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Abstract
It is shown that cartesian product and pointwise-sum with a fixed

compact set preserve various approximation-theoretic properties. Re-
sults for pointwise-sum are proved for F -spaces and so hold for any
normed linear space, while the other results hold in general metric
spaces. Applications are given to approximation of Lp-functions on
the d-dimensional cube, 1 ≤ p < ∞, by linear combinations of half-
space characteristic functions; i.e., by Heaviside perceptron networks.

1 Introduction

Dugundji remarks that in Hausdorff spaces, “the compact subsets behave as
points do and have the same separation properties” ([5, p. 225]. For example,
in such spaces two disjoint compact subsets have disjoint neighborhoods.
That is, compacta can replace points.

Our aim in this paper is to apply this paradigm of Dugundji to some
problems which arise in nonlinear approximation. The basic idea was first
applied in our work with Kůrková and Sanguineti [11] under more restric-
tive hypotheses (normed linear spaces only). Here we have drawn further
consequences for analysis from the underlying topology and geometry.
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It is shown that in metric spaces compacta can replace points with respect
to cartesian product of subsets, and for pointwise-sum when the metric space
is an F -spaces. Since F -spaces include normed linear spaces, our results ap-
ply in typical function spaces used in nonlinear approximation. Instead of
separation properties, we consider a hierarchy of compactness-type proper-
ties (defined precisely below) applying to subsets of a metric space. A subset
is proximinal if it contains a best approximation to any point in the metric
space and a subset is approximatively compact if for every point any mini-
mizing sequence for its distance functional restricted to the subset converges
subsequentially to an element of the subset.

We show that for approximative compactness and proximinality, points
can be replaced by compact sets (Theorem 3.1, 4.1, respectively); also that
cartesian product (Theorem 5.1), and pointwise-sum in the F -space case
(Theorem 5.2) preserve the compactness hierarchy properties when we oper-
ate by cartesian product or sum with a compact subset. Further, the set of
points in an approximatively compact subset which minimize the distance to
a given compact subset is itself compact (Theorem 5.4). An application is
given in section 6 to neural network approximation.

The paper is organized as follows. Section 2 contains preliminaries. Sec-
tion 3 generalizes results in [11] and Sections 4 and 5 contain the main results,
and the last section concerns applications as in [11].

2 Preliminaries

Let (X, d) be a metric space. Kuratowski’s notation [14] is used in denoting
the distance between two points x, y ∈ X by |x−y| rather than d(x, y). When
there is no linear structure, the notation is unambiguous. In case there is
a linear structure as well, we add some conditions on the metric, which are
weaker than assuming it comes from a norm.

An F -space is a real linear space endowed with a metric which satisfies
(i) invariance of the metric |x − y | = | (x − y) − 0 | (i.e., the distance from
x to y equals the distance from x − y to 0); (ii) the mapping (α, x) → α x
from <×X to X is continuous in α for each x and continuous in x for each
α; and (iii) the metric space is complete [6, pp. 51-52]. For an F -space X,
addition is a continuous mapping of X×X to X, and multiplication by −1 is
an isometry; also, any normed linear space is an F -space. See [6, pp. 52-53].
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By invariance of the metric, in an F -space, the notation |a − b − c| is
unambiguous since (iv) |(a − b) − c| = |(a − b) − c − 0| = |a − (b + c)|.
Moreover, we have a corresponding result for subsets which is needed in
section 5. For subsets A, B of a linear space, let A + B denote the set of
pairwise sums A + B = {a + b : a ∈ A, b ∈ B}; a + B means {a} + B; and
let −B denote {−b : b ∈ B}.

If X is a metric space, for A, B ⊂ X, let |A−B| = infa∈A, b∈B |a− b| and
for a ∈ X, write |a−B| instead of |{a}−B|. The following lemma is derived
from (iv) by taking infima.

Lemma 2.1 Let X be an F -space with nonempty subsets A and B. For any
x ∈ X, |A + B − x| = |A− (x−B)|.

A sequence tn converges to t0 if for every ε > 0, there exists N such that
for all n > N , |tn − t0| < ε. A sequence converges subsequentially if it has a
convergent subsequence; our notation

tn ≥ tn′ → t0

identifies the subsequence and the point to which it converges. Recall that
a subset C of a metric space is compact if every sequence in C converges
subsequentially to an element of C; a subset is conditionally compact if it has
compact closure with respect to the metric-induced topology. Also, given se-
quences sn, tn, and a subsequence sn′ of the first sequence, the corresponding
subsequence of the second is denoted tn′ . Compact sets are called compacta.
Compactness equals countable compactness for metric spaces [9, p. 133].

A subset of a metric space is boundedly compact if every bounded sequence
in the subset is subsequentially convergent. In our notation above, Y is
boundedly compact if for any bounded sequence yn in Y , there is a point x0

(not necessarily in Y ) for which yn ≥ yn′ → x0. A well-known theorem of
Riesz asserts that a normed linear space is boundedly compact if and only if
it is finite-dimensional [2, p. 40].

For a metric space X and nonempty subsets M and C, we say that a
sequence mn ∈ M converges in distance to C if lim

n→∞ |mn−C| = |M−C|; the

subset M is approximatively compact relative to C if every sequence mn ∈ M
which converges in distance to C is subsequentially convergent to an element
of M . This is equivalent to the generalized Tykhonov well-posedness of the
problem of minimizing the distance to C from M [4, p. 24].
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Call M a subset of X approximatively compact provided that M is approx-
imatively compact relative to each of the singletons of X; M is proximinal
(or an “existence set”) if for every x ∈ X some element m in M satisfies the
equation |x−m| = |x−M |. These notions arose in nonlinear approximation
theory [7],[19],[3].

Akhieser shows that a closed subspace of Hilbert space is approximatively
compact [1, p.24], but it follows from the theorem of Riesz noted above that
such a subspace is not boundedly compact. We give a nonlinear example of
the same phenomenon in section 6.

There is a compactness hierarchy: compact, closed and boundedly com-
pact, approximatively compact, proximinal, closed. Each of these properties
implies the next [18, pp. 382-384].

3 Distance minimization

The theorems in this section were originally obtained for normed linear spaces
in [11]. The first result says that points can be replaced by compact subsets
in the definition of approximative compactness.

Theorem 3.1 Let M and C be nonempty subsets of a metric space X. If
M is approximatively compact and C is compact, then M is approximatively
compact relative to C.

Proof. Let mn ∈ M be any sequence converging in distance to C and let
the sequence cn ∈ C satisfy

(∗) lim
n→∞ |mn − cn| = |M − C|.

Since C is compact, cn ≥ cn′ → c0 ∈ C. Hence, for every ε > 0 there
exists N such that for n′ > N , |M − C| ≤ |mn′ − c0| ≤ |mn′ − cn′| + |cn′ −
c0| ≤ |M − C| + ε. Therefore, mn′ converges in distance to c0 so, since M
is approximatively compact, mn ≥ mn′ → m0 ∈ M ; that is, mn converges
subsequentially to an element of M . 2

All we need for the theorem is that M is approximatively compact relative
to all singletons in the closure of C and that C is conditionally compact. By
adding conditions on M , we can reduce the requirements for C as is shown
in the next two results.
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Theorem 3.2 Let M and C be nonempty subsets of a metric space X. If M
is approximatively compact and bounded, and C is boundedly compact, then
M is approximatively compact relative to C.

Proof. Let mn ∈ M be any sequence converges in distance to C and let
cn ∈ C satisfy (∗). As mn is bounded, so is cn. Since C is boundedly
compact, cn ≥ cn′ → c0 ∈ X. Proceed as in the proof of Theorem 3.1. 2

Again, it is only necessary to assume that M is approximatively compact
relative to singletons in the closure of C.

Theorem 3.3 Let M and C be nonempty subsets of a metric space X. If M
is closed and boundedly compact and C is bounded, then M is approximatively
compact relative to C.

Proof. Suppose mn converges in distance to C and again choose cn in C such
that (∗) holds. As cn is bounded, so is mn; hence, mn ≥ mn′ → m0 ∈ M . 2

4 Distance realization

Distance between a pair of compact sets can be realized by a pair of points
in the respective sets [16], [9, p. 141]. This can be generalized.

Theorem 4.1 Let M and C be nonempty subsets of a metric space X. If
M is proximinal and C is compact, then there exist points m ∈ M and c ∈ C
with |m− c| = |M − C|.
Proof. Suppose cn ∈ C satisfies lim

n→∞ |M − cn| = |M − C|. By compactness

of C, cn ≥ cn′ → c0 ∈ C so |M − c0| = |M − C|. Now choose m0 ∈ M such
that |m0 − c0| = |M − c0|. 2

Theorem 4.2 Let M and C be nonempty subsets of a metric space X. If
M is proximinal and bounded and C is closed and boundedly compact, then
there exist points m ∈ M and c ∈ C with |m− c| = |M − C|.
Proof. Suppose cn ∈ C satisfies lim

n→∞ |M − cn| = |M − C|. Since M is

bounded, cn must also be bounded so cn ≥ cn′ → c0 ∈ C. Proceed as in the
proof of Theorem 4.1. 2
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In both of these theorems, M need only contain best approximations to
elements from C. Also, distance realization is not always possible when M
and C are closed and boundedly compact [11]. In the Euclidean plane, take
the real line and the graph of y = ex. Hence, [18, Theorem 2.3, p. 385] is
incorrect.

5 Operations preserving compactness

Let X and Y be metric spaces. We give the cartesian product X × Y the
metric |(x, y)− (x′, y′)| = |x− x′|+ |y− y′|. The topology induced on X ×Y
is the product topology (e.g., [9, p. 62]).

The next result implies that cartesian product with a compact set pre-
serves the compactness hierarchy.

Theorem 5.1 Let S and P be nonempty subsets of metric spaces X and
Y , respectively. Suppose that P is compact. If S is boundedly compact or
approximatively compact, then so is S × P .

Proof. If S is boundedly compact, we show that any sequence (sn, pn) in
S×P which is bounded has a convergent subsequence. Indeed, by definition
of the product metric, sn is bounded and since S is boundedly compact,
sn ≥ sn′ → s0 ∈ X. By compactness of P pn′ ≥ pn′′ → p0 ∈ P . Hence,
(sn, pn) ≥ (sn′′ , pn′′) → (s0, p0) ∈ X × Y .

If S is approximatively compact, let (x, y) be any element in X × Y and
suppose that (sn, pn) is a sequence in S × P which converges in distance to
(x, y); that is, lim

n→∞ |(sn, pn)− (x, y)| = |S × P − (x, y)|. By compactness of

P , pn ≥ pn′ → p0 ∈ P . Hence, lim
n′→∞

|(sn′ , p0) − (x, y)| = |S × P − (x, y)| so

lim
n′→∞

(|sn′−x|+|p0−y|) = |S−x|+|P−y|. Thus, the limit L = lim
n′→∞

|sn′−x|
exists and L = |S − x|+ |P − y| − |p0 − y| ≤ |S − x|. But |s− x| ≥ |S − x|
for all s ∈ S so L = |S − x|. Hence, sn′ converges in distance to x and since
S is approximatively compact, sn′ ≥ sn′′ → s0 ∈ S. Therefore, (sn, pn) ≥
(sn′′ , pn′′) → (s0, p0) ∈ S × P ; i.e., S × P is approximatively compact 2

The next theorem shows that adding a compact subset in an F -space also
preserves the compactness hierarchy.
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Theorem 5.2 Let S and P be nonempty subsets of an F -space X. Suppose
that P is compact. If S is boundedly compact, approximatively compact,
proximinal, or closed, respectively, then so is S + P .

Proof. Let S be boundedly compact and suppose sn + pn is a bounded
sequence in S + P . By compactness of P , pn is bounded, so sn is bounded
and hence sn ≥ sn′ → s0 ∈ X. Again by compactness of P , any sequence
in it contains a convergent subsequence; i.e., pn′ ≥ pn′′ → p0 ∈ P . Hence,
sn + pn ≥ sn′′ + pn′′ → s0 + p0. Therefore, S + P is boundedly compact.

For preservation of approximative compactness, we use previous results.
Let S be approximatively compact and let sn + pn be a sequence in S + P
converging in distance to x ∈ X; i.e., lim

n→∞ |sn +pn−x| = |S+P −x|. As P is

compact, pn ≥ pn′ → p0 ∈ P . Hence, using Lemma 2.1, lim
n′→∞

|sn′−(x−p0)| =
lim

n′→∞
|sn′ + p0−x| = |S + P −x| = |S− (x−P )|. Therefore, sn′ converges in

distance to the compact set x−P . Thus, by Theorem 3.1, sn′ ≥ sn′′ → s0 ∈ S;
hence, S + P is approximatively compact.

Let S be proximinal and let x ∈ X. Then x − P is compact so by
Theorem 4.1, there exist elements s0 ∈ S and x − p0 ∈ x − P for which
|s0−(x−p0)| = |S−(x−P )|. Hence, by Lemma 2.1, |s0+p0−x| = |S+P−x|.

For a proof that S closed implies S + P closed, see Holmes [10, p. 6]. 2

As with respect to distance, the attributes of compactness used in argu-
ments can be redistributed (cf. Theorem 3.2).

Theorem 5.3 Let S, P be nonempty subsets of an F -space X. If S is
approximatively compact and bounded and P is closed and boundedly compact,
then S + P is approximatively compact.

The proof is immediate using Lemma 2.1 and Theorem 3.2. Also, one
may check that in Theorems 5.1 and 5.2, bounded compactness is preserved
provided only that P is conditionally compact. Also, if µ : G×G → G is a
topological group (Hausdorff) with C compact and M closed, then the set
MC of products µ(m, c), m ∈ M , c ∈ C, is closed [6, p. 414].

Another operation preserving compactness is “metric projection” (see,
e.g., [18]) to an approximatively compact subset.
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Theorem 5.4 Let M and C be nonempty subsets of a metric space X. If
M is approximatively compact and C is compact, then K = {m ∈ M : ∃c ∈
C, |m− c| = |M − c|} is compact.

Proof. Let yn be a sequence in K and for every n choose cn in C so that yn

minimizes the distance from M to cn. Since C is compact, cn ≥ cn′ → c0 ∈ C.
Hence, for every ε > 0, there exists N such that for all n′ > N , |cn′− c0| < ε;
therefore, for all n′ > N ,

|M−c0| ≤ |yn′−c0| ≤ |yn′−cn′|+|cn′−c0| = |M−cn′|+|cn′−c0| < |M−c0|+2ε.

Therefore, yn′ converges in distance to c0, so it converges subsequentially. 2

It follows that {m ∈ M : |m − C| = |M − C|} is compact when C
is compact and M is approximatively compact. Thus, in a metric space,
the metric projection of a compact subset into an approximatively compact
subset is compact.

6 Application to Heaviside neural nets

An n-fold linear combination of half-space characteristic functions corre-
sponds exactly to a feedforward perceptron network with n hidden units,
each having the Heaviside threshold function as its activation function. For
X = Lp([0, 1]d), d a positive integer and 1 ≤ p < ∞, we showed in [12],
[13] that the nonconvex subset M = spannHd consisting of all n-fold linear
combinations of half-space characteristic functions restricted to the d-cube is
approximatively compact for every positive integer n.

However, for n ≥ 2, spannHd cannot be boundedly compact in the metric
space X since it contains a unit-norm sequence. Indeed, let κj be the half-
space characteristic function x1 ≤ 1/j restricted to the d-dimensional cube
and let κ0 be the characteristic function of the cube itself. Put gj = j1/p(κ0−
κj). Then the p-norm of gj is 1 for all positive integers j but gj cannot
converge to a bounded function.

The Dugundji paradigm described above applies to nonlinear approxima-
tion by replacing a “target function” with a compact target family. Given
input-output data, only known to be approximately correct, and some bound
on smoothness, there will be a compact family of functions which agree with
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the input-output data up to a given measurement tolerance and which also
possess at least the required degree of smoothness. (This is a consequence of
the Sobolev embedding theorems.) For details, see [11]. Note, however, that
this family could be empty if the data is not compatible with the required
smoothness.

Given the data including a bound on smoothness, one seeks to find an
n-fold linear combination of half-space characteristic functions with mini-
mum distance to the compact set C consisting of all functions satisfying
the smoothness and data constraints. The theorems given above and in [11]
guarantee that such best approximants do exist provided that C is nonempty.
Moreover, these best approximants occur as the limit of a subsequence of any
sequence which minimizes the distance functional of C restricted to M .

It is the author’s conjecture that approximative compactness also holds
with any compact convex subset replacing the unit cube. Additional approx-
imatively compact subsets can be constructed using the above theorems via
pointwise-sum and cartesian product with compacta.

Proximinality yields the existence of a function implementable by an n-
hidden-node Heaviside-perceptron neural network which achieves the mini-
mum possible distance (in the Lp-sense) to any function agreeing with the
data up to the given tolerance and meeting the smoothness requirement. This
approach might be termed “satisficing” in H. Simon’s sense. Moreover, ap-
proximative compactness guarantees the convergence of a greedy algorithm
aimed at finding this function. Also, our method yields nonunique optimum
solutions, which allows for additional control.

In contrast, Tykhonov regularization minimizes a weighted combination
of fit to data and smoothness. See, e.g., [17]. It obtains a unique minimum
solution which depends on the relative weight assigned to the smoothness
(or other regularizing) functional. While there is a “representer theorem”
providing through matrix inversion a unique solution, expressed in terms of
a linear combination based on the given data and regularization parameter,
the size of the data set is often too large for this to be practical.

Regularization can be combined with our approach as well [15].
In engineering applications, it would be interesting to interpret the notion

of disturbance (see, e.g., [8]) using cartesian product or pointwise-sum with
compact or boundedly compact subsets.
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