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Abstract

Topological constancy is a psychophysical phenomenon associated
with the visual trace figures produced by two frequencies which are suf-
ficiently close to a low-order rational fraction and it persists even if the
oscillators are perturbed. Such effects are described for rotational and
vibrational near-harmonies of a dynamical system. Mathematical mod-
els are considered for such topological constancy; the optical substrate,
neural response, and emergent perception are investigated.

Key words: filling-in, aliasing, resonance, quasi-periodic dynamics,
Lissajous figures, topology, reverse Doppler shift.

1 Introduction

The notion of filling in a constant form from sparse information has been
extensively studied in visual perception. One of the earliest results in this
direction was due to Johansson [17], who showed that basic human activities
could be identified merely from the light-trace of independent lights attached
to the wrists, elbows, knees, etc., of moving figures in a darkened room.

Something similar happens when periodic forces act upon the direction of a
beam of light. Humans are capable of filling in a rather complex mathematical
form based only on the transitory information from a moving dot of light. This
either reflects well on the intrinsic efficiency of such filling-in mechanisms or,
not exclusively, it shows something like robustness in the Platonic forms.
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For example, if a dot of light is scanned simultaneously in the x and y
directions at the same rate, then one will see an ellipse with eccentricity de-
pending on the phase difference φ. When φ = 0 or φ = π, a straight line with
slope +1 or −1 appears; for φ = π/2, the figure observed is a circle. On the
other hand, if the rate in the y-direction is twice that in the x-direction, then
the scanned dot of light traces a figure like the infinity sign ∞.

These are examples of Lissajous figures, which are produced by two or more
oscillations whose actions are superimposed upon the position of a spot of light,
e.g., by causing mirrors to vibrate, and studying the resulting movements of a
light beam they are reflecting. Jules Antoine Lissajous (1822–1880) displayed
these figures (using tuning forks) and claimed the percept of a transparent
surface containing the figure which could be imagined as rotating in space.
However, Nathaniel Bowditch (1773–1838) seems to have observed these fig-
ures earlier. See, e.g., [8].

A similar phenomenon occurs with respect to circular motion and was
described in [18], where the resulting figures are called mandalas. These may
be described as follows.

Suppose we have a clock with one of its hands going around at a rate of r
rotations per second in the counter-clockwise direction. Let k ≥ 1 and suppose
also that there is an analogue-style watch, with its hand going at kr rotations
per second in the clockwise direction, and the watch is mounted at the tip of
the clock-hand. Put a small but bright light at the tip of the watch hand and
record the trace of the light. This can be implemented more effectively by
reflecting a laser beam from two rotating mirrors.

If k is a rational number and if the light is projected onto a screen, it
repeatedly traverses some closed curve. For instance, if k = 1, the resulting
trace is an ellipse.

But there are infinitely many different rational numbers near 1 (or any
given number): not just 1 but also 11/10, 101/100, 1001/1000, . . ., etc. And
there are also infinitely many different irrational numbers near 1 (such as
1 +

√
2/10n where n is a positive integer). When k is irrational, the figure

traced by the dot is never a closed curve and must eventually fill in an entire
2-dimensional region! How can this be reconciled with the fact that one can’t
really know that the rate of rotation is exactly 1, say, rather than 101/100 or
1 + π/103?

Nevertheless, one has a quite clear percept. Beginning with k = 1 and
gradually increasing k, one sees the ellipse begin to spin (counter-clockwise)
faster and faster. Then a discontinuity occurs; the figure actually changes
form and a new stable figure appears with a reversed direction of spin. Further
increase in the value of k causes the spin to slow to zero, and at this point,
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another rational value for k has been reached. However, the next such “visible
rational” after 1 depends on r. If r is low (e.g., say, 20), the next visible
rational will be 2 and the form seen will be a triangle (with rounded corners).
If r is around 40, the next visible rational k will be 3/2 corresponding to a
five-pointed star; with larger r, one may next see 4/3 (a seven-pointed star
which winds around its center three times before repeating), and so forth.

In the case that the only visible value for k between 1 and 2 is 3/2,
the ellipse spins clockwise, faster and faster, then seems to dissolve into a
counterclockwise-spinning five-pointed star which slows, stops, and then re-
verses spin increasingly fast in the clockwise sense, till another dissolve occurs
into a rapidly spinning triangle (going counterclockwise), etc.

The higher the value of r, the higher the resolution of the process. That
is, with a very large rotational speed, one can see many rationals near 1. For
a fixed value of r, as we continue to increase k, a sequence of rational figures
become visible. For example, the sequence might be 1, 3/2, 2, 5/2, 3, 3/2, . . .
or, for a larger value of r, one could see 1, 4/3, 3/2, 5/3, 2, 7/3, . . . and so on. In
fact, such sequences of rational numbers have been studied in number theory,
where they are called Farey sequences.

The spins for these figures is analogous to the Doppler shift. Just as the
pitch of a siren is increased as an ambulance approaches you while it suddenly
falls as the ambulance begins to recede (spatial phase affects frequency), for
mandalas a perturbation in frequency is expressed as a corresponding change
in spatial phase.

The sequence of these rational “interpolants” may also be influenced by
capabilities of the observer. For instance, it is known that the “flicker fusion
frequency” (rate at which a blinking light is perceived to be constant - as
when watching a movie) will differ from one person to another. How does this
influence which mandalas can be seen?

Exactly the same questions arise for Lissajous figures. I’ve posed them
above for mandalas because it is slightly easier to describe the resulting figures
and their dynamics. In particular, Lissajous figures often have a 3-dimensional
appearance, so additional phenomena may be involved in their perception.

The lower velocity of laser scanning (compared with oscilloscopes) enhances
the perception of distinct topological forms [16], [18]). Since the scan rate
for an oscilloscope is typically in the kilohertz range while laser scanners are
normally in much lower frequencies - a few hundred herz (cycles per second) or
less - a larger number of stable figures are able to be distinguished in the case
of the oscilloscope so that topological stability is more delicate to observe.

Using digital simulation of the analogue process, Lissajous figures are avail-
able as screen savers (and one may also download Java applets which produce
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these figures). The observer seems to find constancy in the physical form of
the perceived shape as though it were an actual entity made out of wire and
revolving and twisting in space. The observer has this percept of constancy in
spite of change in shape. This is the same as saying that there is constancy in
the topology.

2 The phenomena

There are really three separate aspects: the optical display, the perceived
image, and the neurobiological dynamics.

Using rotating or vibrating mirrors, e.g., and sunlight or laser light, one
can project a bright spot onto a flat surface and cause the dot to trace some
dynamical pattern. This can be easily put into some formal model, of Fourier
type. As we describe below, the percept is usually of a closed figure which
seems to undergo some rotation and other movement even when the actual
optical trace is non-repeating. Our main focus will be quantitative. Which
forms are seen and how fast do they seem to rotate when a particular optical
rhythm is displayed?

There is also the question of how the brain determines the topology of such
Lissajous figures and related resonance shapes and of what this tells us about
the nature of biological computation. It is generally believed that we see them
because of persistence of vision, the phenomenon involved in seeing movies as
continuous motion rather than a sequence of still frames. However, in this
paper, we argue that perception of these figures requires a more sophisticated
type of mental computation.

We consider a dynamical systems model based on a theory due to Kol-
mogorov, Arnold, and Moser (three leading mathematicians of the 20th cen-
tury). The theory claims that perturbations of periodic or almost periodic
systems maintain a topological coherence due to the presence of the “invariant
tori”. Indeed, these invariant tori almost play the role of emergent objects.

3 Towards a model

Distinct theories may account for the perception of topological forms by hu-
mans. What is the “null hypothesis” for such percept of a closed form? Among
all hypotheses, we should, by Occam’s razor, prefer that which is simplest.

The dynamic activities of neurons is the superposition of a variety of dis-
tinct computations, most unrelated to any specific visual stimulus, so there is
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no reason to expect that the neural dynamics will be as simple as the dynam-
ics of a spot of light moving on a flat surface. Yet we obtain a stable mental
percept which seems to correspond to the changing visual patterns that result
when the component oscillation frequencies are changed.

It is possible that apparent closure of a winding strand occurs when and
only when the two strands are very near one another and in a parallel direction.
For instance, zero is often drawn this way as a nearly closed curve. It would
be interesting to see if such fusion occurs when a nearly closed curve is rapidly
rotated about a central point. I conjecture that subjects will reliably report
whether or not the cycle was closed in spite of the motion. In particular, I
suspect that the hyperacuity of vision will detect lack of closure when the
figure is not closed.

Put positively, the perception of closure may agree with a computation in
which a complex winding non-closed form is best approximated by a simpler
closed form which is spinning; see Appendix I for the detailed model.

Hypothesis: topological constancy for Lissajous figures utilizes the Kolmogorov-
Arnold-Moser (KAM) theory. The KAM theorem shows that, for a small
enough perturbation of an integrable system, most of the invariant tori are
preserved [33, p. 326]. This can be interpreted in terms of quasiperiodic
systems: if a qp-system is sufficiently close to a periodic one, then it is a
perturbation of the periodic system. See also [25].

If the neurodynamics of the brain and visual system are driven by a mathe-
matically defined stimulus, the activity patterns of the resulting neural activity
should follow the rules of the KAM theory, providing a computational mech-
anism for the percept of topological constancy.

For an orientation-preserving diffeomorphisms f of the circle S1, one defines
the rotation number ρ(f) in a variety of equivalent ways (e.g., [13, p. 296]).
The KAM theory shows the existence of “a smooth transformation h ... taking
a map with irrational rotation number, α, sufficiently close to rigid rotations,
into rigid rotations,” [13, p. 303] provided a certain condition holds. A related
model studied by Glass and Perez [11] showed how phase locking could be
produced by periodic stimulation of a nonlinear oscillator.

If, on the other hand, the discrimination cannot be made, then we can
explore whether the same masking effect happens for different closed forms
which include self-intersections in projection. As usual with such experiments,
one needs to try binocular/monocular, color/black-and-white, and many other
experimental parameters, not to mention age and culture of the subject and
technology of the display.

A simpler variant of this problem involves the recognition of surfaces on
which a variety of curves are most simply embedded - where psychophysical
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phenomena are used in the aid of mathematical exposition (see, e.g., [29]).
More generally, we believe that psychophysical research can contribute to the
depiction and understanding of mathematical phenomena.

4 Universality?

It is known that pigeons can respond to a Lissajous figure [7] but this may only
depend on movement. Could pigeons learn to discriminate distinct topologies,
say as a result of suitable rewards? Could humans from some isolated pre-
scientific tribe make such identifications? Presumably they couldn’t do it with
language. Are some people more sensitive to visual patterns?

Another aspect of universality is the influence of neural and visual deficits.
For example, experiments by Land (inventor of the polaroid process) and col-
leagues [31] shows that when the corpus callosum is cut, there is a decrease
in the ability to “discount the illuminant” [24], indicating a role for coordi-
nated cortical activity in the perception of color. Land has shown that one
can perceive full color in the presence of only the information from two of the
three primaries. But the split brain patient studied here had limited capa-
bility for such robust perception of color. Would split-brain patients have a
similar decrease in ability to perceive topological constancy in Lissajous figure
perception?

It is very difficult to judge the value of such experiments since they usually
involve only a small test population due to the cost (in terms of resources)
of instructing the subjects in the visual task and the difficulty and expense
of collecting information on their performance. All psychophysical research
involves a huge number of possibly contributing factors, and in the current
era there are additional difficulties due to protocols involving human subjects.
Thus, a formidable obstacle to progress is the extreme complexity and expense
of experiments involving human capabilities.

5 Color

If one changes the color of a Lissajous figure, whether exactly rational or not,
if the color changes are also periodic, with a harmonic relationship to the
displayed form, one has the percept of a color flow around the figure.

If all ratios are exactly rational, then the figure seems to be fixed with a
stable color; e.g., if both component oscillations are at the same rate, and the
color oscillates at that rate being green half the time and red the other half,
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then one sees a circle, colored green on one half and red on the other. However,
if the color rate is slightly off the vibrational rate, then the color will seem
to flow around the figure - especially when the color is changing in a gradual
fashion. That is, color is somewhat separated from the object, as has been
utilized by artists who add an oil wash of color over a line drawing.

Since color is not accurately reproduced by television monitors, studying
color effects can best be done with lasers. So this area might be investigated
with, say, an argon ion laser which can have an oscillating color output, be-
tween green and gold. Mixing this with ordinary red helium neon laser light
can produce a wide range of colors, even flesh tones, not normally associated
with lasers.

6 Comparison with auditory phenomena

Perturbation of musical chords tends to sound either flat or sharp and if it is
more than minimal, such distortion tends to be unpleasant to the ear. However
the eyes are much more tolerant, and the perturbation is merely viewed as
interesting. Perhaps this can provide some interesting methods for comparing
the neural processing of visual and auditory information.

7 History of psychophysics

Origins of psychophysics can be traced back to Weber and Fechner about 1860
[38]. Several leading physicists in the latter half of the 19th century also worked
in psychology and physiology: Helmholtz, Maxwell, and Mach, for example;
e.g., [12].

However, in the literature I have not found any references to topology in
vision (e.g., [34], [35], [36], [37]) with the exception of Zeeman’s article on the
topology of visual perception [39]. Lissajous figures do not appear to have
been studied either.

Lewin introduced a topological model of the “life space” in 1936 [27], [26]
but this doesn’t seem to have been connected with perception. One might,
however, include Gibson’s notion of affordance or Rene Thom’s topological
ideas with regard to language [32].
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8 Mathematical psychophysics

The study of topological constancy here is a special case of what might be
called mathematical psychophysics, in distinction to the ordinary sort of psy-
chophysics. Rather than merely examining the correlation between input data
and neural and overt response by a subject, we introduce specific mathemati-
cal structure in the stimulus and also look for explicit mathematical structure
in response.

Some work in this area has already begun. See, e.g., [9], [10], [1], which
deal with the discovery by Glass that random dot patterns, when superimposed
with a slight shift in angle or scale, produce a strong percept of mathematical
forms such as circles or radial lines. This point of view is also being applied
to other forms of moire pattern.

By combining work with neural networks (e.g., [21], [22], [23], [20]), it
may be possible to apply the results of mathematical psychophysics to the
automated recognition of patterns.

9 Why topological constancy matters

Although Lissajous figures appear to be rather special aspects of vision, it can
be argued that they are important for a variety of reasons.

There is an eye movement, called ocular microtremor or OMT in the liter-
ature, which causes the eyes to vibrate at a rate between 50 and 200 Hz - see,
e.g., [5]. OMT is known to be related to basic brain rhythms and, according
to some recent research [4], the normal rate is 86 Hz with standard deviation
of 6 Hz. Thus, one could expect (assuming a normal distribution) that 95 %
of normal subjects will have OMT in the range of 74 to 98 Hz. But it may be
that other activities and experimental conditions can affect this. Indeed, since
research has only involved small subject populations, the above information is
by no means definitive.

The main use made of OMT currently is to assess the depth of anaesthesia.
It has also been explored as an indicator of various medical conditions such as
multiple sclerosis and Parkinson’s disease [4], [3]. Nevertheless, the technology
for measuring OMT remains primitive - for instance, using a “strain gauge”
which is physically attached to the eyeball. This seems little advanced over
the method of using contact-mirrors. However, the natural reflectivity of the
ocular surface can be used in conjunction with a very-low-intensity laser or
infrared diode to measure eye movements noninvasively; see, e.g., [14] for a
discussion of several alternatives.
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However, we believe that OMT may also be important in ordinary visual
tasks. It is easy to demonstrate that viewing through a screen, rather than
through no screen, can emphasize regular patterns in the scene being studied.
For example, looking at one screen (or even a brick wall) through another
screen can make moiré patterns. Hence, an eye movement like OMT which can
produce a screen-like pattern superimposed on the visual field might facilitate
the detection of patterns. Since there are three pairs of muscles that control the
movement of each eyeball, the resulting vibration should cause a spot of light to
scan a Lissajous figure on the retina. The amplitude of OMT is just sufficient
to sweep a point of light across the immediate neighbors of a retinal cell.
This could also play a role in hyperacuity allowing computation to improve
visual accuracy to “subsensor” resolution (as we are able to detect some visual
features which subtend arcs below the size that can be distinguished by retinal
cells of given diameter subject to diffraction-limited resolution). See, e.g., [2],
[28], [15].

In addition, artificial visual environments, such as CRTs, may cause various
vibrations in a displayed spot of light and, if these are at rates harmonic
with the rates of eye movements, again Lissajous figures can result. This can
actually be demonstrated by plucking a rubber band, held vertically, in front
of a television monitor. Holding the rubber band horizontally, the flickering
nature of ordinary CRTs causes one to see a stroboscopic effect so that the
vibrating band appears to be in several “frozen” parts. But holding the rubber
band vertically, the vibration interacts with the horizontal scan (which is at
a much higher frequency) and one can sometimes see Lissajous figures as a
result.

Thus, perception of Lissajous figures may be instrumental in the normal
functioning of the eyes, both for texture and hyperacuity, as well as for per-
ceiving artificially generated images and in the design of visual displays for
education, communication, and entertainment.

In addition, the fact that we perceive non-closed Lissajous figures as though
they were closed but spinning or tumbling may be a clue to how other nearly
periodic phenomena arise within biology [19]. From an object-oriented point-
of-view, closed figures produce smaller and simpler objects.

Further, the basic rhythms of the body are only approximately periodic
(such as the circadian cycles of waking and sleeping), so the conversion of
quasiperiodicity into perturbed periodicity in vision, as illustrated by topo-
logical constancy of Lissajous figures, could shed light on basic mechanism of
biological computation.
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10 Experiments

The number of distinct rational forms, whether or not hysteresis occurs, binoc-
ular disparity, direction of spin, and depth effects are just a few of the possible
design parameters for experiments. One must also address issues of how to
elicit the information from observers (verbally, by pushing buttons, by pointing
to like images or movies on a screen, etc.). Can animals respond and is there
actually measurable neural activity? Do distinct theories of dynamical sys-
tem behavior make different predictions for topological constancy of Lissajous
figure perception and related phenomena?

We propose to study first the selection by subjects of a static form which
is “most like” a dynamic display. There are various means for displaying the
required images, and our laboratory is currently engaged in exploring four of
them:

(1) Java applets can provide a widely accessible window into the subject,
where one could have sliders (or other virtual knobs) which control the com-
ponent frequencies and buttons to click on to indicate a best match.

(2) Mathematica is capable of producing animated images and so it may
also be able to produce suitable images. However, controlling the program
is somewhat arcane (by comparison with Java) so a greater effort will be
required for the interface. In contrast, Mathematica is more capable of carrying
out related computations and interfacing with statistical packages in order to
capture the subjects’ behavior.

(3) Hardware-controlled displays offer the most natural means for studying
perceptual phenomena since no additional artifacts are introduced. However,
the issues of collecting the statistics and recording and controlling the corre-
sponding parameter values must be addressed.

(4) Existing psychophysical software suites can possibly be adapted to our
purposes. There are a variety of tools available. For example, many lab-
crafted programs, mostly under Linux, are freely available, but these often have
a sharp “learning curve” and require substantial set-up time and expertise.
There are also commercially available softwares but these require a financial
investment.

Since validation of the phenomenon of topological constancy in the per-
ception of these figures of approximate resonance depends on a statistically
significant sample of human subjects, the design for such experiments ought
to incorporate the statistical requirement in the same way as polling or market
research needs a sufficient sample.

For example, suppose we wish to determine a statistic, based on data, such
that with probability 95% the actual fraction of people who can recognize two
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distinct Lissajous figures in a particular frequency range is within .03 of the
statistically calculated fraction. It would take a sample size of about n = 1100
subjects to achieve this level of accuracy [6, p. 382]. Hence, attempting to
make such a determination would require very extensive experimental data.

This is analogous to attempting to find the flicker-fusion frequency at which
there is at most a five percent chance of error that the fraction of people who
see a moving image is in the range between 47 and 53%.

On the other hand, if we only want to detect the existence of the phe-
nomenon, then many fewer subjects might be needed. That is, we hope to
find a way to demonstrate statistical significance for existence without the
overhead required to quantify it.

Thus, the goal of our initial experiments will be to explore the phenomenon
and to formulate definitive experiments which can be performed given suitable
resources.

11 Appendix I

Here we formalize the mandala model. A counterclockwise circular rotation,
of unit amplitude and rate r rotations per second is given by the function
exp(−2πrt), t in seconds. To give the equation for the result of adding a
counterclockwise circular rotation (of unit amplitude and rate r) to a clockwise
circular rotation (of positive amplitude a ≤ 1 and rate kr for k ≥ 1), we write

Ma,k,r(t) := exp(−2πirt) + a exp(2πikrt).

First let us suppose that k = 1. When a = 1, the resulting trace is a
line; just as two linear oscillations (with the proper phase relationship) make a
circle, two rotations can produce a linear oscillation. When a < 1, the figure is
an ellipse with horizontal major axis of length 2+ 2a and minor axis of length
2− 2a, and the spot is rotating around the ellipse counterclockwise. If a > 1,
the ellipse is oriented vertically instead and rotation of the spot is clockwise.
In both cases, the ellipse itself remains fixed.

We may also consider the Lissajous case for comparison. Suppose that
L(t) := L(t; a, r, k, φ) is the parameterized curve

x = cos(δ1,kφ + 2πrt), y = a sin(2πkrt),

where δu,v is the Kronecker-δ (i.e., δu,v = 1 for u = v and 0 otherwise) so
the phase term is zero for k 6= 1. If a = 1 and k = 1, then the resulting
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parameterized curve L(t) traces a straight-line segment with slope 1 when φ
is zero and a circle when φ = π/2.

For a time-varying phase φ = (π/2) sin(2πst), where 0 < s << r, the
resulting Lissajous figure L(t) is seen as a rotating circle in 3-dimensional
space, rotating about the slope-1 line in the image plane with s the number of
rotations per unit time.
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