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Abstract

It is shown that for any connected graph G and all sufficiently
large s, the cartesian product G×Qs has a quadrilateral embedding
in some surface, where Qs is the hypercube graph. This answers a
question of Pisanski.
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1 Introduction

Pisanski asked [12]: When are the cartesian products of a given graph with
all sufficiently high-dimensional hypercubes embeddable in surfaces so that
every region is a quadrilateral? It suffices to find such a quadrilateral em-
bedding in which some subfamily of the regions have boundaries including
each vertex once and only once. We call the least dimension of such a
hypercube the “stability number” of the graph.

Archdeacon [1] showed that every 4-connected graph has an embedding
in some not-necessarily-orientable surface in which all regions have bound-
aries which are cycles. We use this result to show that every connected
graph has finite stability number.

In this paper, graphs are finite and simple (no loops or parallel edges);
G = (V,E) denotes a graph with vertex-set V and edge-set E. By a closed
surface, we mean a 2-manifold without boundary, which may be orientable
or not.

An embedding M of a graph G in a surface S is called a 2-cell em-
bedding if the path-connected components (necessarily open) of S \ G are
homeomorphic to disks (called the regions of the embedding); let R(M)
denote the set of regions. For undefined terms, see e.g. Harary [6]; see also
[4], [7], [10], [17].
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Two 2-cell embeddings of a graph are equivalent if there is a homeomor-
phism of the surface carrying one embedding onto the other; if the surfaces
are orientable, then the homeomorphism must be orientation-preserving.
A map M is an equivalence class, denoted M : G < S; Euler’s formula
holds: n−m + r = e(S), where n = |V |, m = |E|, r = |R(M)|, and e(S) is
the Euler characteristic of the surface (2 for the sphere, 1 for the projective
plane, etc.). When the surface is orientable, e(S) = 2−2γ, where γ denotes
the genus of the surface. Let U(M) = G.

A map is closed provided that the closure of every region is a closed
2-cell; i.e., every region boundary is a cycle. A map is called quadrilateral
provided that all regions have 4 distinct edges in their boundaries. If M :
G < S is a closed map, then G must be 2-connected, and well-known
conjectures assert that each 2-connected graph has such maps (even into
an orientable surface); see below and Haggard [5]. A quadrilateral map M
is closed if U(M) is 2-connected.

A 2-cell embedding of G is simplest if the Euler characteristic of the
surface is as large as possible. Note that if G is connected and triangle-
free, then a quadrilateral map of G on some surface is necessarily a simplest
embedding. When the surface is orientable, a simplest embedding is the
same as an embedding of minimal genus.

Let G × H denote cartesian product; V (G × H) = V G × V H with
[(v, w), (v′, w′)] ∈ E(G ×H) if and only if either v = v′ and [w, w′] ∈ EH
or w = w′ and [v, v′] ∈ EG. For d ≥ 1, the hypercube Qd is the d-fold
iterated cartesian product of K2.

Recall that a graph G is k connected if for any two distinct vertices
v and w there are at least k paths from v to w in G which are pairwise-
disjoint except for their common endpoints. It is easy to see that G ×Q1

is k + 1-connected if G is k-connected.
A map has a vertex-disjoint quadrilateral cover (VDQC) if there exists

a set of 4-sided regions such that every vertex is in the boundary of one
and only one of these regions. This is a special case of what Pisanski called
a “patchwork” (see [12], [4, p. 155]). We call a quadrilateral map with a
VDQC stable. If G has a stable map, then so do the supergraphs G ×Qd

for all d ≥ 1. Such maps are used in [2], [8], [9], [14], [15], [16].
It is shown that for any connected graph G there is a positive integer s

such that G×Qs has a stable map. In section two, the process of extending
maps from G to G × K2 is formalized, and the third section shows that
suitable extensions do exist for all connected graphs G. We conclude with
some examples.
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2 Maps and their extensions

Let M : G < S be any map with region-set R(M). We call a function
ϕ : V (G) → R(M) a region assignment if ∀v ∈ V (G), v ∈ V (∂ϕ(v)); i.e.,
each v ∈ V (G) belongs to the boundary of the region ϕ(v). We define the
demand on a region R to be the number d(R,ϕ) of vertices assigned to it
by ϕ,

d(R, ϕ) = |ϕ−1(R)|.
Given any vertex-disjoint family F of regions in M which covers every
vertex in G, there is a unique region assignment ϕ = ϕF such that the
demand on each region in F is the number of vertices in its boundary.

Call a map N : G×Q1 < S′ the 1-extension of M by ϕ provided that
ϕ is a region assignment for M and (i) S′ comes from two copies of S by
joining corresponding regions with nonzero demand by a handle, (ii) for
each v in V (G), the edge [(v, 0), (v, 1)] of G × Q1 runs along the handle
joining the two copies of region R = ϕ(v), and (iii) all remaining edges are
in the two copies of S where they are embedded as in M . The map N is a
1-extension of M if there exists ϕ such that N is the 1-extension of M by
ϕ, and for k ≥ 2 a k-extension of M is a 1-extension of a k − 1-extension
of M .

Call a region assignment ϕ coherent for the edge e = [v, w] of G provided
that ϕ(v) = ϕ(w), and [v, w] ∈ E(∂ϕ(v)). The following summarizes our
construction.

Lemma 1. Let M : G < S be a map with region assignment ϕ which
is coherent for some edge e = [v, w] and let N be the 1-extension of M
by ϕ. Then the 4 edges [(v, 0), (w, 0)], [(v, 1), (w, 1)], [(v, 0), (v, 1)], and
[(w, 0), (w, 1)] constitute the boundary of a quadrilateral region in N .

A 1-factor of G is a spanning subgraph which is regular of degree 1. For
any map M put d(M) = max d(ϕ), over all region assignments ϕ, where
d(ϕ) is the minimum of the nonzero d(R,ϕ) for R ∈ R(M).

Lemma 2. Let G be a 2-connected graph with a 1-factor F and let M :
G < S be a closed map. Then d(M) ≥ 2 and M has a closed 1-extension
N .

Proof. For each edge f ∈ F , let Rf be one of the two regions of M with f in
their boundary. For v, w ∈ V (G) with f = [v, w], put ϕ(v) = Rf = ϕ(w).
This defines a region assignment ϕ which is coherent for each edge in F
and hence has demand d(ϕ) ≥ 2. Let N = N(ϕ) be the corresponding
1-extension of M .
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Each handle carries at least 2 distinct edges. Since M is a closed embed-
ding, the boundary of a region is a simple cycle and so each added handle
is topologically an annulus. The interior of an annulus with two or more
radial lines connecting the two components of the boundary is a union of
closed disks. Hence, N is also closed.

Is it true that d(M) ≥ 2 for every map M?

Lemma 3. Let M : G < S be closed and let F be a covering of the vertices
of G by pairwise-vertex-disjoint regions of M . Let M ′ be the 1-extension
of M by ϕF . Then M ′ is also closed.

Proof. In the 1-extension, each region in F is replaced by a handle which
is subdivided into quadrilateral regions. The remaining regions of M , and
hence of M ′, have boundaries which are cycles.

3 Stability numbers

The stability number st(M) of a map M is the least nonnegative integer
s such that M has an s-extension which is a stable map. The stability
number st(G) of a graph G is the least s such that G×Qs has a stable map
in some surface (orientable or not). Note that st(G) = min{r + st(N) | N :
G×Qr < S, N closed} and st(G) ≤ st(G×Qr) + r.

Theorem 3.1. Let G be a 2-connected graph with a 1-factor F . Every
closed map M : G < S has a 2-extension to a closed map M2 : G×Q2 < S′

such that for each v ∈ V (G), v ×Q2 bounds a cycle in M2. In particular,
M2 has a VDQC.

Proof. Use the 1-factor to extend M to N as in Lemmas 1 and 2 above.
Let F be the vertex-disjoint quadrilateral cover f × Q1 of N determined
by the edges f of the matching of G. Then the extension of N with respect
to ϕF , as in Lemma 3, is a closed map M2 and v × Q2, v ∈ V (G), is a
VDQC.

For any map M : G < S, let N (M) denote the family of vertex sets
determined by the boundaries of the non-quadrilateral regions of M and
let I(N (M)) denote the intersection graph of N (M) (that is, the vertices
are the non-quadrilateral regions and two such regions are adjacent if they
share at least one common vertex in their boundaries). Let c(M) denote
the chromatic number of I(N (M)).

Theorem 3.2. Let G be a 2-connected graph with a 1-factor. Then every
closed map M : G < S has an s-extension to a stable map for some s ≤
2 + c(M2).
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Proof. Let M2 be an extension of M as in 3.1 above. If N (M2) is empty,
then M2 is already stable. Otherwise, the graph I(N (M2)) has a finite
nonzero chromatic number c and we may partition the family of all non-
quadrilateral regions N (M2) into c families F1, . . . ,Fc, where each Fj con-
sists of non-quadrilateral regions which are pairwise-vertex-disjoint.

Let Q1 be the set of regions in M2 bounded by those {v × Q2} which
are vertex-disjoint with all regions in F1. The family F = F1 ∪ Q1 covers
every vertex of M2 once and only once. Indeed, the non-quadrilateral
regions of M2 must come from non-quadrilateral regions of N . But each
non-quadrilateral region of N is either a copy of some non-quadrilateral
region of M which has zero demand with respect to the region assignment
ϕ or else it arises from one of the connected components C of ∂R for some
region R ∈ R(M) with d(R,ϕ) > 0, where C is a path with r ≥ 3 vertices.
The resulting region R′ of N has 2r sides and both copies of M have the
same vertices in the boundary of R.

The 1-extension M3 of M2 by ϕF is closed and has a VDQC by Lemmas
2 and 3. All regions in F1 are replaced by quadrilateral regions and the
intersection graph of the remaining non-quadrilateral regions (if any) is
unchanged except for being replicated, which does not affect the chromatic
number of the intersection graph.

Repeating this process, extend the VDQC for M3 to a VDQC for
M4 where all non-quadrilateral regions in F2 are replaced by families of
quadrilateral regions, and iterate until reaching M2+c which is stable and
closed.

Pisanski [11] proved that for every connected bipartite graph G, st(G) ≤
∆(G)+1, where ∆(G) is the maximum degree of G. He further showed [12]
that if G is a connected r-regular triangle-free graph, then st(G) ≤ 2r + 3.
See also [3] and [13].

Theorem 3.3. Every connected graph has a finite stability number.

Proof. If H is any connected graph, then G = H ×Q3 is 4-connected and
Archdeacon [1], [10, p. 153], has proved that any 4-connected graph G has
a closed 2-cell embedding M : G < S. Since G does have a 1-factor, we
can apply Theorem 3.2 to M .

4 Examples

The following is weaker by 1 than the bound of Pisanski but uses an ori-
entable embedding. If K1,n is the star with n + 1 vertices, then for n ≥ 3
st(K1,n) ≤ n + 2.

Consider G = K1,n × Q1 which is 2-connected with a 1-factor F , cor-
responding to the edge of Q1. There is a unique (closed) map M of G
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in the sphere, which has 2 quadrilateral regions and n − 1 regions with 6
sides. Note that G has 2n + 2 vertices and 3n + 1 edges. We tabulate such
information in the sequence

σ(M) = (2n + 2, 3n + 1, 42, 6n−1, 2),

where the last term denotes the Euler characteristic of the sphere. The
number of regions is r = 2 + n − 1 = n + 1, and Euler’s formula holds:
2n + 2− (3n + 1) + n + 1 = 2.

Define a region assignment ϕ : V (G) → R(M), using F , so that, by the
construction of Lemma 2, we obtain a map N with sequence

σ(N) = (4n + 4, 8n + 4, 4n+5, 12n−1, 4− 2n).

To see this, note that one of the quadrilateral regions of M has demand 4
and so determines 4 quadrilateral regions in N , while the other quadrilateral
region of M is merely replicated. Each of the n − 1 regions with 6 sides
has demand 2 and so determines a quadrilateral region and a region with
12 = 2 ∗ 6 sides. Since 2 + 4 + n − 1 = n + 5, we obtain the sequence
shown, and the reader can easily check that Euler’s formula does hold for
characteristic 4 − 2n. The two copies of M on spheres are joined by n
handles so the surface in which N is embedded is orientable with genus
n− 1, and so has Euler characteristic 2− 2(n− 1) = 4− 2n.

Proceeding as in Theorem 3.1, we obtain M2 described by

σ(M2) = (8n + 8, 20n + 12, 44n+12, 122n−2, 6− 6n).

Indeed, there are n + 1 quadrilateral regions in N corresponding to the 1-
factor, each of which produces a handle with 4 quadrilateral regions in M2

and 4 more quadrilateral regions in N which are replicated, so 4n + 12 =
4(n+1)+2∗4. Also, 8n+8− (20n+12)+6n+10 = 6−6n = 2−2(3n−2)
and the genus 3n− 2 of the map M2 agrees with the calculation (n− 1) +
(n− 1) + (n + 1)− 1.

It is easy to check that c(M2) = n−1 so, by Theorem 3.2, st(M) ≤ n+1
and hence st(K1,n) ≤ n + 2 for n ≥ 3.

Our methods work for odd cycles as well. For r ≥ 1, let G = C2r+1×Q1

with 1-factor as above and let M be the unique map of G in the sphere.
The connected components of the graph I(N (M2)) consist of a cycle of
length 2r+1 joined to a pair of non-adjacent vertices, so the corresponding
chromatic number is 4. Hence, st(C2r+1) ≤ 7. This agrees with the bound
of Pisanski which holds for r ≥ 2.

It is clear that many graphs have low stability numbers which result
from special, regular embeddings. For example, st(C2r) = 2 for r ≥ 3. Also,
the stability number of the complete bipartite graph st(K3,3) is 1; indeed,
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K3,3 has a closed embedding in the projective plane with one 6-sided region
and 3 quadrilateral regions. Attaching handles to the hexagonal regions,
gives a stable embedding of K3,3 × Q1 in the Klein bottle. One can also
show the stability number is at most 6 for the dodecahedron and at most
8 for the Petersen graph.
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