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Abstract

The no-zero-divisor division algebra of highest possible dimension
over the reals is taken as a model for various physical and mathematical
phenomena mostly related to the Four Color Conjecture. A geometric
form of associativity is the common thread.
Keywords: Geometric algebra, the Four Color Conjecture, rooted cu-
bic plane trees, Catalan numbers, quaternions, octaves, quantum alge-
bra, gravity, waves, associativity

1 Introduction

We explore some consequences of octonion arithmetic for a hidden variables
model of quantum theory and ideas regarding the propagation of gravity. This
approach may also have utility for number theory and combinatorial topology.

Octonion models are currently the focus of much work in the physics com-
munity. See, e.g., Okubo [29], Gursey [14], Ward [36] and Dixon [11]. Yaglom
[37, pp. 94, 107] referred to an “octonion boom” and it seems to be acceler-
ating. Historically speaking, the inventors/discoverers of the quaternions, oc-
tonions and related algebras (Hamilton, Cayley, Graves, Grassmann, Jordan,
Clifford and others) were working from a physical point-of-view and wanted

∗4th Conference on Emergence, Coherence, Hierarchy, and Organization (ECHO 4),
Odense, Denmark, 2000

1



their abstractions to be helpful in solving natural problems [37]. Thus, a con-
nection between physics and octonions is a reasonable though not yet fully
justified suspicion.

It is easy to see the allure of octaves since there are many phenomena in
the elementary particle realm which have 8-fold symmetries. Another reason
is simple extremality: one can’t go any further than the octonions without
sacrificing the basic operations of arithmetic.

Of course, multiplication in the octaval arithmetic fails to be either commu-
tative or associative, but that could be a blessing in disguise. If multiplication
depends on the order of the elements being multiplied together and even on
how they are grouped, then at one fell swoop, geometry enters the calcula-
tion in an organic way. The Principle of Indeterminacy could then arise in a
natural fashion from relativistic considerations, making quantum theory a con-
sequence of an underlying 8-dimensional hidden-variable process, very much in
the flavor of the theories of de Broglie and Bohm. Uncertainty of measurement
would be a corollary of our inability to absolutely order events or to absolutely
control the way in which they are grouped.

In this paper, we will consider an application of higher dimensional arith-
metic to the Four Color Problem of combinatorial topology (see Appel and
Haken [4], Saaty and Kainen [30]). This problem has a strong physical flavor
(Kauffman and Saleur [23], Bar Natan [5]). Indeed, the essence of the problem
is now seen to involve a weak form of associativity [22], and so a connection
with the octonions is plausible. Since Cayley was the first to write about
the Four Color Problem [30], for his octaval arithmetic to play a role in the
solution would be a nice irony.

The organization is as follows: In section 2, we discuss emergence of higher
dimensions in lower, in physical and mathematical contexts. Sections 3 and
4 review the Four Color Conjecture and its formulation in terms of special
trees and the properties of vector cross-product. Sections 5 and 6 deal with an
algebraic formulation suggested by quantum computing and quantum algebra.
In section 7, we return to some relevant features of the octonions and the
paper concludes with a section of remarks and an appendix on the definition
of octonions.

2 Higher dimensional emergence

There are various places in mathematics and physics where phenomena oc-
cur which manifest something intrinsically higher-dimensional in a space of
lower dimension. In physics, although we live in a world that appears to
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be three-dimensional, current theories (e.g., of strings or “branes”) use much
higher dimensions (see, e.g., Giveon and Kutasov [13]) and this idea, beginning
with Kaluza and later (Oscar) Klein, has an interesting history (see, e.g., Y.
Vladimirov [35] and A. Lichnerowicz [27]).

Naively, measurements are real numbers but complex numbers are now
ubiquitous in physics (e.g., in optics and electronics). As complex numbers
extend the real line, Hamilton’s quaternions provide a useful four-dimensional
tool with direct applications to optics and mechanics. Dirac noted that quater-
nions can explain such three-dimensional phenomena as why two full rotations
are needed in order to untangle knots. Since physics is intimately connected
with symmetries, it is not too surprising to find such applications (see, e.g.,
Altman [2]).

There are only four division algebras over the reals. Except for the oc-
tonions, the others (real, complex and quaternion) have been found useful in
physics, as have the Clifford algebras which generalize them. This makes the
octonions a natural target for physicists and mathematicians [11]. So far there
does not seem to be a clear situation where octaves have found an essential
application to physics [36, vii]. However, Freudenthal [12] and Tits [34] have
found that the five singular simple Lie groups (which are not in the four infinite
families) are related to the isometries of octaval planes [37, p. 107].

In mathematics too, one finds higher-dimensional objects casting shadows
in the lower dimensions. For example, the Penrose nonperiodic tiling of the
plane is a projection of something in dimension at least 4 (Katz, [24]) and the
Hardy-Ramanujan formula (Andrews [3]) shows that the number of partitions
of a positive integer n may be expressed in terms of the 24k-th roots of unity.
While integers are 0-dimensional, the partition formula suggests that a 24-
fold symmetry is involved - as would be the case if it involves objects in
4-dimensions.

The quaternions and octonions can be used to prove theorems expressing an
integer as a sum of four or eight squares; see Hardy and Wright [16], Coxeter [7].
While these results can be derived in other ways, they fit a higher-dimensional
model. Analagously, Felix Klein [25] showed how to display otherwise obscured
aspects of the dynamics of a top with four complex variables to represent
space and time, satisfying x2 + y2 + z2 − t2 = 0. Though Klein was quite
emphatic on not intending “complex time” to be taken literally, the term is
now referenced in a number of papers in the literature. See, e.g., [6] regarding
Sonia Kovalevskaya’s contribution in this regard.

While Klein’s analysis does not specify the algebraic properties of these
variables (i.e., whether they correspond to complexified quaternions or to oc-
tonions - see, e.g., [36]), it reminds us of the advantages of using higher di-

3



mensional formulations to simplify the descriptions of phenomena which live
in three-dimensions. These advantages include not only algebraic and topo-
logical insights but even applications to differential equations. See, e.g., [28]
where it is pointed out that by embedding R3 in a Clifford algebra, the square
root of the Laplacian is a first-order, elliptic differential operator (and also for
the Laplacian in Rn).

3 The Four Color Problem

An especially interesting potential application for geometric algebra, including
the octonions, can be found in the celebrated Four Color Conjecture, which
asserts that every planar map can have its regions “colored” using four distinct
labels so that regions which share a common boundary edge receive distinct
colors. We give a brief review of the problem in terms of an equivalent planar
graph formulation. See [4] and [30] for further detail.

A graph is a symmetric irreflexive relation (called adjacency) on a finite set
of nodes (or “vertices”). Related (unordered) pairs of distinct points are called
edges (or “lines”) and the two vertices that constitute an edge are called its
endpoints. The number of nodes is called the order. A graph is complete if
every two distinct nodes are adjacent.

A graph is planar if it can be represented as a subset of the plane such that
each edge corresponds to a simple curve, each vertex is a point which is an
endpoint of any curve corresponding to an edge which includes the node, two
curves intersect only at common endpoints of the corresponding edges, and no
point corresponding to a node belongs to the interior of any curve. Intuitively,
a graph is planar if it can be drawn in the plane without any edge crossings.
A particular crossing-free drawing is called a plane graph.

A coloring of a graph is an assignment of labels to the nodes such that no
two adjacent nodes get the same color; a coloring is an r-coloring if the set of
labels does not exceed r in cardinality. For example, the complete graph of
order n has an n-coloring but no k-coloring for k < n.

The Four Color Conjecture asserts that every planar graph can be 4-
colored. This was proved in 1976 (after being unsolved for about a century)
but the proof is lengthy and depends on computer calculations which are not
humanly checkable. The Four Color Problem is (now) to find a simple proof.

It is convenient to reformulate in terms of the edges. This protean aspect
is characteristic of the problem; see [30] and [19].

The degree of a node is the number of edges which include it as an endpoint.
Two edges are called adjacent if they have a common endpoint. Call G an
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(n,m)-graph if it has n nodes and m edges. A graph is regular if all degrees
are equal; a cubic graph is a regular graph of degree 3. A 1-path is the trivial
graph. For n > 1 an n-path is an (n, n − 1)-graph in which it is possible to
order the nodes and edges in an alternating sequence such that the two nodes
flanking each edge are its endpoints and the first node and last node of the
sequence are distinct. The path is said to join its first and last node. For
n > 2 an n-cycle is an (n, n)-graph with a similar alternating sequence as
above except that the first and last node coincide.

A graph is connected if any two nodes are joined by a path. A tree is a
connected graph with no cycles. It is easy to show that every tree is planar.
The vertices of degree 1 are called endpoints and the edges which include them
are leaves. Every tree has a 2-coloring. If a tree has at least two nodes, then it
has at least two endpoints. A tree is called cubic if all of its nodes have degree
either 3 or 1; it is rooted if one of the leaves is selected as the “root.” A plane
tree has a uniquely determined cyclic order on its leaves (obtained by travelling
around the boundary of a regular neighborhood in the plane). By selecting a
root and an orientation of the plane (clockwise or counterclockwise), we obtain
a unique linear order on the leaves which begins at the root.

Given two rooted plane trees with the same number of endpoints there is a
natural correspondence between the leaves which identifies their roots, using
the clockwise order for one tree and the counterclockwise order for the other
tree. If the corresponding pairs of leaves are identified, then the resulting
graph is planar. We call this the fusion of the two rooted plane trees.

An edge k-coloring is an assignment of at most k labels to the edges so that
no two adjacent edges get the same color. A cubic tree has an edge 3-coloring.
Using a theorem of Whitney, the Four Color Conjecture is equivalent to the
following assertion: Given two rooted cubic plane trees of the same size, there
exists an edge 3-coloring of the two trees such that corresponding leaves receive
the same color [30, pp. 102-110].

An edge 3-coloring of a rooted cubic plane tree is completely determined
by a choice of clockwise or counterclockwise orientations (+ or −, resp.) at
each of the cubic nodes; choice of a color at the root and any fixed cyclic order
on the three colors. We call the sequence of +/− vertex orientations the state.
One takes any given color at the root and propagates it out to all of the edges
using the state at each vertex and the cyclic color order to decide whether to
color the two edges neighboring an edge of color 1 with edges of colors 2,3 (or
3,2).
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4 Role of associativity

By interpreting the three colors algebraically, the Four Color Conjecture can
be stated in terms of various interpretations of associativity.

One can think of a rooted cubic plane tree as a deterministic machine which
takes an input sequence, presented to its leaves, and uses a binary operation
to multiply the inputs at each of the cubic nodes. More formally, there is an
orientation of the graph as a directed graph (each edge is assigned a sense or
direction so that it points from one endpoint to the other). This is done by
orienting each edge so that it is traversed in the positive sense when traveling
from a leaf to the root. Hence, each cubic node has indegree 2 and outdegree
1.

Rooted cubic plane trees amount to systems of parentheses for the evalua-
tion of a binary operation. Evaluating a product can depend on the choice of
the tree when the operation is not associative. The topology of the tree corre-
sponds to the position of the parentheses needed to evaluate the sequence of
inputs. If T and σ denote the tree and the sequence, then we write T (σ) for
the resulting algebraic output.

Kaufmann showed [22] that the Four Color Conjecture is equivalent to a
restricted form of associativity for cross-product. Cross-product is the multi-
plication defined on the linear space R3 as in elementary calculus and physics.
If the standard orthonormal basis is denoted i, j, k, then the following hold:
i × j = k = −j × i, i × i = 0, and the other relations resulting from each of
the cyclic rotations of the colors in the order i, j, k. Note that cross-product
is not associative since, e.g., i(ij) = ik = −j 6= 0 = (ii)j.

In the following theorem, by an argument attributed to G. Bergmann [21],
it suffices to prove that for any two rooted cubic plane trees of the same size,
there exists at least one sequence on which both both trees give a nonzero
value for in that case, the cross-product multiplications never give a value
different from the value which would be given by a corresponding tree-machine
operating via quaternion multiplication (interpreting i, j, k, now, as the three
unit pure quaternions). Since the quaternions are associative, the computed
values at the roots must be identical.

Theorem 1 The Four Color Conjecture is equivalent to the claim that for
any positive integer n and any two rooted cubic plane trees T , T ′ with n cubic
nodes, there exists a sequence σ in {i, j, k}n such that T (σ) and T ′(σ) are equal
and nonzero.

Another interesting formulation of associativity is due to Kauffman and
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Saleur [23]. They showed that the Four Color Conjecture is equivalent to the
existence of an algebraic property for the Temperley-Lieb algebra.

The Temperley-Lieb algebras arose in the context of statistical mechanics
but they are also related to spinor theory and many other things; see [21]. A T-
L algebra can be constructed by taking certain elementary topological objects
(tangles) and then constructing an algebra with the objects as generators
with topologically motivated relations. The number of generators (i.e., the
dimension) is always a Catalan number and this provides a link to parenthesis
systems since the number of rooted cubic plane trees is also a Catalan number.
For more on Catalan numbers, see Stanley [33]; many such Catalan classes are
connected by natural bijections.

5 Quantum machines

If we reverse the digraph orientation, then a tree provides a unique directed
path from root to each leaf. First, we make this into a machine and then
complexify it.

Suppose that n is a positive integer and T is a rooted cubic plane tree with
n+1 leaves. There are n cubic nodes, which have a unique linear ordering with
respect to the tree-topology and planar orientation already chosen. Let an in-
put consist of a pure unit quaternion and a “control” sequence in {−1, +1}n.
Each node takes its unique input and produces as output the next two unit
quaternions with respect to the cyclic order i, j, k, reading its outputs in coun-
terclockwise or clockwise order, resp., as the node receives a control value of
+1 or −1. Thus, the effect is that the tree converts its input sequence (of
length n + 1) into an output (also of length n + 1) which is a sequence of
quaternion values on the leaves. One could just as well use the three standard
unit vectors in R3 as input choices, with a comparable alteration of output.

To complexify this, we replace the choice of +1 or −1 by a linear combi-
nation of both, using complex weights. Hence, the resulting values appearing
on the leaves will be complex linear combinations of quaternions (or of unit
3-vectors).

It is convenient to reinterpret in terms of qubits, which are generators of the
complex vector space V = C2 usually written |+ >= (0, 1) and |− >= (1, 0).
The quaternion basis i, j, k is encoded |01 >, |10 >, |11 >, resp. Now the
quantum tree machine defined as above is producing a map from Vn+1 = V ⊗n+1

to itself, which we denote by T . The composition T ′◦T is defined on the tensor
basis and so extends to a linear map.

Theorem 2 The Four Color Conjecture is equivalent to the claim that for
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any two rooted cubic plane trees T , T ′ of the same order, T ′ ◦ T is nonzero.

6 Quantum algebra

Let Dn denote the digraph whose vertices are the rooted cubic plane trees
with arcs corresponding to those pairs of parenthesis systems that differ by a
single associative switch: i.e., (x(yz)) → ((xy)z), etc. One can visualize this
using triangulations of an n-gon. Adjacent triangulations agree everywhere
except for a single diagonal which is “flipped” to become the other diagonal
of a fixed quadrilateral. Note that it is Whitney duality which relates the
triangulations and trees (faces correspond to vertices in the dual while edges
cross dual-edges); hence, the notion of flipping has a meaning for trees as well.

The underlying graph Tn of Dn has been called the “rotation graph” [32]
and is the 1-skeleton of the associahedron (or Staheff polytope, also discovered
by Mac Lane, see, e.g., Ziegler [38]). We are interested in the set Pn of all
directed paths in Dn joining T to T ′; this is known to be nonempty for any
two vertices T, T ′.

In [18] we give two isomorphisms c and c′ from V ⊗2 to itself which formalize
the action of an arc in the rotation digraph. Let τ be the endomorphism of
V which reverses the generators by interchanging the two topological factors;
i.e., τ(|+ >) = |− > and τ(|− >) = |+ >. We define c : V ⊗ V → V ⊗ V
by c|b1, b2 >= |τ(b2), τ(b1) >. and c′ : V ⊗ V → V ⊗ V by c′|b1, b2 >=
|τ(b1), τ(b2) >. The two isomorphisms differ in that c involves an extra switch
of coordinates which means it satisfies the Yang-Baxter equation; see, e.g.,
Kassel [20, p. 167].

If a = (T1, T2) is an arc of Dn we will define an arc operator which is
an endomorphism of the n-fold tensor product V . In each tree, T1, T2, the
vertices are indexed according to the depth-first, clockwise order so a defines
a permutation πa on the n indices which reflects the topological reindexing
which results from the edge annihilation/creation event.

Using c, we define a linear automorphism Fa of V which corresponds to
the edge-flip. Suppose the two vertices at either end of the removed edge e
are indexed by, say, r < s. Let the ends of the added edge be indexed by
t < u. Now we define Fa on (b1 ⊗ · · · ⊗ bn) where each bi is + or −, which is
the canonical tensor-product basis, by (b1 ⊗ · · · ⊗ bn) 7→ (b′1 ⊗ · · · ⊗ b′n), where
b′t = τbs, b′u = τbr and for j 6= t, u, b′j = bk for k = σ−1

a (j).
The effect of Fa is to interweave c with the identity according to the topo-

logical reindexing, and one can plainly do the same thing with c′. Define
F ′

a for any a on the path analogously with Fa by replacing c with c′; so
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F ′
a(b1 ⊗ · · · ⊗ bn) = (b′1 ⊗ · · · ⊗ b′n), where b′t = τbr, b′u = τbs and for j 6= t, u,

b′j = bk for k = σ−1
a (j). We can now define the arc operator φa corresponding

to a as the difference of these two endomorphisms; φa := Fa−F ′
a for any edge

a in Tn. The following is straightforward [18].

Lemma 1 If e is an edge in some tree T in Tn with r < s the indices of its
two endpoints and a is the arc in the graph in Dn corresponding to flipping the
edge, then φa(b1 ⊗ · · · ⊗ bn) = 0 if and only if br = bs.

Let us write a path P in Dn joining a pair of trees T, T ′ as a sequence
of arcs a1, . . . , ar, (r = 0 if T = T ′). Then P induces the endomorphism
ΦP = (Far ◦ · · · ◦ Fa1) − (F ′

ar
◦ · · · ◦ F ′

a1
) of Vn. If r = 0, let this be the zero

map and if r = 1, note that ΦP is just φa1 . Also, for any path a1, . . . , an, a
partial path is a path of the form a1, . . . , as, where 0 ≤ s ≤ r.

The following conjecture implies the Four Color Conjecture:

Conjecture 1 For any two rooted cubic plane trees T, T ′ with n cubic nodes,
there exists a path P in Dn joining T and T ′ such that for every partial path
P ′ of P , ΦP ′ is not a monomorphism.

This would mean that there is a path P from T to T ′ such that for every
partial path P ′ some tensor basis element of T is mapped to zero by ΦP ′ so
the path successively induces edge 3-colorings of the fusion of T with each of
the trees occurring along the path. This does not imply, however, that a single
choice of tensor basis element in T suffices.

7 Properties of the octonions

Looking for a new proof of the Four Color Conjecture, or its strong form above,
one is naturally tempted to consider the infinite case. This ought to allow tech-
niques of functional analysis to be used. Further,in the infinite-dimensional
case, one could use an octonionic, rather than complex or quaternionic Hilbert
space.

The octonions should have just the right properties as a substrate for the
study of subtle properties of associativity in tensor product algebras. It is
well-known that octaves form an alternative algebra; associativity holds when
two of the three terms are equal; see, e.g., Schafer [31]. However, Albuquerque
and Majid [1] have proved that the octonions are associative up to a natural
transformation. Their work uses ideas from quantum algebra and from Mac
Lane’s theory of coherence in categories [20, p. 291].
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The introduction of a thoroughly octaval viewpoint into the topos itself
ought to have very interesting consequences for the enterprise of building a
categorical model of continuum mechanics (see Lawvere and Schanuel [26].

One might expect to find hyperbolic geometry because the infinite rooted
cubic plane tree has a natural hyperbolic realization. This is also supported
by the case of the two extremal trees (corresponding to left-most or right-most
parenthesizations, resp.). If these two trees, say Ln and Rn, are considered in
dual form, the result of the fusion process becomes the cube of a path, P 3

n , and
we remarked on its hyperbolic nature in [17]. Further, hyperbolic geometry
was used by Sleator, Tarjan and Thurston [32] to majorize the diameter of Tn.

The cube P 3
n of the path [15] is the graph with nodes {1, . . . , n} in which

nodes are adjacent if and only if they differ by at most 3. For any given scale
s, 0 < s < 1, there is a linear embedding of Pn into the plane which extends
to a linear embedding of P 3

n where the image of 1 is the point (1, 0) in R2 and
the image of k + 1 is sω times the image of k, where ω is a third root of unity
in the complex plane [17].

Time as a separable real axis can be formalized as a path or cycle graph
(as done for a chain of atoms in [2, pp. 73-77]). In [17] we studied properties
of the path cube and their consequences for a model of time.

However, if instead of replacing one axis, we replace all four by correspond-
ing “screw” axes, what is the corresponding geometry? Suppose we start with
a four-dimensional model and then replace each axis with a complex plane,
but using the spiral embedding of some fixed scale s. Is there an interesting
(e.g., highly connected) spatial subgraph with nodes at integral octonions for
which the intersection with the axial screws are just the path-cubes? Every
graph embeds linearly in only 3 dimensions so with 8 dimensions, one has a
great deal of room.

Note that already the existence of an order-3 mapping along each axis
implies that there must be a triality on the whole space. Triality is to duality
as three is to two. E. Cartan defined it in terms of a linear automorphism
with cube (i.e., three-fold composition with itself) equal to the identity and
cyclically permuting three subspaces in a direct-sum decomposition of the
vector space. See Crumeyrolle [10]. There is a specific automorphism of the
group Spin(8) which exhibits triality [11]. A three-fold symmetry in the Four
Color Conjecture arises by cyclically permuting the colors. The idea of triality
also arose in graph theory regarding a question of N. Hartsfield.

Finally, some interesting questions remain regarding optimization. Since
the octonions are not associative, given a sequence of numbers, their prod-
uct depends on how the numbers are associated. If one chooses, uniformly
at random in the interval [0.5, 2.0] a sequence r1, r2, . . . , rn and then add an
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octonion chosen uniformly at random from the ball of radius ε in octonion
space to form a sequence c1, c2, . . . , cn of octonions, we can ask for the largest
or the expected value of any product of the sequence, taken over all possi-
ble ways to associate the elements or even allowing reorderings. One could
also begin by choosing the sequence of octonions subject to the property that
((. . . (c1c2)c3) . . . cn−1)cn) = 1.

Optimization questions can also be asked regarding the norm of partial
sums of zero-mean samples of unit vectors. An upper bound for the plane is√

5 but for octonions the best upper bound known is approximately 147.

8 Remarks

According to Theorem 2, the Four Color Conjecture is equivalent to the prop-
agation of twisting vectors in a network composed of two rooted cubic plane
trees. If we consider gravity as the tendency to propagate twisting vectors,
then the four color theorem amounts to the assertion of the existence of a
planar gravitational field. Simultaneously, our tree-model also displays the
archetype of a quantum wave, which spreads out over all possibilities but col-
lapses into an actual coloring.

The rooted cubic plane trees may be viewed as a kind of artificial life where
the coloring problem is equivalent to the ability of a tree to find a suitable
sequence of +/− states for its nodes so that it can control the movement of
another tree (mate or predate). If the tree A-life is capable of carrying out a
quantum computation, it can always make such a choice.

If the Conjecture holds, then it provides a mathematical model of quantum
gravity in the sense of being able to transmit inertial force. So perhaps the
physical model could be accessed biologically.

9 Appendix: Definition of the octonions

The octonions, also known as the octaves or Cayley-Graves numbers, are an
algebraic structure defined on the 8-dimensional real vector space such that
two octaves can be added, multiplied and divided, except that multiplica-
tion is neither commutative or associative. Otherwise, all the other expected
properties hold such as distributivity. The octaves have extremely interesting
algebraic, combinatorial and geometric properties; see, e.g., Coxeter [8], [7],
[9] or Schafer [31] for further details.
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