines the probability that the stock reaches the floor F . A tipping point
is therefore the largest stock from which the floor is reached with probability one.

19This path of carbon stock is defined inductively by

ω∗ t+1(ωt, θ
t) = ω∗t+1(ωt, θt), ω∗ t+2(ωt, θ

t+1) = ω∗t+2(ω∗ t+1(ωt, θ
t), θt+1), · · ·

· · · ω∗ t+s(ωt, θt+s−1) = ω∗t+s(ω
∗ t+s−1(ωt, θ

t+s−2), θt+s−1 ), · · · · · ·
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Specifically, a tipping point is a carbon stock ωtip satisfying

ωtip = sup{ω0 : µ(ω0) = 1}. (11)

If the global commons reaches F from every initial stock, then the tipping point
is infinite. Different types of equilibria give rise to different tipping points, a fact we
elaborate on later when making the comparison to “optimal” tipping points.

The tipping point can be distinguished from a carbon threshold above which exists
a safe operating space for humanity, in the sense of Rockstrom et. al. (2009). In
the present model, the global commons under BAU is in a safe operating space at
ω0 if the commons reaches a high-end steady state or stationary distribution above
the floor F . This leads naturally to a notion of a safe operating bound, defined as a
carbon stock ωsafe satisfying

ωsafe = inf{ω0 : µ(ω0) = 0}. (12)

By construction, ωsafe ≥ ωtip. Consider, as an example a stationary Markov process
on the two profiles {θ′, θ′′} with θ′ < θ′′. Suppose that either profile can be reached
from the other each period with positive probability bounded away from 0. There
are two possibilities. Either the carbon dynamic has a finite tipping point or it does
not. The case of a finite tipping point is displayed in Figure 3. Since the equilibrium
carbon dynamic for both stocks has fixed points, the tipping point ωtip corresponds
to the lowest unstable fixed point. From any stock strictly larger than ωtip, the
process can avoid the low end steady state with positive probability. In particular,
if it reaches stock ωsafe, then the commons is guaranteed to avoid the low steady
state, thus defining for our purposes the safe operating space (SOS) described in the
planetary boundaries literature of Rockstrom et. al (2009), Anderies et. al. (2013),
and others.

The case where the tipping “point” is infinite is displayed in Figure 4. In this case
the parameters generate a transition toward the floor F . Specifically, from any stock
ω and any initial profile, for any time length T , there is a date t at which the process
will remain “stuck” at θ′′ for T periods starting from t. Since this occurs at infinitely
many t, then for T sufficiently long the commons will eventually reach F from ω with
probability one. Consequently, ωtip =∞.

Finally, when b = 0 then µ(ω0) = 0 for any ω0 > 0. In other words, ωtip = 0 and
so tipping never occurs. In this case, the BAU equilibrium law of motion ω∗t+1(ωt, θt),
derived from (9), converges to a stationary distribution on the carbon stock (a stable
carbon cycle) if the underlying process on θ∞ is ergodic. This is illustrated in a
particularly simple case. Consider a two-state stationary, irreducible Markov process
on two stocks, θ and θ with p denoting the switching probability between the two.
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Figure 3: Carbon dynamics with finite tipping point ωtip
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Figure 4: Carbon dynamic with infinite tipping point, inevitably reaching F .
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Figure 5: When b = 0, a stable carbon cycle alternates between ωa and ωb.

Figure 5 displays a literal cycle when p = 1, that is, when the process alternates
deterministically between θ and θ. The equilibrium dynamic then cycles between
carbon stocks, ωa and ωb.

Theorem 2 Consider any Business-as-Usual equilibrium with n countries in the non-
concave (b ≥ F > 0) model. Then there is an integer n′ > 0 such that if n > n′,
ωtip = ωsafe =∞, i.e., the global commons reaches the carbon floor F .

The precise n′ at which tipping becomes inevitable depends on parameters, and
the paper has no quantitative prediction about it. Still, the large n case is not a
remote possibility; the ongoing devolution (i.e., the partitioning large nations into
ever smaller ones) has substantially increased the number of nations since World War
II, each nation making separate carbon decisions.

In contrast with the Theorem, when b = 0, then ωtip = ωsafe = 0 for any n as one
would expect in the concave model.

The discontinuity between the b = 0 and b > 0 cases appears stark though under-
standable. Even in the concave model, full extraction occurs in the limit as n → ∞
when countries are pro-extractive (θ = 1). The difference is that when b = F = 0,
the extraction rate hits one and stocks are fully depleted only in the limit n =∞. In
other words, in the concave model with n countries, the only steady state above the
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floor is stable and so for any finite n, extraction is less than one. Consequently, from
any initial stock the process will converge to the stable steady state above the floor.
By contrast, when b ≥ F > 0 and n is large enough, the Theorem asserts that the
BAU equilibrium necessarily hits the floor, even as the extraction rate is less than
one.

The proof in the Appendix is long, but the intuition is straightforward. We first
show that full extraction occurs as n → ∞ when θ = 1, just as in the concave
model. In this case, however, the non-concave dynamics drives the stock down to the
floor when extraction is close, but not equal, to one. The result then makes use of
the ergodicity-like assumption on π. Under this assumption, the process eventually
moves the output elasticities into a neighborhood of θt = 1 for a long enough period
of time for the stock to decline toward the floor.

It is important to note that the dynamics are not strictly monotone since θ is
bouncing up and down according to π. In periods where θ is low (pro-conservation)
the stock may recover if it hasn’t fallen too far. Eventually, however, it will reach the
floor as pro-extractive types will emerge and remain in place for while.

Hence, while the proximate cause of tipping is the depletion of the carbon stocks,
the “deeper” parameters that drive the tipping and decline are technological: the
evolution of factor elasticities that determine the mix of extracted and stored carbon.

5 The Planner’s Solution

The BAU equilibrium can be compared to the socially efficient carbon profile. We
define the latter as the solution to a Utilitarian Social Planner’s problem. From this
Planner’s perspective, a Markov-contingent plan, denoted by c◦(ωt, θt) = (c◦1(ωt, θt), . . . , c

◦
n(ωt, θt)),

is optimal if it solves

max
c◦

E

[
n∑
i=1

∞∑
t=0

δtu(yit)
∣∣∣ ω0, θ0

]
subject to (2) and (4). (13)

As with the BAU equilibrium, combining log utility with the production technology
(2) in the Planner’s objective, an optimal plan c◦ solves the Bellman’s equation

V (ωt, c
◦, θt) =

max
c◦t

{
n∑
i=1

θit log cit + (1− θit) log(ωt − Ct) + δ E
[
V (ωt+1, c

◦, θt+1)
∣∣∣ ωt, θt]}

(14)
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The Planner’s problem treats nations equally. We use it as a benchmark against
which BAU equilibrium may be compared. Clearly, there are other solutions if the
Planner were to use different welfare weights. The equally weighted utilitarian so-
lution can be viewed as a result of symmetric Nash Bargaining in an international
agreement. The Planner’s solution can then be implemented by a Subgame Perfect
equilibrium in which agreed-upon triggers are used to punish deviations.20

The Planner’s Euler equation in extraction rate eit satisfies

θit
eit

(1−E−it ) +
∑
j 6=i

θjt−n =

[
δγωt(1− Et)
ωt(1− Et)− b

]
E

[
θit+1

eit+1

(1− E−it+1) +
∑
j 6=i

θjt+1

]
1{Et∈X(ωt)}

(15)

The derivation of Equation (15) is in the Appendix (Section 7.4). The equation
relates the Planner’s marginal rate of substitution between present and future payoffs.
The Planner naturally planner internalizes the effect of country i’s extraction on the
global economy.

As with the BAU equilibrium, the Planner’s optimal extraction plan in the concave
model has a closed form solution:

c◦i (ωt, θit) =
φit
n
ωt ∀ i (16)

where φit ≡ θit(1− γδ).21 Not surprisingly, each country’s carbon emission is increas-
ing in its elasticity θit and decreasing in the effective discount factor δγ.

5.1 Some Comparisons

Relative to the Planner’s solution, the BAU equilibrium is characterized by aggregate
over-extraction:

Proposition 2 Let c∗ be a BAU equilibrium and c◦ an optimal plan in either the
concave or non-concave model. Then for any state (ωt, θt), C∗(ωt, θt) > C◦(ωt, θt).

20The construction of triggers is non-trivial in this heterogeneous environment. Barrett (2013)
explores the problems with international coordination when the location of an exogenous tipping
threshold is uncertain. In a prior paper, Harrison and Lagunoff (2016), we show that the planner’s
solution cannot necessarily be implemented by simple reversion to Markov Perfect (BAU) equilibrium
in the event of a deviation.

21See the Appendix.
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The over-extraction result echoes a classic “tragedy of the commons” theme run-
ning through common pool resource games.22 This literature also examines strategic
incentives in dynamic games with a commons or with climate externalities. The
over-extraction result, while not surprising, is more subtle when tipping is possible.
Theorem 1 showed that countries exercise increased caution at high values of ωt. The
effects of this excess caution is not internalized by the individual countries and so it
is conceivable that over-extraction would not occur at high stock values.

In fact, over-extraction does not uniformly hold for all countries even in the ab-
sence of tipping. This is shown in a result below in the concave model.

Proposition 3 Let c∗ and c◦ represent a BAU equilibrium and the socially optimal
plan, resp., in the concave model. Then for any state (ωt, θt),

1. For each country i, and each profile θ−i of others’ elasticities, there exists a
cutoff carbon elasticity θ̃i ∈ [θ, θ] such that for any stock ωt, and in any date t,

c∗i (ωt, θit, θ−i) ≥ (>) c◦i (ωt, θit) if θit ≥ (>) θ̃i, and

c∗i (ωt, θit, θ−i) ≤ (<) c◦i (ωt, θit) if θit ≤ (<) θ̃i, and

|

2. along any path of realized carbon elasticity profiles θt, the relative differences

between efficient and equilibrium output
y◦ ti (ω0,θt)

y∗ti (ω0,θt)
, carbon consumption

c◦ ti (ω0,θt)

c∗ti (ω0,θt)
,

and carbon stock ω◦ t(ω0,θt)
ω∗t(ω0,θt)

all increase in t.

The proof is in the Appendix. Significantly, the Proposition demonstrates that
while all BAU equilibria are characterized by aggregate over-extraction, individual
countries may over- or under-extract depending on their resource elasticities. Pro-
extraction countries over-extract in the BAU while pro-conservation countries may
actually extract less than in the efficient plan. Under-extraction occurs as a compen-
sating response to massive over-extraction by the pro-extractors. Pro-conservators
never fully compensate, and so over-extraction always occurs in the aggregate.

While the Proposition applies to the concave model, the strict inequalities suggest
that it should hold for small but positive b values as well.23

22See Levhari and Mirman (LM) (1980), Cave (1987), Mirman and Fisher (1992), Dutta and
Sundaram (1993), Sorger (1996), Mirman and Fisher (1996), Finus (2001), Barrett (2003), Dutta
and Radner (2004, 2006, 2009), and Battaglini and Harstad (2012), and many others.

23The possibility of under-extraction in a Markov equilibrium is unusual but not unheard of.
Dutta and Sundaram (1993) show this possibility in a LM resource model where the state variable
can trigger a punishment. In our model, smoothness of the Markov strategy rules out Markov
“trigger” strategies. Instead, heterogeneity is the key.
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5.2 Optimal Tipping

The tipping and safe operating bounds are also defined in the Planner’s problem. Let
ωotip and ωosafe denote the tipping point and safe operating bound for the Planner’s
problem, applying the definitions in (11) and (12) to the Planner’s solution.

The tipping properties of the BAU and the Planner’s solution can be compared
as follows.

Theorem 3 There is a carbon floor F such that for any F ≤ F , the planner’s optimal
tipping point ωotip and its safe operating bound ωosafe are finite and independent of
the number of countries.

The result provides a sharp contrast between the BAU and the Planner’s solution.
Recall that in the BAU model, the global commons tips with certainty, regardless of
the value of F and regardless of the initial stock if there are many countries. In the
planner’s problem, for a low enough floor the commons tips only below some finite
threshold. Above some finite threshold, it does not tip at all regardless of the number
of countries. These differences are displayed in Figure 6.

The intuition for the Theorem is not complicated. The flow payoff to any country
goes to −∞ as F goes to zero. The Planner obviously wishes to avoid this and has
the capacity to do so. Because there are natural steady states (steady states without
human intervention) above F , there is an unstable one. This means that at stocks
slightly above the unstable state, the Planner can drive up the stock to a stable
steady state by temporarily reducing aggregate extraction. Even at this reduced level
of extraction, the Planner’s payoff is higher than the low payoff from reaching the
carbon floor F .

Why is this option not available to countries in the BAU equilibrium? With
large n, each country’s extraction decision has a small effect on the stock dynamics.
Consequently, unlike the Planner, there is little an individual country can do except
to make the best of a bad situation. Since it views the downward spiral toward F
as inevitable, the country will attempt to grab as much of the carbon stock as it can
when its θit is high. This behavior, in turn, fulfills the expectation that hitting the
floor F is inevitable.
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Figure 6: Comparison of Tipping Points in the Different Models

6 International Agreements and Other Consider-

ations

The present paper introduces a non-concave transition where tipping toward a low-
end floor is possible. BAU equilibria in the non-concave model differ sharply from
those in the concave model. They also differ sharply from the Planner’s solution.
The shocks play a critical role since the tipping problem intensifies as technologies
become more pro-extractive. The heterogeneity introduces a further consideration,
as the most pro-extractive countries will maintain the largest output as the stock
declines toward the floor.

The comparison between the BAU and the Planner’s problem highlights the im-
portance of an international agreement to control carbon emissions. An agreement
that implements the Planner’s solution could avert tipping, provided that the stock
is above the planner’s tipping point.

Such an agreement would require self-enforcing incentives to prevent cheating.
In an earlier paper (Harrison and Lagunoff (2016)), we lay out the version of the
concave model. We show that the planner’s solution can be implemented by a series
of triggers that implement increasing levels of extraction to punish earlier deviations.
The implementation, however, requires full information. When countries have private
information about their technologies or environmental hazards, then the constrained
optimal agreement pools across pro-extraction and pro-conservation types, revealing
the limits to global cooperation.
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An alternative, one that the present model does not explore, is that countries
agree to invest in pro-conservation or mitigation technologies. Even in the BAU,
tipping only becomes inevitable if countries become pro-extractive for a long enough
stretch of time. If the technologies can cap θ, then safe operating spaces can exist
even in under BAU extraction.

Finally, we observe that while model is parametric, the qualitative aspects are
intuitive and we think it’s unlikely that results will differ in similar models with
non-concave transitions. Clearly, there is much work to do. This includes empirical
explorations that integrate quantitative features of carbon cycle dynamics into these
types of models.
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7 Appendix

7.1 Proof of Proposition 1

The agent seeks to maximize the sum of discounted utilities on each period, by choos-
ing the level of consumption (ct). The maximization problem in Bellman form can
be written as:

Ũ(ωt; e
∗, θit) = max

eit
uit + δ Et

[
Ũ(ωt+1; e

∗, θit+1)
]

(17)

s.t. ωt+1 =

{
A ((1− Et)ωt − b)γ if A ((1− Et)ωt − b)γ > F

F otherwise

(18)

The chosen rates must be such as to maximize the value function. Taking deriva-
tives respect to the control variables eit, the first order conditions are:

∀i [eit] :
θit
etωt

ωt +
1− θit

(1− Et)ωt
(−ωt) + δ Et

[
∂Ũ

∂ωt+1

∂ωt+1

∂eit

]
= 0 (19)

The derivative of the stock movement equation respect to the consumption is the
following:

∂ωt+1

∂eit
=

{
Aγ ((1− Et)ωt − b)γ−1 (−ωt) if A ((1− Et)ωt − b)γ > F

0 otherwise

= −Aγωt ((1− Et)ωt − b)γ−1 · 1Et∈X(ωt)

where
X(ωt) ≡ {Et : A((1− Et)ωt − b)γ > F} (20)

is the event that the commons has not reached the floor F .

We then rewrite 38 as:

[eit] :
θit
eit
− 1− θit

1− Et
− Aδγωt ((1− Et)ωt − b)γ−1 Et

[
∂Ũt+1

∂ωt+1

]
1{Et∈X(ωt)} = 0 (21)

By the Envelope Theorem, deriving the value function with respect to ωt would
yield:

∂Ũ(ωt, e)

∂ωt
=
∂Ũ(ωt, e)

∂ωt
+
∑
j 6=i

∂Ũ(ωt, e)

∂ejt

∂ejt
∂ωt

(22)
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where:

∂Ũ(ωt, e)

∂ωt
=

θit
eitωt

eit +
1− θit

(1− Et)ωt
(1− Et) +

Aγδ(1− Et)
((1− Et)ωt − b)1−γ

Et

[
∂Ũt+1

∂ωt+1

]

=
θit
ωt

+
1− θit
ωt

+
Aγδ(1− Et)

((1− Et)ωt − b)1−γ
Et

[
∂Ũt+1

∂ωt+1

]

=
1

ωt
+

Aγδ(1− Et)
((1− Et)ωt − b)1−γ

Et

[
∂Ũt+1

∂ωt+1

]

and

∂Ũ(ωt, e)

∂ejt

∂ejt
∂ωt

=

(
−ωt

1− θit
ωt(1− Et)

+
Aγδωt

((1− Et)ωt − b)1−γ
Et

[
∂Ũt+1

∂ωt+1

])
∂ejt
∂ωt

=

(
−1− θit

1− Et
+

Aγδωt
((1− Et)ωt − b)1−γ

Et

[
∂Ũt+1

∂ωt+1

])
∂ejt
∂ωt∑

j 6=i

∂Ũ(ωt, e)

∂ejt

∂ejt
∂ωt

=

(
−1− θit

1− Et
+

Aγδωt
((1− Et)ωt − b)1−γ

Et

[
∂Ũt+1

∂ωt+1

])∑
j 6=i

∂ejt
∂ωt

In the optimum,
∂Ũ(ωt,e∗it)

∂eit
= 0 for being the function that maximizes uit at time t.

Therefore, condition 44 can be written as:

∂Ũ

∂ωt
=

1

ωt
− 1− θit

1− Et

∑
j 6=i

∂ejt
∂ωt

(23)

+ Aδγ((1− Et)ωt − b)γ−1
(

1− Et − ωt
∑
j 6=i

∂ejt
∂ωt

)
Et

[
∂Ũt+1

∂ωt+1

]
1{Et∈X(ωt)}

(24)

Solving for Et
[
∂Ũt+1

∂ωt+1

]
1{Et∈X(ωt)} from the first order condition yields:

Et

[
∂Ũt+1

∂ωt+1

]
1{Et∈X(ωt)} =

(
Aδγωt ((1− Et)ωt − b)γ−1

)−1(θit
et
− 1− θit

1− Et

)
(25)
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Substituting (46) into (45):

∂Ũt
∂ωt

=
∂u(ωt, e

∗
it)

∂ωt
+ δ Et

[
∂Ũt+1

∂ωt+1

∂ωt+1

∂ωt

]

=
1

ωt
− 1− θit

1− Et

∑
j 6=i

∂ejt
∂ωt

+

(
1− Et − ωt

∑
j

∂ejt
∂ωt

)
(ωt)

−1
(
θit
eit
− 1− θit

1− Et

)
=

1

ωt

(
1 + (1− Et)

(
θit
eit
− 1− θit

1− Et

))
+
∑
j 6=i

∂ejt
∂ωt

(
1− θit
1− Et

−
(
θit
et
− 1− θit

1− Et

))

=
θit
ωt

(
1−

∑
j 6=i ejt

eit

)
− θit
eit

∑
j 6=i

∂ejt
∂ωt

=
θit
eit

(
1− E−it
ωt

+
∑
j 6=i

∂(1− ejt)
∂ωt

)

=
θit
eit

(1− E−it )

ωt

(
1 +

ωt

1− E−it
∂(1− E−it )

∂ωt

)
=

θit
ωteit

(1− E−it )
(
1 + σ−it

)

where σ−it = ωt
1−E−it

∂(1−E−it )

∂ωt
is the overall elasticity of consumption of the rest of

the countries with respect to the carbon stock at time t. Now, forwarding the last
equation one period, we obtain:

∂Ũt+1

∂ωt+1

=
θit+1

ωt+1eit+1

(1− E−it+1)
(
1 + σ−it+1

)
(26)

And replacing (50) on the first order condition yields the Euler equation for the
system:

θit
eit
− 1− θit

1− Et
− Aδγωt ((1− Et)ωt − b)γ−1 Et

[
θit+1

ωt+1eit+1

(1− E−it+1)
(
1 + σ−it+1

)]
1{Et∈X(ωt)} = 0

θit
eit
− 1− θit

1− Et
− δγωt ((1− Et)ωt − b)−1 Et

[
θit+1

eit+1

(1− E−it+1)
(
1 + σ−it+1

)]
1{Et∈X(ωt)} = 0

Therefore, the Euler equation can be rewritten as:

θit
eit
− 1− θit

1− Et
=

δγωt
((1− Et)ωt − b)

Et
[
θit+1

eit+1

(1− E−it+1)
(
1 + σ−it+1

)]
1{Et∈X(ωt)} (27)
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or, to simplify further,

θit
eit

(1− E−it ) = 1 +
δγ(1− Et)ωt

((1− Et)ωt − b)
Et
[
θit+1

eit+1

(1− E−it+1)
(
1 + σ−it+1

)]
1{Et∈X(ωt)} (28)

which coincides with the Euler equation in (8).

Finally, by setting b = 0 as required for the no-tipping model, we obtain the closed
for solution for a BAU equilibrium in Equation (9).

7.2 Proof of Theorem 1

To prove the theorem we return to the BAU equilibrium Euler equation (8).

θit
eit

(1− E−it ) = 1 +
δγ(1− Et)ωt

((1− Et)ωt − b)
Et
[
θit+1

eit+1

(1− E−it+1)
(
1 + σ−it+1

)]
1{Et∈X(ωt)} (29)

where X(ωt) is defined in (20).

Notice that when b = F = 0 (the concave, “no-tipping” model), the Euler equation
reduces to

θit
eit

(1− E−it ) = 1 + δγ Et
[
θit+1

eit+1

(1− E−it+1)
(
1 + σ−it+1

)]
(30)

which is solved by the ω-stationary extraction plan

ēit(θt) =

θit(1−γδ)
1−θit(1−γδ)

1 +
∑n

j=1
θjt(1−γδ)

1−θjt(1−γδ)

.

In this stationary solution, σ−it+1 = 0 for all i, t, and θ.

First, we show that there exists ω1 satisfying e∗it(ωt, θt) > ēit(θt) for all θt whenever
ωt < ω1. Observe that whenever 1{Et∈X(ωt)} = 0, then the right-hand side of the Euler
equation (29) becomes zero. Given E , the triggering event is independent of θ. Let
ω1 satisfy

ω1 ∈ arg inf{ω : 1{E∗(ω,θ)∈X(ω)} = 1 ∀ θ}
A non-zero infimum exists since 1{F∈X(ω)} = 0. By construction, for all ωt ≤ ω1 and
for all θt, e∗it(ωt, θt) = estatici (θt) > ēit(θt).

For the second part, we show that there is some ω2 such that for all θt, e
∗
it(ωt, θt) <

ēit(θ
t) when ωt ≥ ω2. Observe that the Euler equation can be rewritten as:

θit
eit

(1− E−it ) = 1 +
δγ(1− Et)

(1− Et)− b/ωt
Et
[
θit+1

eit+1

(1− E−it+1)
(
1 + σ−it+1

)]
1{Et∈X(ωt)}
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As ω →∞, b/ωt → 0 in which case the solution to the Euler equation is approximated
by an stationary extraction plan e. The stationary extraction plan, in turn, is the
solution ē to the concave model. Hence, e∗j(ω, θ)→ ēj(θ) for all θ, as ω →∞. Since
the marginal extraction cost (the right-hand side of (29)) is larger than the marginal
extraction cost in the concave model, the limit is reached from below. Consequently,
e∗j(ω, θ) ↗ ēj(θ). Fixing some ε > 0, we choose ω2 such that |e∗j(ω2, θ) − ēj(θ)| < ε.
Then we obtain e∗j(ω

2, θ) < ēj(θ) for all ω ≥ ω2.

We conclude the proof.

7.3 Proof of Theorem 2

Abusing notation, let E∗(ωt, θt, b, n) denote the BAU equilibrium aggregate extraction
rate, expressed as a function of both the state and the relevant parameters b and n.
Let

G∗(ωt, θt, b) ≡
δγωt(1− E∗(ωt, θt, b, n))

ωt(1− E∗(ωt, θt, b, n))− b
×

Et
[

θit+1

e∗i (ωt+1, θt+1, b, n)
(1− E∗−i(ωt+1, θt+1, b, n))

(
1 + σ∗−it+1

)]
1{E∗(ωt,θt,b,n)∈X(ωt)}

So G∗ is the marginal extraction cost evaluated at the BAU equilibrium.

We first show that there is a ω-stationary lower bound on the aggregate extraction
rate, namely, an extraction rate E(θt, b, n) with E(θt, b, n) ≤ E∗(ωt, θt, b, n) ∀ ωt, there
exists ε sufficiently small and n sufficiently large, so that if θt ∈ (1− ε, 1]n then

ωt > ω∗t+1(ωt, θt; b) ∀ ωt > F .

In other words, the only fixed point of ω∗ is the floor F .

We first find this lower bound E(θt, b, n). Observe that 1{Et∈X(ωt)} = 0 for all ωt
and Et such that A(ωt(1− Et)− b)γ ≤ F or equivalently, ωt ≤ 1

1−Et

(
b+ (F

A
)1/γ
)
≡ K.

Moreover, K is the upper bound on stocks for which 1{Et∈X(ωt)} = 0. Hence, fixing θt
the marginal future cost of extraction (the right-hand side of (8)) is bounded above
by its stationary limit when ω approaches K from the right, so that 1{Et∈X(ωt)} = 1.
Stated precisely:

∀ ωt, G∗(ωt, θt, b) ≤ lim
ω→K+

G∗(ω, θt, b).

This is obviously true if ω ≤ K since G∗(ωt, θt, b) = 0 when the carbon floor is
reached. It is also true if ω > K since marginal extraction cost is declining in stock.
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Hence, set E(θt, b, n) ≡ E∗(K, θt, b, n). By definition, E(θt, b, n) is the solution to
(8) at the threshold value ω = K+. We evaluate the Euler equation at E = E(θt, b, n)
when θt = 1. In that case, extraction rates are stationary and symmetric, i..e, E = ne
and σ−i t = (n− 1)σ.

The Euler equation becomes

1− E−i

E/n
= 1 + δγ

K(1− E)

K(1− E)− b

(
1− E−i

E/n
(1 + (n− 1)σ)

)
Considering E−i = (n−1)

n
E , the condition can be expressed as

n
1− E
E

= δγ
K(1− E)

K(1− E)− b

(
(n

1− E
E

+ 1)(1 + (n− 1)σ)

)
n

1− E
E

(
1− δγ K(1− E)

K(1− E)− b
(1 + (n− 1)σ)

)
= δγ

K(1− E)

K(1− E)− b
(1 + (n− 1)σ)

n
1− E
E

=
δγ K(1−E)

K(1−E)−b (1 + (n− 1)σ)

1− δγ K(1−E)
K(1−E)−b(1 + (n− 1)σ)

n
1− E
E

=
δγK(1− E) (1 + (n− 1)σ)

K(1− E)(1− δγ(1 + (n− 1)σ))− b

Using the fact that K ≡ 1
1−E

(
b+ (F

A
)1/γ
)
, the Euler equation becomes

n
1− E
E

=
δγ (1 + (n− 1)σ)

(
b+ (F

A
)1/γ
)

(1− δγ(1 + (n− 1)σ))
(
b+ (F

A
)1/γ
)
− b

. (31)

Since, by construction E(1, b, n) satisfies (31) and σ < 0 in an interval [K,K + ε), it
follows that

lim
n→∞

E(1, b, n) = 1.

Next we show that for ε small enough and n large enough,

ωt > ω∗t+1(ωt, θt; b) ∀ ωt ∀ θt ∈ (1− ε, 1]n. (32)

The inequality (32) may be rewritten as

1

(1− E∗(ωt, θt, b, n))

[(ωt
A

)1/γ
+ b

]
− ωt > 0 ∀ ωt. (33)

To verify that (33) holds, we show that

P ≡ min
ω

(
1

(1− E t(θt; b, n))

[(ωt
A

)1/γ
+ b

]
− ω

)
> 0 (34)
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where E t(θt; b, n) is, recall, a stationary lower bound of E∗(ωt, θt, b, n).

The first order condition for P is

(γ(1− E(θt; b, n))A1/γ)−1ω
1−γ
γ − 1 = 0.

Solving for ω, we obtain ωm ≡ (γ(1−E(θt; b, n)))
γ

1−γA
1

1−γ . Substituting ωm back into
the problem we obtain,

P =

(
1

(1− E(θt; b, n))

[
(
ωm

A
)1/γ + b

]
− ωm

)

=

(
1

(1− E(θt; b, n))

[
(
(γ(1− E(θt; b, n)))

γ
1−γA

1
1−γ

A
)1/γ + b

]
− (γ(1− E(θt; b, n)))

γ
1−γA

1
1−γ

)

=
b

1− E(θt; b, n)
− (1− E(θt; b, n))

γ
1−γA

1
1−γ

(
γ

γ
1−γ − γ

1
1−γ

)
.

Hence, (33) holds if

P =
b

1− E(θt; b, n)
− (1− E(θt; b, n))

γ
1−γA

1
1−γ

(
γ

γ
1−γ − γ

1
1−γ

)
> 0 (35)

holds. But (35) clearly holds in the limit as θt → 1 ≡ (1, . . . , 1) and n → ∞ since
E(θt; b, n)→ 1 in that case.

Since the argument is strict, there exists n′ sufficiently large, and θt sufficiently
close to one such that there is a finite time length T (θt) such that ω∗t(ω0, θ

t)→ F in
at most T (θt) iterations. Let

T = max
θt∈[1−ε,1]

T (θt).

Thus T is a time length (dependent on ω0) such that if (32) holds for all θt ∈ (1−ε, 1]n

then ω∗t(ω0, θ
t)→ F in at most T iterations.

Observe that (3) implies for any finite T > 0, that for a.e. θt,

Pr
(
θt+s ∈ (1− ε, 1]n, s = 1, . . . , T

∣∣∣ θt)
=

∫
θt+1∈(1−ε,1]n

· · ·
∫
θt+T∈(1−ε,1]n

T∏
s=1

dF (θt+s|θt+s−1)

≥ εT .

(36)
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It follows that for almost every process {θt}, there is a date t (infinitely many dates
actually) such that (32) holds for realized values θt, θt+1, . . . , θt+T , in which case
ω∗ t+T (ωt, θ

t+T ) = F . Consequently, the commons reaches the floor F from t ωt,
concluding the proof.

7.4 Derivation of the Planner’s Euler Equation

We first derive the Planner’s Euler equation before making comparisons to the BAU
equilibrium.

Taking derivatives respect to the control variables eit, the first order conditions
are:

[eit] :
θit
eitωt

ωt +

∑n
i=1(1− θit)

(1− Et)ωt
(−ωt) + δ E

[
∂V

∂ωt+1

∂ωt+1

∂eit

]
= 0 (37)

θit
eit
−
∑n

i=1(1− θit)
1− Et

+ δ E
[
∂V

∂ωt+1

∂ωt+1

∂eit

]
= 0 (38)

Considering that the derivative of the stock movement equation respect to the
consumption is the following:

∂ωt+1

∂eit
=

{
Aγ ((1− Et)ωt − b)γ−1 (−ωt) (1− Et)ωt − b ≥ F

0 otherwise
(39)

= −Aγωt ((1− Et)ωt − b)γ−1 1Et∈X(ωt) (40)

We can rewrite (38) as:

[eit] :
θit
eit
−
∑n

i=1(1− θit)
1− Et

= Aδγωt ((1− Et)ωt − b)γ−1 E
[
∂Vt+1

∂ωt+1

]
1{Et∈X(ωt)} (41)

Deriving the value function with respect to ωt would yield:

∂V (ωt)

∂ωt
=

n∑
i=1

(
θiteit
eitωt

+
(1− θit)(1− Et)

(1− Et)ωt

)
+ δ E

[
∂Vt+1

∂ωt+1

∂ωt+1

∂ωt

]
(42)

=
n∑
i=1

(
θit
ωt

+
1− θit
ωt

)
+ δ E

[
∂Vt+1

∂ωt+1

∂ωt+1

∂ωt

]
(43)

=
n

ωt
+ δ E

[
∂Vt+1

∂ωt+1

∂ωt+1

∂ωt

]
(44)
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where

∂ωt+1

∂ωt
= Aγ((1− Et)ωt − b)γ−1 (1− Et) 1{Et∈X(ωt)}

The condition (44) can be written as:

∂Vt
∂ωt

=
n

ωt
+ Aδγ((1− Et)ωt − b)γ−1 (1− Et) 1{Et∈X(ωt)} E

[
∂Vt+1

∂ωt+1

]
(45)

From the FOC, solving for E
[
∂Vt+1

∂ωt+1

]
yields:

E
[
∂Vt+1

∂ωt+1

]
=
(
Aδγωt ((1− Et)ωt − b)γ−1

)−1(θit
eit
−
∑n

i=1(1− θit)
1− Et

)
(46)

Replacing (46) on (45):

∂Vt
∂ωt

=
n

ωt
+

1− Et
ωt

(
θit
eit
−
∑n

i=1(1− θit)
1− Et

)
(47)

=
n

ωt
+

(1− Et)θit
eitωt

−
∑n

i=1(1− θit)
ωt

(48)

=
(1− Et)θit
eitωt

+

∑n
i=1 θit
ωt

(49)

Now, forwarding (49) one period, we obtain:

∂Vt+1

∂ωt+1

=
(1− Et+1)θit+1

eit+1ωt+1

+

∑n
i=1 θit+1

ωt+1

(50)

And replacing (50) on the first order condition yields the Euler equation for the
system:

θit
eit
−
∑n

i=1(1− θit)
1− Et

= Aδγωt ((1− Et)ωt − b)γ−1 E
[

(1− Et+1)θit+1

eit+1ωt+1

+

∑n
i=1 θit+1

ωt+1

]
1{Et∈X(ωt)}

=
Aδγωt ((1− Et)ωt − b)γ−1

A((1− Et)ωt − b)γ
E

[
(1− Et+1)θit+1

eit+1

+
n∑
i=1

θit+1

]
1{Et∈X(ωt)}

=
δγωt

(1− Et)ωt − b
E

[
θit+1

eit+1

− θit+1

eit+1

∑
j 6=i

ejt+1 +
∑
j 6=i

θjt+1

]
1{Et∈X(ωt)}

(51)
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Therefore, the Planner’s Euler equation for country i can be rewritten as:

θit(1− E−it )

eit
−(n−

∑
j 6=i

θjt) =

[
δγωt(1− Et)

(1− Et)ωt − b

]
E

[
θit+1

eit+1

(1− E−it+1) +
∑
j 6=i

θjt+1

]
1{Et∈X(ωt)}

(52)

7.5 Proof of Proposition 2

We first rewrite both the Planner’s and the BAU Equation to obtain more convenient
expressions.

Using the BAU Euler equation as expressed in Equation (27), we obtain

(
θit −

(1− θit)eit
1− Et

)
(ωt(1− Et)− b) −

Aδγ eitωt

{
1 + E

[(
θi t+1

ei t+1

− 1− θi t+1

1− Et+1

− σ−it+1

(
θi t+1

ei t+1

) )
(1− Et+1)

∣∣∣ ωt, θi t]} 1{Et∈X(ωt)} = 0

(53)
Similarly, Planner’s Euler equation as expressed in Equation (51), we obtain

1

n

(
θit −

eit
∑

j(1− θjt)
1− Et

)
(ωt(1− Et)− b) −

Aδγ eitωt

{
1 + E

[(
θi t+1

ei t+1

− 1− θi t+1

1− Et+1

)
(1− Et+1)

∣∣∣ ωt, θi t]} 1{Et∈X(ωt)} = 0

(54)

The left-hand sides of Equations (53) and (54) are the marginal values to country i
and the Planner, respectively, from i’s extraction of carbon. Summing both equations
over all countries, we obtain,

H∗t (Et, et+1) ≡

(∑
i

θit −
∑
i

(1− θit)eit
1− Et

)
(ωt(1− Et)− b) −

Aδγ Etωt

{
1 + E

∑
i

[(
θi t+1

ei t+1

− 1− θi t+1

1− Et+1

− σ−it+1

(
θi t+1

ei t+1

) )
(1− Et+1)

∣∣∣ ωt, θi t]} 1{Et∈X(ωt)} = 0

(55)
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and

H◦t (Et, et+1) ≡
1

n

(∑
i

θit −
Et
∑

j(1− θjt)
1− Et

)
(ωt(1− Et)− b) −

Aδγ Etωt
{

1 + E

[(
θi t+1

ei t+1

− 1− θi t+1

1− Et+1

)
(1− Et+1)

∣∣∣ ωt, θi t]} 1{Et∈X(ωt)} = 0

(56)

We now compare the marginal values H∗t (Et, et+1) and H◦t (Et, et+1). In the follow-
ing Lemmata, we refer to the top lines of H∗ and of H◦ as the first term, and the
bottom line of each as the second term.

Lemma 1 The second term of H∗t (Et, et+1) is smaller than the second term of H◦t (Et, et+1)

Proof of Lemma 1. Clear by inspection.

Lemma 2 Regarding the first terms of H∗ and H◦, for any E satisfying E < n
n+1

,

∑
i

θit −
∑
i

(1− θit)eit
1− Et

>
1

n

(∑
i

θit −
Et
∑

j(1− θjt)
1− Et

)
.

Proof of Lemma 2. For simplicity let Θt =
∑

i θit. Then we seek to show

Θt(1− Et)− Et +
∑
i

θiteit
?
>

1

n
(Θt(1− Et)− nEt + ΘtEt)

or

Θt(1− Et) +
∑
i

θiteit
?
>

1

n
(Θt(1− Et) + ΘtEt)

or
n− 1

n
Θt(1− Et) +

∑
i

θiteit
?
>

1

n
ΘtEt

or
n− 1

n
Θt −ΘtEt +

∑
i

θiteit
?
> 0

which clearly holds if n
n+1

> Et.

Combining Lemma 1 with Lemma 2, it follows that for all Et satisfying Et < n
n+1

,
and all et+1,

H∗t (Et, et+1) > H◦t (Et, et+1).
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Since E◦t < n
n+1

,
H∗t (E◦t , et+1) > H◦t (E◦t , et+1) = 0,

for all et+1. This yields E∗t > E◦t .

7.6 Proof of Proposition 3

Part 1. Over- and Under-extraction by Individual Countries. To evaluate
whether a country over or under extracts in the BAU equilibrium, one need only
compare e◦it to e∗it. Country over (under) extracts if e∗it > (<)e◦it. We therefore
compare:

e◦it(θt) =
θit(1− Aγδ)

n
=
φit
n

?
> e∗it(θt) =

( θit(1−Aγδ)
1−θit(1−Aγδ))

1 + (
∑n

j=1
θjt(1−Aγδ)

1−θjt(1−Aγδ))
=

( φit
1−φit )

1 + (
∑n

j=1
φjt

1−φjt )

with, recall, φit = θit(1− Aγδ). Since φit > 0, country i over-extracts if

( 1
1−φit )

1 + (
∑n

j=1
φjt

1−φjt )
>

1

n
,

and solving for φit, country i will over (under) extract if

φit > (<) 1− n− 1∑
j 6=i

φjt
1−φjt

(57)

By choosing θ̃ such that θ̃(1−Aδγ) equals the right hand side of (57), we have found
out threshold.

Notice, moreover, that the larger the profile of her opponents the (weakly) smaller
is the set of types for which is optimal to her over extract.24

24Example: suppose a symmetric profile φ−i, i.e. φj = φk = φ for all k, j 6= i.

φi > 1− n− 1∑
j 6=i

φj

1−φj

= 1− n− 1

(n− 1) φ
1−φ

=
2φ− 1

φ
. (∗∗)

Note that the extreme (highest) profile player i can be facing is a profile of opponents with the
highest type, i.e. θj = θ < 1 for all j 6= i. Then from equation (∗∗) above,

θi >
2θ(1− γδ)− 1

θ(1− γδ)2
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Part 2. Output paths. The final part must prove that relative output, carbon
consumption and carbon stock shrinks in the BAU relative to that of the efficient
plan.

We first compute the socially optimal extraction rate and the optimal carbon path
when b = 0 and setting φit = θit(1− Aδγ). The extraction rate is: eit = φi t

n
and the

time path of the carbon stock in the Planner’s optimum is

ω∗ t(ω0, θ
t) = ωγ

t

0 A
1−γt
1−γ

t∏
τ=1

(1− E◦t−τ (θt−τ ))γ
τ

= ωγ
t

0 A
1−γt
1−γ

t∏
τ=1

(
1−

∑
j φj t−τ

n

)γτ
.

(58)

A country’s output path in the Planner’s problem is given by

y∗ti =

(
φi t
n

)θit (
1−

∑
j φj t

n

)(1−θit)

ωγ
t

0 A
1−γt
1−γ

t∏
τ=1

(
1−

∑
j φj t−τ

n

)γτ
. (59)

A particularly useful illustration of (58) is the case without shocks. In that case
θt = θt′ = θ and so (58) reduces to

ω∗t(ω0, θ
t) = ωγ

t

0

(
1−

∑
j φj

n

) γ(1−γt)
1−γ

A
1−γt
1−γ (60)

in which case the output path simplifies to

y∗ti =

(
φi
n

)θi (
1−

∑
j ψj

n

)(1−θi)

ωγ
t

0

(
1−

∑
j φj

n

) γ(1−γt)
1−γ

A
1−γt
1−γ . (61)

or

φi >
2φ− 1

φ
.

So if we require all θi over extract, the condition is:

θ >
2θ(1− γδ)− 1

θ(1− γδ)2
.

This implies the following sufficient condition: if δγ ≥ 1
2 all types θi over extract.
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These paths may be compared to the BAU equilibrium. Iterating on the equilib-
rium law of motion, one derives the time path of the carbon stock as

ω∗t(ω0, θ
t) = ωγ

t

0 A
1−γt
1−γ

t∏
τ=1

(1− E∗t−τ (θt−τ ))γ
τ

= ωγ
t

0 A
1−γt
1−γ

t∏
τ=1

(
1−

∑
j(

φj t−τ
1−φj t−τ )

1 + (
∑

j
φj t−τ

1−φj t−τ )

)γτ

.

(62)

A country’s output path in the BAU equilibrium is given by

y∗ti (ω0, θ
t) =

(
( φit
1−φit )

1 + (
∑

j=1
φjt

1−φjt )

)θit (
1−

∑
j(

φjt
1−φjt )

1 + (
∑

j
φjt

1−φjt )

)(1−θit)

ω∗t(ω0, θ
t)

=

(
( φit
1−φit )

1 + (
∑

j=1
φjt

1−φjt )

)θit (
1−

∑
j(

φjt
1−φjt )

1 + (
∑

j
φjt

1−φjt )

)(1−θit)

×

ωγ
t

0 A
1−γt
1−γ

t∏
τ=1

(
1−

∑
j(

φj t−τ
1−φj t−τ )

1 + (
∑

j
φj t−τ

1−φj t−τ )

)γτ

.

(63)

Comparing the BAU in (63) with the optimal output in (59). We see that y∗it < y◦it
iff (

( φit
1−φit )

1 + (
∑

j=1
φjt

1−φjt )

)θit (
1−

∑
j(

φjt
1−φjt )

1 + (
∑

j
φjt

1−φjt )

)(1−θit) t∏
τ=1

(
1−

∑
j(

φj t−τ
1−φj t−τ )

1 + (
∑

j
φj t−τ

1−φj t−τ )

)γτ

<

(
φit
n

)θit (1−
∑

j φjt

n

)(1−θit) t∏
τ=1

(
1−

∑
j φj t−τ

n

)γτ
.

In order to evaluate the relative growth in output paths, we compare:

t∏
τ=1

(
1−

∑
j(

φj t−τ
1−φj t−τ )

1 + (
∑

j
φj t−τ

1−φj t−τ )

)γτ

<

t∏
τ=1

(
1−

∑
j φj t−τ

n

)γτ
which holds due to the fact that the aggregate extraction rate is larger (hence con-
servation rate is smaller) in the MPE. Moreover the relative difference

t∏
τ=1

(
1−

∑
j φj t−τ

n

)γτ
/

t∏
τ=1

(
1−

∑
j(

φj t−τ
1−φj t−τ )

1 + (
∑

j
φj t−τ

1−φj t−τ )

)γτ
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is increasing as time passes. Hence, both the expected ratio E[
y◦it
y∗it

] and the expected

difference E[y◦it − y∗it] are increasing in t.

7.7 Proof of Theorem 3

We show that the Planner’s solution admits a finite tipping in the worst case: θt = 1.
It suffices to show that transition map ω◦t+1(ωt, 1) admits a fixed point and this fixed
point lies above F .

We first verify that when θt = 1, the Planner’s optimization problem for multiple
countries yields aggregate extraction that is identical to the BAU aggregate extraction
rate when the BAU model has only one country. In the former case, all countries have
identical preferences, and so the Planner assigns each country an identical carbon
quota. The Planner can therefore maximize the long run payoff of the representative
agent.

We refer to the one country case as the monopolistic extractor. Side-by-side, the
Planner’s and monopolistic extractor’s optimization problems are

max
Et

{
logωtEt/n + δ E

[
Ũ(ωt+1, E◦,1)

∣∣∣ ωt, ]}
s.t. ωt+1 = A(ωt(1− Et)− b)γ if A(ωt(1− Et)− b)γ > F and = F otherwise.

(64)
for the planner, and

max
et

{
logωtet + δ E

[
Ũ(ωt+1, e

∗,1)
∣∣∣ ωt, ]}

s.t. ωt+1 = A(ωt(1− et)− b)γ if A(ωt(1− et)− b)γ > F and = F otherwise.

(65)
for the monopolistic extractor.

The two first order conditions are, respectively,

1

etωt
ωt + δ Et

[
∂Ũ

∂ωt+1

∂ωt+1

∂ Et

]
= 0
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with

∂ωt+1

∂cEt
=

{
Aγ ((1− Et)ωt − b)γ−1 (−ωt) if A ((1− Et)ωt − b)γ > F

0 otherwise

for the Planner, and

1

etωt
ωt + δ Et

[
∂Ũ

∂ωt+1

∂ωt+1

∂et

]
= 0

with

∂ωt+1

∂et
=

{
Aγ ((1− et)ωt − b)γ−1 (−ωt) if A ((1− et)ωt − b)γ > F

0 otherwise

for the monopolist. The marginal extraction cost of increasing e is weakly higher for
the Planner. Thus, if the commons has not reached the floor F , we have E∗(ωt,1; b, n =
1) ≡ e∗(ωt,1; b, n = 1) = E◦(ωt,1; b, n ≥ 1).

It suffices to consider to show finite tipping point for the monopolistic country
when θt = 1. From the first Proposition, the Euler equation is

1

et
= 1 +

δγ(1− et)ωt
((1− et)ωt − b)

Et
[

1

et+1

]
1{et∈X(ωt)}

It is easy to check that if the commons reaches floor F , then 1{et∈X(ωt)} = 0 in which
case et = 1 solves the Euler equation. The payoff to the monopolist if the floor is
reached is

log F

1− δ
(66)

We construct a bound on F by considering the payoff of the Planner near the
natural unstable steady state stock. Specifically, recall the assumption from Section
2.3 that there exists a lowest possible stock ω̃ satisfying

A(ω̃ − b)γ = ω̃, (67)

i.e., ω̃ is a fixed point of the map A(ω − b)γ, and is the minimum fixed point of the
map. Earlier, ω̃ was referred to as a natural steady state. By construction, it is the
unstable steady state and so A(ω − b)γ < ω if ω < ω̃. It therefore follows that there
exists η > 0 satisfying A(ω̃ + η − b)γ > ω̃ + η. Now choose ê to satisfy

A((ω̂ + η)(1− ê)− b)γ > ω̃ + η (68)

If the Planner were to consume at this stock and extraction rate permanently, his
payoff would be

log (ω̃ + η)ê

1− δ
(69)
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Yet, if the Planner were to maintain the extraction rate ê permanently, then since
γ < 1, a large enough stock ω yields A(ω(1− ê)− b)γ < ω. Combining this inequality
with (68), we invoke the the Intermediate Value Theorem to establish a stock ω̂
satisfying

A(ω̂(1− ê)− b)γ = ω̂

Thus, ω̂ is a steady state under constant extraction rate ê. Moreover, this steady
state is stable.

Since any tipping point must be weakly smaller than ω̂, the Planner has a finite
tipping point if he were to maintain ê.

Let ω̂◦t denote the t-period forward transition from any initial stock when ê is
used each period. It follows from the definition of ω̃ in (67) and by (68) that

lim
t→∞

ω̂◦ t(ω̃ + η,1) = ω̂

and so, starting from ω̃ + η and maintaining ê, the transition dynamics will take the
stock to the higher, stable steady state ω̂.

All along the path, the Planner’s payoff will be larger than his payoff in (69) since
he consumes the same fraction of an ever increasing stock. Hence, the payoff in (69)
is a lower bound on the Planner’s long run payoff starting from ω̃ + η.

We proceed to show that there is a bound on F at which the planner’s payoff in
(69) dominates the payoff in (66). We require only F̄ < (ω̃ + η)ê so that log(F̄ ) <
log((ω̃+ η)ê). Thus, for F < F̄ , the Planner will never choose to reach F from ω̃+ η
and so some ω ≤ ω̃ + η constitutes a tipping point. This completes the proof.
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