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Abstract

It is shown that for any nonempty collection of d−2 or fewer squares of a hypercube
Qd there exists a 3-cube subgraph of Qd which contains exactly one of these squares.
As a consequence, a diagram of isomorphisms on the scheme of the d-dimensional hy-
percube, which has strictly fewer than d − 1 noncommutative squares, in fact, has no
noncommutative faces. Statistical commutativity is considered.
Keywords: Hypercube, commutative diagram of isomorphisms, cube lemma, approx-
imate commutativity, coherence, groupoid, algebraic stability.

1 Introduction

In monoidal categories (or in enriched categories) the problem of testing the commutativity
of diagrams of isomorphisms arises (e.g., in the coherence theorems of Mac Lane). Our
results in this paper and in [3] show that in some cases, it is possible to reduce the effort
needed for such testing and to compensate for the possibility of error in the process.

We prove a combinatorial fact about faces of the hypercube and derive as a corollary an
interesting robustness phenomenon for commutativity of diagrams consisting of invertible
morphisms. For d ≥ 2, a d-dimensional hypercube diagram of invertible morphisms which
contains d− 2 or fewer noncommutative faces must actually be commutative.

Our category theory result generalizes a special case of the Cube Lemma (Mitchell [6,
p.43]). The Cube Lemma states: If a diagram on the scheme of a 3-dimensional cube has
five of the six square faces commutative, all except the back face, and if the morphism from
the source of the cube to the source of the back face is an epimorphism, then the back face
also commutes. The dual case replaces back by front, source by sink and epimorphism by
monomorphism. If all morphisms are invertible, then the cube commutes if any five of the
six faces are commutative. Noncommutativity of such a 3-cube diagram means that at least
two squares must be noncommutative. The proof of the Cube Lemma is by contradiction,
using the cancellation property of epimorphisms (or monomorphisms).
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The result here, Theorem 2, is that in a noncommutative d-cube diagram with all mor-
phisms invertible there must be at least d− 1 noncommutative squares. Our proof uses the
Cube Lemma and inductively proven combinatorial result given in Theorem 1.

Elsewhere [3], we proved a different generalization of the Cube Lemma which shows how
commutativity can be forced: for d ≥ 2, there is a particular set of bd = 1 + (d − 2)2d−1

square faces of Qd taken from the set of all d(d− 1)2d−3 squares, such that if each of these
square faces commutes, then Qd commutes.

In contrast, here we are showing that d − 1 but no fewer square faces are sufficient to
block commutativity.

The organization is as follows: In section 2, we give the d-cube graph’s description and
prove that a nonempty set of square faces which has fewer than d−1 members must contain
at least one element which is “isolated” by a 3-dimensional subcube. Section 3 gives the
notions of diagram and groupoid, and in the next section we prove that when a d-cube
diagram fails to commute, it must do so on at least d− 1 square faces. Section 5 considers
the statistical implications. We conclude with some remarks.

2 Hypercubes and isolated square faces

For basic definitions and properties of graphs, see, e.g., Harary [2].
For d a nonnegative integer, the hypercube graph Qd (or d-cube) has for vertices the

binary d-tuples; two such 0/1 strings determine an edge if they differ in exactly one coordi-
nate. Write O (or 1) for the vertex with all coordinates equal to 0 (1), resp. In the usual
digraph structure (oriented consistently from 0 to 1 in all coordinates), O is the source and
1 the sink.

Clearly, Qd contains various subgraphs isomorphic to lower-dimensional hypercubes;
for instance, the front and back are copies of Qd−1. Each vertex is a Q0 subgraph and
each edge is a Q1 subgraph. A Q2 subgraph is called a square. Let Fk(Qd) denote the
set of Qk subgraphs of Qd and put fk = |Fk|. Clearly, fk is equal to 2d−k times the
number of ways to choose k from d. Also the number bd of cycles in a cycle basis of Qd is
bd = 1− f0 + f1 = 1 + (d− 2)2d−1.

Let Q0
d denote the subgraph determined by the vertices of Qd with last coordinate 0

(called the back) and similarly for Q1
d, the front face. The graph Qd − (Q0

d ∪ Q1
d) will be

called the sides of Qd with respect to this fixed choice of primary axis, corresponding to the
last coordinate. Note that each Qk+1 in the sides correspond exactly to one Qk in the front
(and back) face.

Let k ≥ 2 and suppose G is any nonempty set of Qk-subgraphs of Qd and F is a member
of G. We say that F is isolated in Qd with respect to G if there exists a k + 1-cube G such
that F is the only element of G which is a subgraph of G; G is said to isolate F for G and
Qd.

Theorem 1 Let d ≥ 2 and G be any nonempty subset of the squares of Qd. If |G| < d− 1,
then G contains at least one isolated square.

Proof. We establish the assertion by induction. For d = 2, there are no nonempty subsets
satisfying the hypotheses. For d = 3, G must consist of a single square, which is isolated by
G = Q3.

Now let d ≥ 4 be any integer and consider a nonempty subset G of the squares of Qd

which contains fewer than d − 1 elements. Plainly, since G is nonempty, it must have a
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nonempty intersection with the set of squares in some Qd−1 subgraph of Qd; indeed, every
square belongs to a d−1-cube. By reordering the coordinates, we can assume for convenience
that the Qd−1 face is Q0

d.
Let F = G ∩ F2(Q0

d). If F = G, then in fact every square s in G is isolated with respect
to G and Qd by the unique 3-cube which meets Q0

d in s. If F is a proper subset of G, then
it is a nonempty set of fewer than d− 2 squares in the d− 1-cube Q0

d, so, by the inductive
hypothesis, there is a square s in F which is isolated with respect to F and Q0

d by some
3-cube G contained in Q0

d. Hence, G isolates s for G and Qd. 2

3 Commutativity of diagrams

In this section, we review the category-theoretic background. See, e.g., Mac Lane [4] for
any undefined category theory terms.

An isomorphism is an invertible morphism. A groupoid is a category in which every
morphism is an isomorphism. A category will be termed nontrivial if it contains an object
with a nonidentity isomorphism.

Given a category C and a finite digraph D = (V,A), a diagram δ in C on the scheme
of D is a digraph embedding of D in the underlying digraph of C. That is, a diagram is
a labeling of each arc (resp. vertex) of D with a morphism (resp. object) of C so that
morphisms are directed from domain to codomain and morphisms are composable exactly
when the corresponding arcs meet head to tail. If, in addition, the diagram has the property
that any two directed paths of morphisms joining any ordered pair of objects have identical
compositions, it is called a commutative diagram. Equivalently, a diagram commutes if and
only if it may be extended to a functor from the free category on D to C. For groupoids,
we assume that all diagrams are automatically extended to include the inverse morphism
for every morphism as well as all the object identity maps. Clearly, a diagram commutes if
and only if the corresponding extended diagram commutes.

For commutative diagrams of isomorphisms we can ignore directionality and consider the
underlying graph. Commutativity for a diagram amounts to requiring that the composition
of all the morphisms in every directed cycle must be an identity morphism. It is easy to
check that for a given cycle in the underlying graph, if some directed orientation of the cycle
as a directed cycle is equal in composition to the identity, then the same is true for any
choice of orientation.

A hypercube commutes if all of its squares do. By symmetry it suffices to check equality
for the composition of any two paths p and q from O to 1. Any such paths are determined
by a permutation on d (namely, the sequence of coordinates in which O is changed to 1). Let
the two paths p, q correspond to permutations σ and τ , respectively. Then each path induces
the same morphism since σ ◦ τ−1 is a product of transpositions, while each transposition
leaves the value of the composition unchanged since every square commutes.

4 A minimal blocking set

A face of a digraph is a pair of distinct directed paths with the same ordered pair of source
and sink vertices. A face commutes with respect to some diagram if the two paths yield
identical morphisms. A nonempty set of squares is blocking if there is some diagram for which
they are the unique noncommutative faces. The following result shows that the minimal
size of a blocking set for the d-dimensional hypercube is at least d− 1.
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Let βC(Qd) denote the smallest number of noncommutative faces in any noncommutative
diagram on the scheme of Qd in the category C.

Theorem 2 For any nontrivial groupoid category C and for d ≥ 2, βC(Qd) = d− 1.

Proof. To show that fewer than d− 1 squares can’t block commutativity, we use Theorem
1. If a subset G of fewer than d− 1 squares blocked commutativity, then the isolated square
would belong to a 3-cube in which every other square commutes so by the cube lemma, the
isolated square would also commute - a contradiction. Hence, there must be at least d− 1
noncommutative squares and so βC(Qd) ≥ d− 1.

To show equality, use the nontriviality of C. Let G be an object with a nonidentity
morphism β. Define a diagram on the scheme of Qd by making all objects equal to G and
all arrows are the identity except for one arrow which is the morphism β. Then every square
commutes except for the exactly d−1 square faces which contain the nonidentity morphism.
2

The argument shows that for any diagram in a nontrivial category, any set of faces all
of which share exactly one arc is a blocking set.

5 Statistical commutativity

Let d ≥ 3 be an integer and suppose we are given a diagram δ on the scheme of the d-
dimensional hypercube in some nontrivial groupoid. Let C be the event that δ commutes
and C ′ the complementary event that it does not commute. For 0 < k < d − 1 an integer,
let Ak,d be the event that a randomly chosen subset F of nk = f2k/(d − 1) elements
from the set F2(Qd) all commute. Since failure of commutativity ensures at least d − 1
noncommutative squares, sampling a proportion of k/(d− 1) of the squares should yield at
least k noncommuting squares on average. Finding none is thus unlikely, as we now show.

Theorem 3 For d at least 3, k < d − 1 a positive integer and a diagram δ on the scheme
of Qd in a nontrivial groupoid category, P (Ak,d|C ′) < e−k.

Proof. Suppose that C ′ holds - that is, that the diagram does not commute. Let m denote
the number of noncommutative square faces. Then since the nk elements of F are chosen
independently, the chance that none of them is noncommutative is bounded above by a
product:

P (Ak|C ′) ≤ (1− m

f2
)(1− m

f2 − 1
) · · · (1− m

f2 − nk + 1
).

Since for t positive, 1 − t < e−t, this product is less than exp(−mnk/f2) which suffices by
Theorem 1. 2

6 Discussion

A possible application of Theorem 2 is in the area of quantum computing. Categories have
been used to model computation and system evolution (Manes [5]); groupoids can represent
reversible operations such as occur in quantum computations. See [1] for a connection with
quantum algebra. Hypercube diagrams could describe the pure states and transitions.
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Commutative cubes and other commutative diagrams also arise in various mathemati-
cal definitions, as well as in the coherence theory of Mac Lane and Stasheff. Our results
show that such algebraic conditions can be checked even when the mechanism for verifying
commutativity can give false negatives provided the probability of error is sufficiently small.

Indeed, determination of commutativity might, itself, be subject to incorrect measure-
ment. For instance, through “equipment error” a commutative square might be recorded as
noncommutative. Since actual noncommutativity of the hypercube diagram must produce
at least d−1 noncommutative squares, finding fewer than this number would guarantee that
the diagram was, in fact, strictly commutative unless the measurement error also allowed
the false conclusion of commutativity for a noncommutative square.

A more subtle form of the commutativity checking effort minimization applies without
the isomorphism constraint. Commutativity follows when certain cancellation occurs; e.g.,
if there is any epimorphism which is not to the hypercube sink or its first neighborhood,
then the epimorphism is followed by the two parallel paths of a face and so the comutativity
of this face follows from that of a subset of the other faces. The isomorphism constraint
ensures that any given square can be made the front or back face of a particular 3-cube.

The preceding can be applied to other diagram schemes. Using a “tetrahedron lemma”
and an analogous argument to the hypercube case, one can show that for the complete graph
Kn on n vertices, the blocking number for a nontrivial category is n− 2 (the configuration
of n− 2 triangles with a common edge is a minimum blocking set). In contrast, a particular
subset of (n − 1)(n − 2)/2 triangles is sufficient to force commutativity for the entire Kn-
diagram and has the minimum cardinality for such subsets.
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