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Abstract

Two types of robust cycle bases are defined via recursively nice ar-
rangements; complete and bipartite complete graphs are shown to have
such bases. It is shown that a diagram in a groupoid is commutative
up to natural equivalence (cutne) if for each cycle in a robust basis of
the graph underlying the diagram, the composition of the morphisms
is naturally equivalent to the identity. For a hypercube Qn, it is shown
that the commutativity (or cutne) of a particular subset of asymptot-
ically 4/n of the square faces forces commutativity (or cutne) of the
entire diagram.
Keywords: cycle bases, coherence, diagrams, hypercubes, groupoids,
commutativity up to natural equivalence, approximate commutativity,
cognitive science

1 Introduction

We study the elementary properties of a new type of cycle basis for graphs
based on the possibility of ordering those basis cycles which sum to a given
cycle in such a way that some recursive condition holds.

A cycle in some graph is a subset of the edges that induces a connected
subgraph which is regular of degree 2. A binary operation can be defined on
the subsets of any set using symmetric difference or mod-2 sum; the sum is the
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union of the subsets with elements appearing twice deleted. It is easy to check
that this operation is commutative and associative. The Eulerian circuits (i.e.,
subsets of the edges which induce subgraphs having no odd degree vertices)
are sums of cycles and conversely. We will be interested in conditions that
ensure the sum of cycles is another cycle.

A cycle basis is a subset B of the set Cyc(G) of all cycles in G having
the minimal spanning property that for any element Z in Cyc(G) there is
a unique subset C(G,B, Z) = C(Z) = C ⊆ B such that Z is the sum

∑ C
of the elements in C. Since the resulting concept is identical to the usual
algebraic description of a cycle basis as a maximum linearly independent subset
of a certain vector space, all cycle bases for a particular graph G have the
same number of elements, b(G). If G has p vertices, q edges and k connected
components, then b(G) = q− p+ k. In particular, if G is any connected graph
and T is a spanning tree, then there is a basis of G corresponding to T which
consists of the cycles e ∪ P (e), where e is an edge of G not in T and P (e) is
the unique path in T between the endpoints of e.

Cycle bases of various special types have long been studied. In 1937, Mac
Lane showed that for a 2-connected graph, planarity is equivalent to the ex-
istence of a 2-basis, which is a cycle basis in which every edge belongs to at
most two cycles from the basis [5]. For any 2-connected plane graph, the cycles
determined by the boundaries of the finite regions constitute a 2-basis.

Every 2-connected graph can be constructed by beginning with a cycle
and adding on new cycles in such a way that each new cycle intersects the
union of those that have preceded it in a nontrivial path. See, e.g., Lovasz
[4]. The condition seems natural and the following definition uses an analo-
gous nontrivial-path-intersection property to constrain the way a cycle basis
represents the cycles.

A cycle basis B is robust if for every cycle Z there is a linear ordering of the
subset C(G,B, Z) such that, as each element of the resulting sequence is added
to form the sum Z, it intersects the sum of those preceding in a nontrivial path.
In this case, the partial sums must be cycles. A cycle basis is called cyclically
robust when the sum of the new cycle and those that went before remains a
cycle.

The term “robust” is used to indicate that the property of being a cycle is
preserved by the partial sums or even that the next basis cycle is meeting the
previous partial sum in a nice way.

A diagram is a directed graph that lives in a category; i.e., the vertices are
objects of the category and the arcs are morphisms. See, e.g., Mac Lane [7]; a
brief review is in section 3 below.

We apply robustness to questions of diagram coherence related to Mac Lane



[6] and Stasheff [11]. They asked when the commutativity of all diagrams of
a certain type is implied by that of a few particular cases just as associativity
for n-term expressions follows from that of the 3-term expressions. Instead, we
study when the commutativity of a diagram can be inferred from the knowledge
that a particular subset of the faces is commutative.

To utilize cycles, our proofs require that the morphisms be invertible; that
is, we assume that the categories are groupoids. A cycle in the underlying
graph of a diagram in a groupoid commutes if the composition of all its mor-
phisms (or their inverses) is the identity (no matter where you start). It
commutes up to a natural equivalence if one of the compositions going around
the cycle is naturally equivalent to the identity; equivalently, for any way to
divide the cycle into two parallel paths, there is a natural equivalence between
them. Diagrams are said to commute (or commute up to a natural equiva-
lence) if every one of their cycles does. Similar results hold if one considers
diagrams which commute up to a homotopy.

Using the fundamental group, we show that a diagram commutes if every
cycle in a basis commutes (Theorem 1 of section 3). However, this may not
be true if instead of (strict) commutativity, one considers commutativity up
to natural equivalence. In Theorem 2 of section 3, we show that diagrams
commute up to natural equivalence (or homotopy) if the cycles of a robust
basis do.

Diagrams based on the hypercube Qn are dealt with separately. A cycle
basis is introduced which is conjectured to be robust. It is shown directly
that various coherence results hold for the hypercube. Commutativity (or
generalized commutativity) can be forced by that of a particular subset of
the faces. We further, investigate when global commutativity is guaranteed
if the number of possibly noncommutative faces is reduced below a certain
“blocking” threshold, which we conjecture to be n− 1.

The paper is organized as follows. In the next section, we define robust
cycle bases and show that they exist for all graphs. Section 3 reviews the
notions of category, groupoid, diagram and natural equivalence in order to
show how robustness can be applied to the theory of commutativity. In Section
4, we consider the special case of the hypercube. Section 5 contains some
remarks.

2 Cycle bases

A cycle basis for a graph G is a set B of cycles in the graph with the property
that any cycle Z in the graph is the sum of a unique nonempty subset C of B.



A particular ordering of this subset is called a sum sequence for Z. A sequence
of cycles Z1, . . . , Zk is well-arranged if for all j (2 ≤ j ≤ k), the intersection of
the j − th cycle with the preceding partial sum of all cycles up to the j − 1-st
is a nontrivial path: Zj ∩∑j−1

i=1 Zi ≈ P2, where “≈” denotes homeomorphism
and P2 is the path of two vertices. A cycle basis is robust if every cycle has a
well-arranged sum sequence.

A sequence Z1, . . . , Zk of cycles is called cyclically well-arranged if the par-
tial sums Z1 + · · ·+ Zj are all cycles. A cycle basis is cyclically robust if every
cycle has a cyclically well-arranged sum sequence. Well-arranged sequences
are automatically cyclically well-arranged but the reverse may not hold.

Indeed, let K4 be linearly embedded in the plane, let T1, T2, T3 be the three
triangles (K3 subgraphs) determined by the bounded faces and let Z1, Z2, Z3

be the quadrilaterals formed by summing two of the three triangles. Then the
sum of any two of the Zj quadrilaterals is the third but any two of the Zj

intersect in a pair of disjoint edges.
Not every cycle basis is robust. The following example is due to A. Vogt.

Let G be the graph consisting of a 6-cycle, with an inscribed triangle; this
graph has 6 vertices and 9 edges so a cycle basis must have 4 elements. Let B
consist of the three diamond-shaped 4-cycles, each determined by two of the
edges in the inscribed triangle and the opposite two edges of the hexagon. The
inscribed triangle is the 4-th cycle. It is easy to check that the hexagon, while
it is the sum of the three diamonds, has no sum sequence that is cyclically
well-arranged. However, G does have a robust basis obtained by taking the
four bounded triangular faces.

Examples of robust bases can be given. For planar graphs, if we take the
boundaries of the bounded regions, then the resulting cycle basis is easily seen
to be robust. Bases are given below for the complete and bipartite complete
cases. For the hypercube, a possibly robust basis will be constructed.

For the complete graph Kn, with vertices 1, . . . , n, let Bn be the set of all
triangles with n as one of their vertices.

Proposition 1 For every positive integer n, Bn is a robust basis for Kn.

Proof. Suppose Z = i1, . . . , ir is any cycle in Kn. If n does not belong to
Z, then Z = (n, i1, i2) + · · · (n, ir−1, ir) + (n, ir, i1) is a well-arranged sum
sequence; each basis triangle after the first intersects the partial sum in a
single edge, except for the last triangle which intersects in two consecutive
edges. If n is in the cycle, we may assume WLOG that it is last: ir = n. Then
Z = (n, i1, i2) + · · ·+ (n, ir−2, ir−1) is the sum sequence. 2

By a similar method, one can prove the following:



Proposition 2 For every pair of positive integers p,q, Kp,q has a robust basis.

The robust basis consists of all 4-cycles containing two fixed vertices, one
of each color.

When do robust bases exist? A. Vogt proposed heuristically to take short
cycles for the basis. This could be carried out via a greedy algorithm - or one
might look for minimum total length. Such a strategy is certainly satisfied
by Bn which consists only of 3-cycles and the robust basis for the bipartite
complete graph has only 4-cycles.

If the following conjecture holds, then the hypercubes also have a robust
basis consisting only of 4-cycles.

Conjecture 1 If G is any graph with a robust basis B and T is any tree, then
G × T has a robust basis obtained by adding to B the 4-cycles determined by
the cartesian products of the edges of G with the edges of T .

This is close to being a theorem but the proof still involves some hand-
waving. Our original version was for T = K2; R. Jamison suggested the
generalization to T .

M. M. Shikare wondered if every basis which comes from a spanning tree
of a connected graph must be robust. However, M. Ostrowskii has given an
example to show that this is not true: Take K5 as the graph and let the tree
be P5. Let Z be the five-cycle obtained by extending the path to a cycle and
then taking the complement.

3 Bases and commutativity

Let D = (V, A) be a directed pseudomultigraph; write s(a),t(a), resp., to indi-
cate the source and target of the arc a, so a = (s(a), t(a)). The arc-pair a, a′

is composable if s(a) = t(a′). A function Φ from the set of all composable
arc-pairs to A will be called a law of composition if s(Φ(a, a′)) = s(a′) and
t(Φ(a, a′)) = t(a). The pair (D, Φ) constitute a category if the law of com-
postion is associative and has right and left identities. In a category, vertices
are called objects (e.g., topological spaces or groups, etc.) and arcs morphisms
(e.g., continuous maps or homomorphisms). Morphisms were originally only
set-functions that preserved some structure so composition is usually written
right-to-left as for compostion of functions. If a morphism has a two-sided
inverse, it is called an isomorphism and said to be invertible.

A diagram in a category is a directed graph whose vertices are objects and
whose arcs are morphisms. Equivalently, a diagram is a subdigraph of the
underlying digraph of the category.



Intuitively, diagrams commute when directed v-w-paths induce a well-
defined morphism from v to w, and this can be generalized to allow some
sort of relation, not necessarily equality, between pairs of such morphisms.
For example, different types of generalized commutativity apply to diagrams
of topological spaces and continuous maps based on homotopy or isotopy. It
would be interesting to formalize the notion of generalized commutativity but
here we only consider the special cases of commutativity and of commutativity
up to natural equivalence for diagrams in which all morphisms are equivalences
(i.e., have two-sided inverses).

A category is called small if the collection of its objects is a set. (This is
a technical restriction designed to avoid problems like the Russell paradox, so
the reader can essentially ignore it.) A groupoid is a small category in which
all morphisms are invertible. If G is a groupoid, then it includes the inverse of
each morphism. For simplicity, we assume further that all diagrams are finite.

A cycle in the graph underlying a diagram in a groupoid is defined to be
commutative if the composition of the morphisms in either of the two directed
cycle orientations is the identity, and this property is independent of base point
as well. A diagram is called commutative if and only if all of its cycles are.

The usual notion of commutativity for diagrams is that if two directed
paths have the same initial and terminal object, then the resulting composition
of morphisms should be independent of the path chosen. There is a slight
technical distinction since the usual notion of commutativity does not place
any restriction on the diagram consisting of a single cycle with an alternating
sequence of arcs. Our groupoid condition requires that the composition of all
the morphisms (and their inverses when the arcs are traversed backward) must
be the identity if you go around a cycle.

Theorem 1 Let D be any finite diagram in a groupoid G. Then D is com-
mutative if it has a basis of commutative cycles.

Proof. Let B be a basis of commutative cycles for the diagram D; that is, for
the underlying graph G. The fundamental group of the topological realization
of G is the free group on B. See, e.g., Spanier [10]. Hence, any cycle Z in
G can be expressed as a word in the generators and their inverses. Since the
letters all evaluate to the identity because of our assumption about B, the
words must also evaluate to the identity so the cycle Z commutes. 2

A basis of cycles for the hypercube Qn, for instance, contains 1 + (n −
2)2n−1 elements, while there are a total of n(n − 1)2n−3 square faces and
exponentially many more longer ones depending on permutations. Hence,
according to the theorem, only a very sparse set of cycles suffices to determine
the commutativity of a much larger set.



Given a cycle Z in a diagram and any two vertices v, w in Z, there is a
unique orientation of the edges of the cycle to provide two directed paths from
v to w. Note that there is no way to to say which of the two paths is first
unless the cycles are assumed to have a given clockwise or counterclockwise
sense. Let Z(v, w) denote the unordered pair of directed paths. Each path
induces a morphism in the groupoid. These morphisms agree if and only if the
cycle commutes.

We now consider a special case for concreteness, but it is clear that the
arguments can be substantially generalized. A functor from a category C to a
category D is a function F assigning to each object c of C an object F (c) in D
and to each morphism α : c → c′ in C a morphism F (α) : F (c) → F (c′) such
that F preserves the law of composition. Denote by CAT the category whose
objects are small categories with functors as the morphisms and functional
composition.

Just as functors are morphisms between categories, a natural transforma-
tion is a morphism between functors. For functors F1, F2 both from C to D,
a natural transformation ν is a function associating to each object c in C a
morphism νc : F1c → F2c in D which is compatible with the functors F1, F2 in
the sense that for all α : c → c′ in C, the following holds:

νc′ ◦ F1α = F2α ◦ νc.

Natural transformations may be composed and a natural transformation
with a two-sided inverse is called a natural equivalence.

Let G be any groupoid subcategory of CAT; that is, the objects of G
constitute a set of categories and the morphisms are invertible functors. When
natural transformations consist only of invertible mappings, it is easily checked
that the resulting inverse transformation must be natural, so they are actually
natural equivalences.

A still more general notion than category is 2-category (see, e.g., [1]), where
multiple laws of composition also obey rules of mutual consistency. However,
we shall now return to the connection of these ideas with cycles.

Let D be any diagram in a groupoid subcategory of CAT. A cycle is
commutative up to natural equivalence if given any two distinct vertices there
is a natural equivalence between the two functors induced by the paths in
Z(v, w). Since the identity is a natural equivalence, commutativity is a special
case. It is easy to check that the existence of a natural equivalence does not
depend on the choice of vertices; this allows us to make a composable choice
of natural equivalences when two cycles meet in a nontrivial path.

Lemma 1 Suppose that two cycles in the underlying graph of a diagram in-



tersect in a nontrivial path. If both cycles are commutative up to a natural
equivalence, then so is their sum.

Proof. Suppose the cycles Z1, Z2 intersect in the nontrivial path P . Since Z1

commutes, there is a path P ′
1 = Z1 − P and a natural equivalence ν1 from P ′

1

to P . Similarly, there is a path P ′
2 = Z2−P and a natural equivalence ν2 from

P ′
2 to P . So the composition ν−1

2 ◦ ν1 is an equivalence of P ′
1 with P ′

2, which
means that Z1 + Z2 commutes. 2

A diagram is commutative up to natural equivalence if and only if all of its
cycles are. By applying the lemma recursively to a robust cycle basis, any cycle
of the diagram can be checked for commutativity up to natural equivalence.

Theorem 2 Let D be a diagram in a groupoid subcategory of Cat and suppose
that there is a robust cycle basis for D consisting only of cycles which commute
up to natural equivalence. Then D commutes up to natural equivalence.

As noted below, substantially less than a robust basis may be needed if the
recursive procedure is made more intricate.

4 Forcing sets and blocking numbers for hy-

percubes

We define a basis Rn for the hypercube Qn of dimension n ≥ 2 as follows: R2

is the cycle Q2 and having recursively given Rn−1 as a subset of the 4-cycles
of Qn−1 which is embedded in Qn as the set of all nodes with first coordinate
equal to 0, Rn is obtained by including the (n − 1)2n−2 4-cycles of the form
0s, 0t, 1t, 1s, where st is any edge in Qn−1. It is straightforward to check that
Rn is independent and has b(Qn) elements so is a basis. Indeed, we believe it
is a robust basis but as yet have no proof.

For n equal to 3, this basis consists of 5 of the 6 faces. The following is
a special case of the category theory result known as the cube lemma; see,
e.g., [8].

Lemma 2 Let D by any diagram in a groupoid subcategory of CAT with un-
derlying graph Q3. If five of the six faces commute up to a natural equivalence,
then so does the sixth.

This lemma is a consequence of Theorem 2, and gives the following result,
which also follows from Theorem 2 if Rn is robust.



Theorem 3 For n ≥ 2 the hypercube Qn commutes up to natural equivalence
if every cycle in Rn is commutative up to natural equivalence.

Proof. First, note that if all the 4-cycles (i.e., the 2-dimensional faces) are
commutative up to natural equivalence “cutne” then so is Qn. We sketch an
elementary argument similar to Gray [1] who showed that, as a 2-category, Qn

commutes if and only if all of its Q3 faces do.
It is enough to consider cycles formed from two essentially disjoint v-w-

paths which are geodesic of length j (2 ≤ j ≤ n). These paths correspond
to permutations on n coordinates and by the transitivity of the symmetric
group, there is a sequence of transpositions carrying the first permutation to
the second. Each transposition corresponds to a set of squares so the com-
mutativity up to natural equivalence of the squares provides a sequence of
natural equivalences whose composition is a natural equivalence between the
two paths.

Hence, it suffices to show that every square face f on the front Qj face
of Qj+1 is cutne, and this follows by applying the cube lemma to the unique
3-dimensional cube c having f as its front face. By induction, the back face
of c is cutne and the side faces are assumed to be cutne. 2

Recalling our previous remark, we obtain a forcing set for Qn with 1+(n−
2)2n−1 elements.

Let C be a category. Define the blocking number β(Qn) of the hypercube
Qn with respect to the category C to be the smallest possible size of any subset
of the Q2-faces which can fail to be cutne for all possible non-cutne diagrams
in C on the scheme Qn.

In trivial cases, e.g., one object and all morphisms the identity, then no
diagram could fail to commute. Call a category nontrivial if it contains at
least one object with a nonidentity morphism.

Note that of course a single noncommutative face means that Qn can’t be
commutative but, in fact, when commutativity fails, it must do so multiple
times. The cube lemma implies that β(Q3) is at least 2 and, in fact, equality
holds. More generally, we believe the following holds.

Conjecture 2 Let G be any nontrivial groupoid subcategory of CAT. For n
at least 2, β(Qn) = n− 1 with respect to G.

5 Remarks

Even if a basis is not robust, it may have the property of containing well-
arranged sum sequences for almost every cycle. Thus, from the commutativity



up to natural equivalence (cutne) of such a basis, nearly every cycle would be
cutne.

Vogt observes that to show a diagram is cutne, it is enough to show every
cycle has a well-arranged sum sequence taken from a set of cycles that have
already been shown to be cutne. For instance, if the cycles in the nonrobust
basis given above in section 2 are cutne, then so are the three triangular
cycles different from the inscribed triangle. Hence, the hexagon is cutne as
well. Indeed, given any set of cycles, we can form the closure with respect to
well-arranged sequences. How large is the closure?

The requirement of invertible morphisms includes many interesting special
cases. For example, in the case of quantum computing, all operations are
reversible and hence invertible. Also, neural networks have been used to model
invertible maps [9].

Robustness is a general theme which appears in many areas of mathematics.
Hyers and Ulam [2] discovered that if two spaces are within a sufficiently
small tolerance of being isometric, then they are in fact isometric (and the
isometry is globally close to the near-isometry). A robustness phenomenon
also occurs with respect to orthogonality. We showed with Kurkova [3] that
in n-dimensional Euclidean space, if any two of a set of unit vectors have dot
product not exceeding 1/n in absolute value, then the set cannot have more
than n members.

We wonder if these results could be applied in cognitive science since they
show how commutativity of a diagram (global information) is not affected by
possible failure of a square to commute (local error). Many mathematical
properties, for example, can be described via commutativity of diagrams.

The results here imply that for diagrams in Qn the fraction of the square
faces which need to be checked to infer commutativity is asymptotically ap-
proaching 4/n provided that one chooses faces corresponding to the cycles in
the recursive basis. Hence, increasing complexity of the diagram can provide
a larger payoff for the “intelligent” checking of commutativity.
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