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Abstract

In Lp-spaces with p ∈ [1,∞) there exists a best approximation map-
ping to the set of functions computable by Heaviside perceptron networks
with n hidden units; however for p ∈ (1,∞) such best approximation is
not unique and cannot be continuous.
Keywords. One-hidden-layer networks, Heaviside perceptrons, best ap-
proximation, metric projection, continuous selection, approximatively com-
pact.

1 Introduction

An important measure of the complexity of feedforward neural networks is the
number of hidden units. To estimate accuracy of approximation achievable
using networks with a fixed number of units, it is helpful to study properties
like existence, uniqueness and continuity of approximation operators to sets of
functions computable by such networks.

∗Neural Networks 13(7) (2000) 695-697. Update to refs 2004.
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Here, we investigate such properties for one-hidden-layer Heaviside percep-
tron networks. We derive implications for these networks from our recent math-
ematical results (Kainen, Kůrková & Vogt, 1999b, 2000): in Lp-spaces with
p ∈ [1,∞) for all positive integers n, d there exists a best approximation map-
ping to the set of functions computable by Heaviside perceptron networks with
n hidden and d input units; however, for p ∈ (1,∞) geometric properties (non-
convexity) of sets of functions computable by such networks prevent these best
approximations from being continuous.

2 Heaviside perceptron networks

Feedforward networks compute parametrized sets of functions dependent both
on the type of computational units and their interconnections. Computational
units compute functions of two vector variables: an input vector and a parameter
vector. Standard types of units are perceptrons. A perceptron with an activation
function ψ : R → R (where R denotes the set of real numbers) computes real-
valued functions on Rd+1 × Rd of the form ψ(v · x + b), where x ∈ Rd is an
input vector, v ∈ Rd is an input weight vector and b ∈ R is a bias.

The most common activation functions are sigmoidals, i.e. functions with
ess-shaped graph. Both continuous and discontinuous sigmoidals are used. Here,
we study networks based on the discontinuous Heaviside function ϑ defined by
ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for t ≥ 0.

Let Hd denote the set of functions on [0, 1]d computable by Heaviside per-
ceptrons, i.e.

Hd = {f : [0, 1]d →R| f(x) = ϑ(v · x + b),v ∈ Rd, b ∈ R}.

Notice that Hd is the set of characteristic functions of half-spaces of Rd re-
stricted to [0, 1]d.

The simplest type of multilayer feedforward network has one hidden layer
and one linear output. Such networks with Heaviside perceptrons in the hidden
layer compute functions of the form

n∑

i=1

wiϑ(vi · x + b),

where n is the number of hidden units, wi ∈ R are output weights and vi ∈ Rd

and bi ∈ R are input weights and biases, resp.
The set of all such functions is the set of all linear combinations of n elements

of Hd and is denoted by spannHd.
It is known that for all positive integers d, ∪n∈N+spannHd (where N+ de-

notes the set of all positive integers) is dense in (C([0, 1]d), ‖.‖C), the linear
space of all continuous functions on [0, 1]d with the supremum norm, as well as
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in (Lp([0, 1]d), ‖.‖p) with p ∈ [1,∞] (see, e.g., Cybenko, 1989; Hornik, Stinch-
combe & White, 1989). However, for practical applications, the desired accuracy
of approximation has to be achievable for n small enough to allow implementa-
tion. Thus it is useful to study approximation capabilities of the sets spannHd.

3 Existence of a best approximation

Existence of a best approximation has been formalized in approximation theory
by the concept of proximinal set (sometimes also called “existence” set). A sub-
set M of a normed linear space (X, ‖.‖) is called proximinal if for every f ∈ X
the distance ‖f −M‖ = infg∈M ‖f − g‖ is achieved for some element of M , i.e.,
‖f−M‖ = ming∈M ‖f−g‖ (see e.g. Singer, 1970). Clearly, a proximinal subset
must be closed.

A sufficient condition for proximinality of a subset M of a normed linear
space (X, ‖.‖) is compactness (i.e. each sequence of elements of M has a subse-
quence convergent to an element of M). Indeed, for each f ∈ X the functional
e{f} : M → R defined by e{f}(m) = ‖m − f‖ is continuous (see e.g. Singer,
1977, p. 391) and hence must achieve its minimum on any compact set M .

Gurvits & Koiran (1997) have shown that for all positive integers d the
set of characteristic functions of half-spaces Hd is compact in (Lp([0, 1]d), ‖.‖p)
with p ∈ [1,∞). This can be easily verified once the set Hd is reparameterized
by elements of the unit sphere Sd in Rd+1. Indeed, a function ϑ(v · x + b),
with the vector (v1, . . . , vd, b) ∈ Rd+1 nonzero, is equal to ϑ(v̂ · x + b̂), where
(v̂1, . . . , v̂d, b̂) ∈ Sd is obtained from (v1, . . . , vd, b) ∈ Rd+1 by normalization.
Strictly speaking, Hd is parametrized by equivalence classes in Sd since different
parametrization may represent the same member of Hd when restricted to [0, 1]d.
Since Sd is compact, and the quotient spaces formed by the equivalence classes
is likewise, so is Hd.

However, by extending Hd into spannHd for any positive integer n we lose
compactness since the norms are not bounded.

Nevertheless compactness can be replaced by a weaker property that requires
only some sequences to have convergent subsequences. A subset M of a normed
linear space (X, ‖.‖) is called approximatively compact if for each f ∈ X and any
sequence {gi; i ∈ N+} ⊆ M such that limi→∞ ‖f − gi‖ = ‖f −M‖, there exists
g ∈ M such that {gi; i ∈ N+} converges subsequentially to g (see e.g. Singer,
1970, p.368).

The following theorem shows that spannHd is approximatively compact in
Lp-spaces. It extends a weaker result by Kůrková (1995), who showed that
spannHd is closed in Lp-spaces with p ∈ (1,∞).

Theorem 3.1 For every n, d positive integers and for every p ∈ [1,∞)
spannHd is an approximatively compact subset of (Lp([0, 1]d, ‖.‖p).
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The proof is based on an argument showing that any sequence of elements
of spannHd has a subsequence that either converges to an element of M or to
a Dirac delta function, and the latter case cannot occur when such a sequence
approximates a best approximation of some function in Lp([0, 1]d) (see Kainen,
Kůrková & Vogt, 1999b).

It is a straightforward consequence of the definitions that approximatively
compact implies proximinal (see Singer, 1970).

Corollary 3.2 For every n, d positive integers and for every p ∈ [1,∞)
spannHd is a proximinal subset of (Lp([0, 1]d), ‖.‖p).

Thus, for any fixed number n of hidden units, a function in Lp([0, 1]d) has a
best approximation among functions computable by one-hidden-layer networks
with a single linear output unit and n Heaviside perceptrons in the hidden layer.
In other words, in the space of parameters of networks of this type, there exists a
global minimum of the error functional defined as Lp-distance from the function
to be approximated.

4 Uniqueness and continuity of best approxima-
tion

Let M be a subset of a normed linear space (X, ‖.‖) and let P(M) denote the
set of all subsets of M . The set-valued mapping PM : X → P(M) defined by
PM (f) = {g ∈ M ; ‖f − g‖ = ‖f −M‖} is called the metric projection of X onto
M and PM (f) is called the projection of f onto M .

Let F : X → P(M) be a set-valued mapping. A selection from F is a
mapping φ : X → M such that for all f ∈ X, φ(f) ∈ F (f). A mapping
φ : X → M is called a best approximation operator from X to M if it is a
selection from PM .

When M is proximinal, then PM (f) is non-empty for all f ∈ X and so there
exists a best approximation mapping from X to M . The best approximation
need not be unique. When it is unique, M is called a Chebyshev set (or “unicity”
set). Thus M is Chebyshev if for all f ∈ X the projection PM (f) is a singleton.

Let us recall that a normed linear space (X, ‖.‖) is called strictly convex (also
called “rotund”) if for all f 6= g in X with ‖f‖ = ‖g‖ = 1 we have ‖ f+g

2 ‖ < 1.
This just means that the midpoint of the segment joining any two points on
the unit sphere is contained in the interior of the ball. Thus, a norm is strictly
convex when the unit ball is “round”. It is well known that for all p ∈ (1,∞)
(Lp([0, 1]d), ‖.‖p) is strictly convex.

In the previous section, we have noted that for all positive integers n, d
and p ∈ [1,∞) there exists a best approximation mapping from Lp([0, 1]d)
to spannHd. The following theorem implies for p in the open interval (1,∞)
that if among such best approximations there is a continuous one, then best
approximation is unique.
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Theorem 4.1 In a strictly convex normed linear space, any subset with a con-
tinuous selection from its metric projection is Chebyshev.

For the proof and extensions to non-strictly convex spaces see Kainen, Kůrková
& Vogt (1999a), (2000).

To apply Theorem 4.1 to spannHd we shall use the following geometric char-
acterization of Chebyshev sets with continuous best approximation by Vlasov
(1970).

Theorem 4.2 In a Banach space with strictly convex dual, every Chebyshev
subset with continuous metric projection is convex.

It is well known that Lp-spaces with p ∈ (1,∞) satisfy the assumptions of
this theorem (since the dual of Lp is Lq where 1

p + 1
q = 1 and q ∈ (1,∞)). See,

for example, Friedman (1982), p. 160. Hence, to show the non-existence of a
continuous selection, it is sufficient to verify that spannHd is not convex.

Proposition 4.3 For all n, d positive integers, spannHd is not convex.

To verify nonconvexity of spannHd consider 2n parallel half-spaces with the
characteristic functions gi(x) = ϑ(v · x + bi), where 0 > b1 > . . . > b2n > −1
and v = (1, 0, . . . , 0) ∈ Rd. Then 1

2

∑2n
i=1 gi is a convex combination of two

elements of spannHd,
∑n

i=1 gi and
∑2n

i=n+1 gi, but it is not in spannHd, since
its restriction to the one-dimensional set {(t, 0, . . . , 0) ∈ Rd; t ∈ [0, 1]} has 2n
discontinuities.

Summarizing results of this section and of the previous one, we get the
following corollary.

Corollary 4.4 In (Lp([0, 1]d), ‖.‖p) with p ∈ (1,∞) for all n, d positive integers
there exists a best approximation mapping from Lp([0, 1]d) to spannHd, but no
such mapping is continuous.

5 Discussion

We have shown that convenient properties of projection operators such as unique-
ness and continuity are not satisfied by Heaviside perceptron networks with a
fixed number of hidden units. These properties would allow one to estimate
worst-case errors using methods of algebraic topology (see e.g. DeVore, Howard
& Micchelli, 1989). In linear approximation theory, application of such methods
shows that some sets of functions defined by smoothness conditions exhibit the
curse of dimensionality: the approximants converge at rate O( 1

d
√

n
), where d

is the number of variables and n is the dimension of the approximating linear
space (see, e.g. Pinkus, 1986). Our results show that these arguments are not
applicable to approximation by Heaviside perceptron networks.
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Note that the results from Section 3 cannot be extended to perceptron net-
works with differentiable activation functions, e.g., the logistic sigmoid or hy-
perbolic tangent. For such functions, sets spannPd(ψ) (where Pd(ψ) = {f :
[0, 1]d →R| f(x) = ψ(v · x + b),v ∈ Rd, b ∈ R}) are not closed and hence can-
not be proximinal. This was first observed by Girosi & Poggio (1990) and later
exploited by Leschno et al. (1993) for a proof of the universal approximation
property.
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