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A FLEXIBLE REGRESSION MODEL FOR COUNT DATA

BY KIMBERLY F. SELLERS AND GALIT SHMUELI

Georgetown University and University of Maryland

Poisson regression is a popular tool for modeling count data and is ap-
plied in a vast array of applications from the social to the physical sciences
and beyond. Real data, however, are often over- or under-dispersed and, thus,
not conducive to Poisson regression. We propose a regression model based
on the Conway–Maxwell-Poisson (COM-Poisson) distribution to address this
problem. The COM-Poisson regression generalizes the well-known Poisson
and logistic regression models, and is suitable for fitting count data with a
wide range of dispersion levels. With a GLM approach that takes advantage
of exponential family properties, we discuss model estimation, inference, di-
agnostics, and interpretation, and present a test for determining the need for
a COM-Poisson regression over a standard Poisson regression. We compare
the COM-Poisson to several alternatives and illustrate its advantages and use-
fulness using three data sets with varying dispersion.

1. Introduction. Regression models are the most popular tool for modeling
the relationship between a response variable and a set of predictors. In many ap-
plications, the response variable of interest is a count, that is, takes on nonnegative
integer values. For count data, the most widely used regression model is Poisson
regression, while, for binary data, the logistic (or probit) regression is most applied.
Poisson regression is limiting in its variance assumption, namely, that for observa-
tion i (i = 1, . . . , n), var(Yi) = E(Yi). Even with the best of intent, however, count
data often demonstrate over- or under-dispersion compared to the Poisson model.

One way to model over-dispersed count data is to use mixture models, for ex-
ample, the gamma–Poisson mixture, where Poisson variables have means μi that
follow a gamma distribution. This yields a negative binomial marginal distribution
of the form

P(Yi = yi |μi, r) =
(

r

r + μi

)r �(r + yi)

�(yi + 1)�(r)

(
μi

r + μi

)yi

, yi = 0,1,2, . . . ,

where r ≥ 0 and μi ≥ 0 for all i (i = 1, . . . , n). The negative binomial likelihood
can be expressed in the form of a generalized linear model for constant r , and
a log-link function (logμi = β ′Xi) is typically used. Although negative binomial
regression is available in many statistical software packages, it is limited to model-
ing only over-dispersed data. In addition to its inability to fit under-dispersed data,
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McCullagh and Nelder (1997) note that this procedure is “an unpopular option
with a problematic canonical link.”

An alternative model which can capture both over- and under-dispersion is the
restricted generalized Poisson regression (RGPR) model by Famoye (1993). The
model is given by

P(Yi = yi |μi,α) =
(

μi

1 + αμi

)yi (1 + αyi)
yi−1

yi ! exp
(−μi(1 + αyi)

1 + αμi

)
,

yi = 0,1,2, . . . ,

where logμi = β ′Xi . It is called a “restricted” model, because the dispersion
parameter α is restricted to 1 + αμi > 0 and 1 + αyi > 0 [Cui, Kim and Zhu
(2006)]. When α = 0, the model reduces to the Poisson case; α > 0 indicates
over-dispersion; and −2/μi < α < 0 indicates under-dispersion. While this model
allows for under- or over-dispersion in the data (albeit a limited degree of under-
dispersion), it belongs to an exponential family only for a constant dispersion pa-
rameter, α. Thus, a more general model with observation-specific dispersion (αi)
will no longer belong to the exponential family. In short, for count data that are
not binary nor follow a Poisson distribution, readily available, computationally ef-
ficient, flexible regression models are scarce. The need for such a model exists in
many fields where count models are routinely fit to an array of data sets of varying
dispersion.

In this paper we propose using a more general count distribution that captures a
wide range of dispersion. A two-parameter generalized form of the Poisson distrib-
ution, called the Conway–Maxwell-Poisson (COM-Poisson) distribution [Shmueli
et al. (2005)], is sufficiently flexible to describe a wide range of count data distri-
butions. It includes as special cases the Poisson, Bernoulli, and geometric distri-
butions, as well as distributions with dispersion levels between these three well-
known cases (governed by the dispersion parameter). The COM-Poisson distribu-
tion belongs to the exponential family and therefore possesses advantages in terms
of estimation, conjugate priors, etc. These advantages have proven useful in several
applications, such as using the COM-Poisson sufficient statistics for purposes of
data disclosure [Kadane, Krishnan and Shmueli (2006)], in marketing applications
[Boatwright, Borle and Kadane (2003), Borle et al. (2005)], and online auctions
[Borle, Boatwright and Kadane (2006)]. We describe the COM-Poisson distribu-
tion and introduce a few additional COM-Poisson formulations in Section 2.

In Section 3 we use the COM-Poisson distribution to formulate a regression
model. We discuss model estimation, inference, interpretation, and diagnostics;
obtaining fitted values; and testing for dispersion. A Bayesian regression formu-
lation using COM-Poisson has been used in marketing applications by Borle et
al. (2005, 2007), Borle, Boatwright and Kadane (2006), Boatwright, Borle and
Kadane (2003) and Kalyanam, Borle and Boatwright (2007). In each of these stud-
ies log(λ) was modeled as a linear function of predictors, and MCMC was used
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for estimation. Each of the data sets included a few thousand observations. For
each model, estimation time was between 2–24 hours. Lord, Guikema and Geed-
ipally (2008), motivated by traffic modeling, used a slightly different Bayesian
formulation with log(λ1/ν) as the link function. They use noninformative priors
and their model yields good fit. The formulation used, however, does not take full
advantage of the exponential family features of the COM-Poisson distribution and,
in particular, requires computationally expensive MCMC for estimation. We, in-
stead, approach the COM-Poisson distribution from a GLM perspective, carefully
choosing a link function (namely, logλ) that is advantageous in terms of estima-
tion, inference, and diagnostics. Our formulation also creates a generalization of
the ordinary Poisson regression as well as logistic regression, thereby including
and bridging two very popular and well-understood models. Although the logistic
regression is a limiting case (ν → ∞), in practice, fitting a COM-Poisson regres-
sion to binary data yields estimates and predictions that are practically identical to
those from a logistic regression.

To show the practical usefulness of the COM-Poisson regression, we compare
its performance to a few alternative regression models: Poisson, negative bino-
mial, logistic, and RGPR. Section 4 considers two data sets of different size and
with different levels of dispersion. Using these data, we illustrate the advantages of
the COM-Poisson model in terms of model fit, inference, and wide applicability.
In Section 5 we consider the Lord, Guikema and Geedipally (2008) motor vehicle
accidents example. We compare the models along with our COM-Poisson formu-
lation to the Bayesian formulation. Section 6 concludes with discussion and future
directions.

2. The COM-Poisson distribution. The COM-Poisson probability distribu-
tion function [Shmueli et al. (2005)] takes the form

P(Yi = yi) = λ
yi

i

(yi !)νZ(λi, ν)
, yi = 0,1,2, . . . , i = 1, . . . , n,

for a random variable Yi , where Z(λi, ν) = ∑∞
s=0

λs
i

(s!)ν and ν ≥ 0. The ratio be-

tween the probabilities of two consecutive values is then P(Yi=yi−1)
P (Yi=yi)

= yν
i

λi
. The

COM-Poisson distribution generalizes the Poisson distribution in that the ratio
is not necessarily linear in yi , thereby leading to longer or shorter tails for the
distribution. The COM-Poisson distribution includes three well-known distribu-
tions as special cases: Poisson (ν = 1), geometric (ν = 0, λi < 1), and Bernoulli
(ν → ∞ with probability λi

1+λi
).

In Shmueli et al. (2005) the moments are given in the form

E(Y r+1
i ) =

⎧⎨
⎩

λi[E(Yi + 1)]1−ν, r = 0,

λi

∂

∂λi

E(Y r
i ) + E(Yi)E(Y r

i ), r > 0,
(2.1)
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and the expected value is approximated by

E(Yi) = λi

∂ logZ(λi, ν)

∂λi

≈ λ
1/ν
i − ν − 1

2ν
.(2.2)

In practice, the expected value can be evaluated by either (1) estimating the proba-
bility density function and truncating the infinite sum Minka et al. (2003), or (2) de-
termining λ̂, ν̂ and using these estimates to compute the approximation in Equa-
tion (2.2). Another useful result1 regarding this distribution is that E(Y ν) = λ.
Note that the expected value and variance can also be written in the form

E(Yi) = ∂ logZ(λi, ν)

∂ logλi

,(2.3)

var(Yi) = ∂E(Yi)

∂ logλi

.(2.4)

We apply the results from equations (2.3) and (2.4) to formulate the estimating
equations (available in the online supplemental materials) and the Fisher informa-
tion matrix (Section 3).

3. Regression formulation. Our proposed COM-Poisson regression formu-
lation begins as a generalization of an ordinary Poisson regression. McCullagh
and Nelder (1997) view Poisson regression as a special case of loglinear models
taking the form

logE(Yi) = logμi = ηi = β ′Xi = β0 + β1Xi1 + · · · + βpXip, i = 1, . . . , n,

where var(Yi) = σ 2E(Yi), and where σ 2 denotes the dispersion parameter [σ 2 > 1
(<1) for over- (under) dispersion]. Further, they argue that the link function is
more important than the variance assumption. We will show that, while in some
cases dispersion might not significantly affect mean predictions, it does affect the
conditional distributions and can affect inference.

We can write a similar approximate type of relationship between the mean and
variance via the COM-Poisson distribution. Using equations (2.1)–(2.2), we can
write (suppressing subscript i)

var(Y ) = λ
∂

∂λ
E(Y ) ≈ λ

∂

∂λ

(
λ1/ν − ν − 1

2ν

)
= 1

ν
λ1/ν ≈ 1

ν
E(Y ),

in accordance with McCullagh and Nelder (1997). Thus, we can see the relation-
ship between ν (or 1

ν
) and the direction of data dispersion.

In the following we take a more direct approach to modeling the dispersion by
extending the GLM formulation to the COM-Poisson case and modeling the rela-
tionship between Y and the predictors X via a function of E(Y ). Although typical

1We thank Ralph Snyder for providing this result.
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link functions are direct functions of E(Y ) [e.g., E(Y ), logE(Y ), logit(E(Y ))],
the most natural link function for a COM-Poisson regression is η(E(Y)) = logλ,
modeling the relationship between E(Y) and X indirectly. This choice of function
is useful for two reasons. First, it coincides with the link function in two well-
known cases: in Poisson regression, it reduces to E(Y) = λ; in logistic regression,
where p = λ

1+λ , it reduces to logit(p) = logλ. The second advantage of using logλ

as the link function is that it leads to elegant estimation, inference, and diagnostics.
This result highlights the lesser role that the conditional mean plays when consid-
ering count distributions of a wide variety of dispersion levels. Unlike Poisson or
linear regression, where the conditional mean is central to estimation and interpre-
tation, in the COM-Poisson regression model, we must take into account the entire
conditional distribution.

3.1. Model estimation. We write the log-likelihood for observation i as

logLi(λi, ν|yi) = yi logλi − ν logyi ! − logZ(λi, ν).(3.1)

Summing over n observations, the log-likelihood is given by

logL =
n∑

i=1

yi logλi − ν

n∑
i=1

logyi ! −
n∑

i=1

logZ(λi, ν).(3.2)

Maximum likelihood coefficient estimates can be obtained by directly maxi-
mizing equation (3.2) under the constraint ν ≥ 0, using a constrained nonlinear
optimization tool (e.g., nlminb in R). An alternative is to write the log-likelihood
as a function of logν, and then maximize it using an ordinary nonlinear optimiza-
tion tool (e.g., nlm in R). A third option for obtaining the maximum likelihood
estimates is to use the GLM framework to formulate the likelihood maximization
as a weighted least squares procedure (see online supplemental material) and to
solve it iteratively.

The GLM formulation is also used for deriving standard errors associated with
the estimated coefficients. The latter are derived using the Fisher information ma-
trix. For estimating β and ν, we have a block Information matrix of the form

I =
(

Iβ Iβ,ν

Iβ,ν I ν

)
,(3.3)

where Iβ pertains to the estimated variances and covariances of β̂ , I ν contains
the estimated variance for ν̂, and Iβ,ν contains the componentwise estimates
of the covariance between β̂ and ν̂. Details regarding the information matrix
components are available in the online supplementary material. R code for esti-
mating COM-Poisson regression coefficients and standard errors is available at
www9.georgetown.edu/faculty/kfs7/research.

http://www9.georgetown.edu/faculty/kfs7/research
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3.2. Testing for dispersion. How much data dispersion should exist to war-
rant deviation from Poisson regression? The set of hypotheses, H0 :ν = 1 vs. H1 :
ν �= 1, ask whether the use of Poisson regression is reasonable versus the alterna-
tive of fitting COM-Poisson regression. Note that H1 does not specify the direction
(over vs. under) of data dispersion. This can be assessed, however, via exploratory
data analysis and the dispersion estimate, ν̂, from the fitted COM-Poisson regres-
sion.

We derive the test statistic,

C = −2 log
 = −2
[
logL

(
β̂(0), ν̂ = 1

) − logL(β̂, ν̂)
]
,

where 
 is the likelihood ratio test statistic, β̂(0) are the maximum likelihood es-
timates obtained under H0 :ν = 1 (i.e., the Poisson estimates), and (β̂, ν̂) are the
maximum likelihood estimates under the general state space for the COM-Poisson
distribution. Under the null hypothesis, C has an approximate χ2 distribution with
1 degree of freedom. For small samples, the test statistic distribution can be esti-
mated via bootstrap.

3.3. Computing fitted values. Once a COM-Poisson regression model has
been estimated, we can obtain fitted values (ŷi ) in one of two ways:

1. Estimated means: We can use the approximation in equation (2.2) and obtain

fitted values by ŷi |xi = λ̂
1/ν̂
i − ν̂−1

2ν̂
, where λ̂i = exp(x′

i β̂). Note that this ap-
proximation is accurate for ν ≤ 1 or λi > 10ν [Minka et al. (2003)].

2. Estimated medians: When the mean approximation is inadequate (or in gen-
eral), we can obtain percentiles of the fitted distribution by using the inverse-
CDF for ŷi |xi and ν̂. In particular, we use the estimated median to obtain fitted
values.

3.4. Model inference. Due to the GLM formulation, the statistical significance
of individual predictors can be obtained by using the asymptotic standard normal
distribution of β̂j /σ̂β̂j

. In the case of small samples, however, where the asymp-
totic normality might not hold (as in other count data regression models), boot-
strapping can be used to estimate the distributions of the coefficients of interest.
With small samples, COM-Poisson model estimation is very fast, thereby being
practically useful for bootstrap.

A parametric COM-Poisson bootstrap can be implemented by resampling from
a COM-Poisson distribution with parameters λ̂ = exp(X′β̂) and ν̂, where β̂ , ν̂ are
estimated from a COM-Poisson regression on the full data set. The resampled data
sets include new Y values accordingly. Then, for each resampled data set, a COM-
Poisson regression is fit, thus producing new associated estimates, which can then
be used for inference.
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3.5. Coefficient interpretation. There are two main approaches for interpret-
ing coefficients in regression models [Long (1997)]. One examines changes in the
conditional mean for a unit increase in a single predictor, for example, E(Y |Xj =
xj ,Xi �=j = x) and E(Y |Xj = xj + 1,Xi �=j = x). In additive models, such as a lin-
ear regression, the difference between the two conditional means [or the derivative
of E(Y |X) with respect to Xj ] is used for interpretation [“a unit increase in Xj

is associated with a βj increase in E(Y )”]; in multiplicative models, such as the
Poisson or logistic regressions, the ratio of the two conditional means is used for
interpretation [“a unit increase in Xj is associated with a factor of eβj increase in
E(Y ) or the odds”]. The second approach, which is used for coefficient interpre-
tation in other types of nonlinear regression models (e.g., probit regression), is to
directly examine the relationship between fitted values and changes in a predictor.
This can be done via graphical plots for less than two predictors, while, for more
than two predictors, there are various solutions such as fitted value consideration
at selected values of the predictors.

In the COM-Poisson regression case, we cannot use the first approach that com-
pares conditional means directly, because the relationship between the conditional
mean and the predictors is neither additive nor multiplicative (except for the spe-
cial cases of Poisson and logistic regressions). For example (considering a single
predictor model), the ratio of conditional means leads to a complicated nonlinear
relationship between a unit increase in X and the effect on E(Y |X). However, the
result E(Y ν) = λ in Section 2 indicates a multiplicative relationship between the
predictors and E(Y ν). It appears, however, that interpreting the effect of individual
predictors on the conditional mean (or median) directly is most straightforward via
the second approach.

Because coefficients from a COM-Poisson regression model are on a different
scale than those from an ordinary Poisson model, for purposes of crude compari-
son, one can simply divide the COM-Poisson coefficients by ν. This approach is
reasonable because E(Yν) = λ.

3.6. Model diagnostics. Due to the GLM formulation and, in particular, the
IWLS framing (see online supplemental material), standard GLM diagnostics can
be used for residual analysis of a fitted COM-Poisson regression model. We use
the matrices W and X as defined there for computing leverage, and the popular
Pearson and Deviance residuals. Leverage can be computed from the hat matrix,
H = W 1/2X (X ′W X )−1X ′W 1/2. An observation with an unusually high value
of hi is suspect of having influence (although H , like other nonlinear models,
depends on the estimated parameters). Meanwhile, using ordinary GLM formu-
lations, we can write the Pearson residual for observation i [Davison and Tsai
(1992)] as rP,i = Yi−μ̂i√

wi(1−hi)
, where μ̂i = Ê(Yi), and the standardized deviance

residual for observation i can be written as rD,i = sgn(Yi − μ̂i)
di√
1−hi

, where

di = −2[logL(μ̂i, yi; ν̂) − logL(yi, yi; ν̂)]. These two types of residuals can
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be computed directly or approximated using the mean approximation in Equa-
tion (2.2). In particular, for deviance residuals, the approximation leads to

di = 2
[
yi ν̂ log

((
yi + ν̂ − 1

2ν̂

)/(
μ̂i + ν̂ − 1

2ν̂

))

(3.4)

+ log
(
Z

((
μ̂i + ν̂ − 1

2ν̂

)ν̂

, ν̂

)/
Z

((
yi + ν̂ − 1

2ν̂

)ν̂

, ν̂

))]
.

The existence of equation (3.4) is constrained in that Y > k for ν̂ < 1
2k+1 ; k ∈ N+.

We can, however, modify equation (3.4) in order to obtain valid results for di . For
example, when ν < 1 and Y = 0, we set Z((yi + ν̂−1

2ν̂
)ν̂ , ν̂) = 1. Another option is

to use the exact deviance equations supplied above, though this is computationally
more expensive. Finally, while the approximation is accurate for λ > 10ν or ν < 1,
we have found that deviance residuals computed using equation (3.4) are quite
accurate even outside that range (e.g., for under-dispersed data with low counts).

A probability plot of the deviance residuals, as well as a scatter plot of log(λ̂)

versus deviance residuals, can help assess model adequacy and detect outliers.
Although normal probability plots are common, deviance residuals for nonlinear
models can be far from normally distributed [Ben and Yohai (2004)]. One alterna-
tive is to ignore the fit to normality on the normal probability plot, and use it just
to detect outliers. Another option is to use bootstrap to estimate the distribution of
deviance residuals, and then to create a QQ plot of the deviance residuals against
their estimated distribution.

4. Examples. In this section we fit regression models to data sets char-
acterized by under-dispersion, and with binary outcomes (i.e., extreme under-
dispersion); Section 5 discusses the over-dispersion example considered by Lord,
Guikema and Geedipally (2008). We fit various popular regression model choices
for count data: Poisson, negative binomial (NB), restricted generalized Poisson
(RGPR), and COM-Poisson. For the binary data set, we also fit a logistic regres-
sion. The goal of this section is to compare the COM-Poisson to the other models
in terms of fit, inference, and flexibility. The small sample size and dimension of
the first data set is useful for directly observing the effect of dispersion. In par-
ticular, we show the effect of dispersion on the conditional distribution of fit. We
evaluate goodness-of-fit and predictive power by examining the fitted values and
comparing values of MSE and AICC (the Akaike Information Criterion2 corrected
for small sample size) across models.

Note that, except for the Poisson and logistic regressions, the other models con-
sidered have an extra dispersion parameter that is assumed fixed across observa-
tions, but unknown. Each of the models is estimated by maximum likelihood. The

2All models aside from Poisson have a penalty term in the AICC that takes into account the extra
dispersion parameter.
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Poisson, NB, and logistic regressions are estimated using ordinary GLM functions
in R. COM-Poisson is estimated using nonlinear optimization in R, and standard
errors are estimated as described in Section 3.1. RGPR is estimated using con-
strained nonlinear optimization in R and standard errors are estimated as described
in Famoye (1993).

4.1. Regression with under-dispersed data: Airfreight breakage. We first con-
sider the airfreight breakage example from [Kutner, Nachtsheim and Neter (2003),
page 35, Exercise 1.21] where data are given on 10 air shipments, each carrying
1000 ampules on the flight. For each shipment i, we have the number of times
the carton was transferred from one aircraft to another (Xi) and the number of
ampules found broken upon arrival (Yi). The data are provided online among the
supplementary material.

We first estimated the COM-Poisson regression coefficients and tested for
dispersion. The estimated dispersion parameter is ν̂ = 5.78, indicating under-
dispersion. To test for dispersion, we use parametric bootstrap (see Section 3.4)
rather than the dispersion test, due to the small sample size. The 90% bootstrap
confidence interval for ν is (4.00, 21.85), indicating dispersion that requires a
COM-Poisson regression instead of ordinary Poisson regression. We proceed by
attempting to fit the four regression models. The estimated coefficients and stan-
dard errors for three of these models (Poisson, NB, and COM-Poisson) are given
in Table 1; NB regression produces identical estimates to that from Poisson regres-
sion. RGPR did not converge and, therefore, no estimated model is produced. This
highlights the limited ability of RGPR to fit under-dispersed data. In general, for
under-dispersed data, the RGPR probability function “gets truncated and does not
necessarily sum to one” [Famoye, Wulu and Singh (2004)]. This example appears
to fall exactly under this limitation.

Fitted values from the models are provided online in the supplementary material
where, for the COM-Poisson, we use the estimated conditional median for fitted
values because the approximation (2.2) is likely to be inaccurate (here, ν > 1 and
λ ≯ 10ν ). We find that the models are similar in terms of the fitted values that
they generate (see also Figure 1). In terms of MSE and AICC , the COM-Poisson

TABLE 1
Estimated coefficients and standard errors (in parentheses) for the airfreight example, for various

regression models. NB and Poisson regression produce the same estimates. The RGPR did
not converge

Model β̂0(σ̂
β̂0

) β̂1(σ̂
β̂1

)

Poisson/NB 2.3529 (0.1317) 0.2638 (0.0792)
COM-Poisson (ν̂ = 5.7818, σ̂ν̂ = 2.597) 13.8247 (6.2369) 1.4838 (0.6888)
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FIG. 1. Fitted mean curves (solid lines), 5th and 95th percentile curves (broken lines) for Poisson
and COM-Poisson regression models for the airfreight breakage data (dots).

shows best fit, although the differences between models for these values are not
large (see Table 2). The similarity of the regression models is also in terms of the
coefficient magnitudes (after dividing the COM-Poisson coefficients by ν̂). The
models differ, however, in two important ways. First, although the fitted values
are similar, the conditional distribution differs markedly across the models, as can
be seen by comparing the 5th and 95th percentile curves in Figure 1. Second, the
models initially appear to differ in terms of inference. Comparing the Poisson, and
COM-Poisson estimated models, we find that the ratio β̂1/σ̂β̂1

is 3.33 and 2.15, re-
spectively. Due to the small sample size, however, the normal approximation might
not be adequate. We therefore examined the distributions of β̂0 and β̂1 for each of
the models, based on 1000 parametric bootstrapped samples (see Section 3.4). Fig-
ure 2 displays normal probability plots for the estimated coefficients. We see that
the distributions for the COM-Poisson model are skewed. To evaluate statistical
significance of the predictor (number of transfers), we examine the percent of the
distribution of β̂1 to the left of the value β1 = 0. In both models, this percent is
zero, indicating high statistical significance.

TABLE 2
Airfreight breakage example: goodness-of-fit

and predictive power statistics

COM-Poisson Poisson
median fit fit

AICC 47.29 52.11
MSE 1.90 2.21
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FIG. 2. Normal probability plots of β̂0 (top) and β̂1 (bottom) based on 1000 bootstrap samples of
the airfreight breakage data. Negative binomial estimation produces identical results to those from
Poisson regression. RGPR estimation procedure does not converge.

In terms of model interpretation, the Poisson regression indicates that a unit
increase in the number of transfers is associated with a factor increase of 1.3 in
the average number of broken ampules. Looking at Figure 1, however, shows that
interpretations in terms of the average number of broken ampules is insufficient.
In particular, the number of transfers seems to affect the entire distribution of the
number of broken ampules, as indicated by the fitted COM-Poisson model. In-
deed, the COM-Poisson curves in Figure 1 can be used directly for interpreting the
relationship between number of transfers and number of broken ampules.

Finally, we examine leverage and scaled deviance residuals from each of the
models. Figure 3 displays scatterplots of the deviance residuals versus the single
predictor (which is equivalent to plotting versus log λ̂ for the Poisson and COM-
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FIG. 3. QQ plots of the scaled deviance residuals (top) and scatterplots of the scaled deviance
residuals vs. the predictor (bottom) for the airfreight breakage data. Each column corresponds to a
different regression model.

Poisson models), and QQ plots. Leverage values are available in the online supple-
mentary materials. Overall, there is no noticeable pattern in any of the scatterplots.
Both models indicate observation #5 (with X = 3) as suspect of being influen-
tial, and observation #7 as an outlier (having a large negative deviance residual),
particularly for the COM-Poisson model.

4.2. Regression with extreme under-dispersion: Book purchases. We now con-
sider the case where the outcome variable is binary, and where typically a logistic
regression would have been considered. Although the logistic regression is the-
oretically only a limiting case of the COM-Poisson regression, we show that (in
practice) a fitted COM-Poisson to binary outcome data produces practically identi-
cal results to a logistic regression. We use a data set from Lattin, Green and Caroll
(2003) that describes the results of a direct-marketing campaign by a book club,
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TABLE 3
Estimated coefficients and standard errors (in parentheses) for Book Club example, for four

regression models (NB estimates are identical to Poisson; RGPR did not converge). The estimates
for the logistic and COM-Poisson models are identical, even to eight decimal places

Model β̂0(σ̂
β̂0

) β̂Months(σ̂β̂Months
) β̂ArtBooks(σ̂β̂ArtBooks

)

Poisson/NB −2.29 (0.18) −0.06 (0.02) 0.73 (0.05)
Logistic −2.23 (0.24) −0.07 (0.02) 0.99 (0.14)
COM-Poisson −2.23 (0.24) −0.07 (0.02) 0.99 (0.14)

(ν̂ = 30.4, σ̂ν̂ = 10,123)

for a certain art book.3 The data set contains the results for 1000 customers. The
outcome is whether the customer purchased the art book or not. The two predictor
variables are the number of months since the customer’s last purchase (Months),
and the number of art books that the customer has purchased in the past (ArtBooks).
We use this data set to show the flexibility of the COM-Poisson regression over the
alternatives discussed above. In particular, we show that the COM-Poisson regres-
sion produces estimates and predictions that are identical (to multiple decimals) to
those from a logistic regression, and that RGPR and NB fail to converge altogether.

Table 3 provides the parameter estimates from the Poisson, logistic, and COM-
Poisson regression models, respectively. The NB regression estimates are identical
to the Poisson estimates. RGPR is absent from Table 3 because it has limited ability
to capture under-dispersion, thus, it fails to converge.

With respect to comparing COM-Poisson with logistic regression, it is clear that
the two models produce identical results in terms of coefficients and standard er-
rors (even to eight decimals). Meanwhile, we note the large estimated value for
ν, along with its broad standard error. This is in congruence with the terms of
the COM-Poisson distribution for the special case of a Bernoulli random variable
(namely, ν → ∞). Furthermore, comparing fitted values (or predictions), using
the estimated COM-Poisson median as the fitted value (in accordance with Sec-
tion 3.3) yields values that are identical to those from a logistic regression with
cutoff value 0.5. To obtain fits for other cutoff values, the corresponding percentile
should be used. Finally, although the Poisson model does converge, it is clearly
inappropriate in terms of inference, and produces fitted values that are not binary.

5. Regression with over-dispersed data: Modeling motor vehicle crashes.
The previous section shows the flexibility of the COM-Poisson regression to cap-
ture under-dispersion, which exceeds the ability of models such as the negative
binomial and RGPR. We now examine an over-dispersed data set used by Lord,

3Two additional examples where COM-Poisson regression is applied to binary data (showing sim-
ilar results) are given in the online supplemental materials.
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Guikema and Geedipally (2008) which contains motor vehicle crash data in 1995,
at 868 signalized intersections located in Toronto, Ontario. For each intersection,
measurements included the annual number of crashes at the intersection (Y ) and
two traffic flow variables. See Lord, Guikema and Geedipally (2008) for further
details on the data.

Because motor vehicle crash data contain counts, Poisson and negative bino-
mial regressions are common models in the field of transportation safety. For the
Toronto data set, Lord, Guikema and Geedipally (2008) proposed using a Bayesian
COM-Poisson regression formulation to model the over-dispersion. In particular,
they used noninformative priors and modeled the effect of the two traffic variables
on the number of crashes via the link function log(λ1/ν) = Xβ . Parameter estima-
tion was then performed via MCMC. The authors note that estimation for this data
set used 35,000 replications, requiring nearly five hours of computation. Compar-
ing goodness-of-fit and out-of-sample prediction measures, Lord, Guikema and
Geedipally (2008) showed the similarity in performance of the COM-Poisson
and negative binomial regression. They then motivate the advantage of the COM-
Poisson over the negative binomial regression in the ability to fit under-dispersion
and low counts.

The goal of this section is two-fold: (1) to extend the model comparison in
Lord, Guikema and Geedipally (2008) beyond the negative binomial model to ad-
ditional models, as well as to examine a wider range of model comparison aspects,
and (2) to compare the Bayesian COM-Poisson formulation to our formulation
and show the advantages gained by using our formulation. Although goodness-of-
fit measures might indicate similarity of the COM-Poisson performance to other
models, model diagnostics provide additional information.

5.1. Model estimation. Various regression models were fit to the Toronto in-
tersection crash data. Following Lord, Guikema and Geedipally (2008), the re-
sponse was the number of crashes at the intersection, and the two covariates were
the two log-transformed traffic flow variables.

Table 4 displays the estimated models: two COM-Poisson formulations [our
model and the Bayesian model of Lord, Guikema and Geedipally (2008)], and
three alternative regression models (Poisson, NB, and RGPR). From ν̂ < 1 and
α̂ > 0, over-dispersion is indicated. All β̂ coefficients appear similar across the
models. For standard errors, the Poisson estimates are much smaller than in other
models (as expected in over-dispersion).

Comparing the two COM-Poisson formulations, the two are nearly identical
in terms of ν̂ and its standard error [or the equivalent posterior credible standard
error for Lord, Guikema and Geedipally (2008)], and in terms of the β̂ coefficients
(after scaling by a factor of ν̂, due the different formulation of the relationship
between the covariates and the response). These similarities between the Bayesian
and classic formulations indicate that the prior information does not affect the
model, here most likely due to the large size of the data set. The most dramatic
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TABLE 4
Estimated models: comparing two COM-Poisson formulations [ours and Lord, Guikema and

Geedipally (2008)], and alternative models for the Toronto crash data. For ease of comparison,
we report the COM-Poisson estimates and standard errors from our formulation in terms of ν̂

multipliers, to reflect the comparable scale with estimates from the other models

Model Extra parameter β̂0(σ̂β̂0
) β̂1(σ̂β̂1

) β̂2(σ̂β̂2
)

Our formulation ν̂ = 0.3492 (0.0208) −11.7027ν̂ (0.7501ν̂) 0.6559ν̂ (0.0619ν̂) 0.7911ν̂ (0.0461ν̂)
Lord, Guikema ν̂ = 0.3408 (0.0208) −11.53 (0.4159) 0.6350 (0.0474) 0.7950 (0.0310)

and Geedipally
(2008)

Poisson −10.2342 (0.2838) 0.6029 (0.0288) 0.7038 (0.0140)
Neg-Bin r̂ = 7.154 (0.625) −10.2458 (0.4626) 0.6207 (0.0456) 0.6853 (0.0215)
RGPR α̂ = 0.050 (0.004) −10.2357 (0.4640) 0.6205 (0.0451) 0.6843 (0.0215)

difference between the two implementations is in run time: our estimation took
less than three minutes, compared to five hours required by the Bayesian MCMC.
This difference has significance especially since Lord, Guikema and Geedipally
(2008) used noninformative priors to obtain their estimates. Thus, in the absence
of strong prior information or in the presence of a large data set, our formulation
provides more efficient estimation. Even in the presence of prior information, our
method is still useful for obtaining initial estimates to speed up the MCMC process.

5.2. Model performance. Comparing goodness-of-fit measures, the two
COM-Poisson formulations are practically identical in terms of β̂ and thus pro-
duce nearly identical fitted values. Compared to the other regression models, the
COM-Poisson model has lower MSE and AIC values, indicating better fit and pre-
dictive power (see Table 5). The COM-Poisson dispersion test (with C = 518, and
associated p-value = 0) indicates that the COM-Poisson model is more adequate
than Poisson regression.

We now examine model diagnostics to better understand model fit. Figure 4
displays scatterplots of the scaled deviance residuals vs. log λ̂. For RGPR, we use
unscaled deviance residuals (as H is unavailable). From the residual plots and
the leverage measures (available in the online supplementary materials), we find
that the NB model marks nearly half of the Y = 0 observations as influential, and

TABLE 5
Goodness-of-fit comparison of COM-Poisson with alternative fitted models

COM-Poisson Poisson Neg-Bin RGPR

AIC 5073 5589 5077 5092
MSE 32.57 32.60 32.70 32.71
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FIG. 4. Scatterplots of the scaled deviance residuals vs. log λ̂. Each column corresponds to a dif-
ferent regression model. For RGPR the deviance residuals are unscaled.

flags mostly high-count observations. The Poisson and NB models mark the ob-
servations with largest X values as influential. In contrast, COM-Poisson diagnos-
tics point out eight observations with large residuals (#15, #42, #247, #424, #494,
#618, #619, #757) and three with high leverage (#133, #801, #835). Three of the
large-residual intersections have a large number of crashes with relatively little
traffic (small values of the covariates). The remaining large-residual intersections
have a small to medium number of crashes, but less substantial traffic on one of
the traffic flow covariates. All of these observations are also flagged by at least
one other regression method, with observations #15 and #618 being flagged by all
methods.

5.3. Inference. In terms of drawing inference about the effect of the traffic
flow covariates on the number of crashes, we examine the coefficients and stan-
dard errors and assume a normal approximation. In this case, the effects are very
strong across all models, resulting in p-values of zero for each of the two covariate
coefficients.

6. Discussion. The COM-Poisson regression model provides a practical tool
for modeling count data that have various levels of dispersion. It generalizes the
widely-used Poisson regression, as well as allows for other levels of dispersion.
Using a GLM approach and taking advantage of the exponential family properties
of the COM-Poisson distribution, we provide a straightforward, elegant, compu-
tationally efficient framework for model estimation, dispersion testing, inference,
and diagnostics. The data examples illustrate the differences and similarities that
arise in practice when using a COM-Poisson regression versus more traditional
regression models. For moderate to high counts, fitted values can be similar across
models but the conditional fitted distribution can differ markedly. Models also tend
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to diverge in terms of inference for single predictors, implying that inappropriate
use of a Poisson model (instead of a COM-Poisson model) can lead to erroneous
conclusions.

One important insight from the COM-Poisson regression model is that, in a
model that allows for different levels of dispersion, the role of the conditional
mean is no longer central. Unlike linear regression or Poisson regression where
the conditional mean is central to interpretation, the COM-Poisson regression uses
a more general function of the response distribution. The resulting model means
that, when examining goodness-of-fit or when predicting new observations, the
complete conditional fitted distribution must be taken into account rather than just
the conditional mean.

The elegance of the COM-Poisson regression model lies in its ability to ad-
dress applications containing a wide range of dispersion in a parsimonious way.
While the negative binomial model is a popular resource for count data appli-
cations where over-dispersion exists, it cannot address problems where data are
under-dispersed. The RGPR formulation offers more flexibility in its ability to
handle data dispersion, yet it is limited in the level of under-dispersion that it can
capture. We have shown that, in such cases, the COM-Poisson regression does
not encounter such difficulties and produces reasonable fitted models. The COM-
Poisson regression has the flexibility even in the extreme case of a binary response,
where it reduces to a logistic regression in theory, and produces identical estimates
and predictors in practice.

Our regression model is similar to the Bayesian formulation used by Borle
et al. (2005, 2007), Borle, Boatwright and Kadane (2006), Boatwright, Borle
and Kadane (2003), Kalyanam, Borle and Boatwright (2007) and that by Lord,
Guikema and Geedipally (2008) in terms of the generated estimated parameters. It
differs from the Bayesian formulation, however, both conceptually [in terms of the
link function of Lord, Guikema and Geedipally (2008) and the estimation method]
and practically (with regard to run time). Although the Bayesian implementation
allows for the incorporation of prior information in the form of prior parameter
distributions [e.g., see Kadane et al. (2005)], the benefit of such information is
useful only when informative priors are used and when the sample size is small.
Second, specifying meaningful priors on the β coefficients is not straightforward,
as it requires an understanding of the function λ1/ν , which is not equal to the mean.
Software implementation also differentiates these models because our formulation
relies on traditional estimation methods for exponential family distributions: esti-
mation, inference, and diagnostics can be programmed in most statistical software
packages in a straightforward manner. From a computational point of view, al-
though the Z function requires approximation (because it is an infinite sum), in
practice, a simple truncation of the sum performs well.

A potential restricting factor in our current COM-Poisson regression formula-
tion is that it assumes a constant dispersion level across all observations. This is
similar to the classic homoscedasticity assumption in linear regression. A possible
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enhancement is to allow ν to be observation-dependent (and to model it as a func-
tion of covariates as well). In our COM-Poisson regression formulation such an
extension still maintains the structure of an exponential family, unlike that of the
generalized Poisson regression of Famoye (1993), for example.

The relationship between the associated fitted mean bands and the estimated
data dispersion is nicely illustrated in accordance with McCullagh and Nelder
(1997). Further work is needed to investigate their impact on Type I errors asso-
ciated with hypothesis testing about the slope, or slope coverage. In addition, this
work introduces several questions regarding sample size, which, although easily
overcome by using bootstrap, present interesting research questions.

Finally, while not presented in this work, simulations were performed to demon-
strate the accuracy of the estimation process, as well as that of the hypothesis
testing procedure. R code for simulating COM-Poisson data is also available at
www9.georgetown.edu/faculty/kfs7/research.
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SUPPLEMENTARY MATERIAL

Supplementary Materials: (DOI: 10.1214/09-AOAS306SUPP). Materials in-
clude details of the iterative reweighted least squares estimation, the Fisher in-
formation matrix components associated with the COM-Poisson coefficients, the
full airfreight data set and diagnostics under various regression models for the air-
freight and crash data, and additional logistic regression examples.
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