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ABSTRACT: The possibility of chemical structure in the context of quantized
matter is examined by way of Richard Bader’s Atoms in Molecules. 1 critically
examine his notion of “electronic charge density”—showing that he cannot re-
ally mean “density of charge”—and I argue that the appropriate concept is ex-
pectation value of charge. This still allows him to define chemical structure, but
it makes problematic his appeals to the explanatory power of structure. This is
because, as Rosenfeld and Bohr showed, the expectation value of charge cannot
be taken as the electronic field experienced by other charges. I suggest that we
can recover the efficacy of structure by thinking of chemistry as a gauge theory.
Current consensus in the study of gauge theories indicates that gauge poten-
tials represent a new type of property; while no member of the family of func-
tions comprising the gauge potential is real, the potential itself is causally
potent. I illustrate this in the case of electrodynamics, where the vector poten-
tial can causally influence charges in the absence of electric or magnetic fields.
I show how chemical structure can be considered to be a gauge field. Following
Bader, I take it to be a family of geometric configurations, no one of which is
possessed by a given molecule. I claim that current research in gauge theory
licenses the attribution of causal potency to this notion of structure, despite its
lack of reality. I thus begin the process of freeing the explanatory resources of
gauge theory from physics alone.
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INTRODUCTION

Back in the good old days, we are told, electrodynamics was philosophically
much simpler to understand than it is now. There were electric fields and magnetic
fields, and when these were specified, so were all possible electrodynamical observ-
ables. Thus the picture of what was real for electrodynamics was just that: the elec-
tric and magnetic fields. Of course things hadn’t always been so simple. Indeed in
the good even older days, the whole idea of the field concept was itself new, and un-
tried and, frankly, suspicious. Yet with the reception and widespread acceptance of
Maxwell’s formalization of Faraday’s researches (and of course his own and oth-
ers’), the field concept came more and more to dominate physical theorizing, until
the whole practice of thinking about field action was enshrined by Einstein in the
principle of local action. Now we are told that, rather than good old property-valued
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fields, the world is populated by operator-valued distributions—and this is true for
all quantum fields, including electrodynamics. If this were not enough of a strain on
our metaphysical imaginative faculty, it turns out that even good old electricity and
magnetism have suffered a reversal of fortune. To wit, there’s an extra field there that
has properties completely unlike those of earlier fields. This is all to say that our re-
searches in quantum physics have led to a revision of how we ought to understand
what was really going on in electrodynamics even at the classical level.!

A similar problem has arisen for students of chemical structure. It seemed, around
the end of the 19th century, that the dream of Newton, Hooke, Boyle, and others that
we resolve the action of chemicals into the behavior of very small bodies with hooks
and other mechanical contrivances had finally succeeded, in a manner of speaking.
There were indications that the molecular theory could explain the behavior of var-
ious chemicals by the interactions among them caused by their electric fields, and
that what determined the details of these fields was the shape of the individual mol-
ecules. This shape was, moreover, taken to be a constant for a given species of mol-
ecule. So, roughly speaking and with hedging all around, the strong solvency
properties of H,O (as well as the fact that it expands at its freezing point) are to be
understood as arising from the peculiar “V" shape of the water molecule. This shape
gives water a strong dipole moment, and this in turn allows water to “pry” other spe-
cies of molecule apart from each other. But with the advent of quantum mechanics,
and thus quantum chemistry, the very notion of chemical structure has been again
called into question. Since atoms have no particular locations in space, it is argued,
then molecules can have no particular geometry. Somewhat more carefully, one
would point out that, insofar as the relative momenta of the atoms in some molecule
are well-defined, the relative positions of these atoms are not. But for the naive story
I just told about the efficacy of molecular structure in explaining molecular behavior,
we need the shape to be stable and so we need the relative momenta of the various
atoms to vanish. Without getting caught up in the modern debate over chemical
structure that has been going on more or less since the beginning of quantum me-
chanics, I do want to suggest that the principles of gauge theory may be able to make
plausible the idea that chemical structure really is ill-defined, and yet at the same
time it really is causally effective in chemical interactions.

A little context may be in order, and this context will, I hope, make sense of the
connection between gauge theory and chemical theories. My plan for producing this
context and illuminating the connection between chemical structure and gauge the-
ory is as follows: I begin with a brief introduction to the notion of gauge theory. The
main thrust of this section is the idea that, in current views of gauge theory, the prop-
erties of gauge fields are causally active despite our inability to say what kind of
thing these properties are. The second part of the paper concerns the issue of chem-
ical structure. Indeed it is quite narrowly focused on one particular proposal to re-
cover the concept of chemical structure in the context of quantum mechanics—
Richard Bader’s Atoms in Molecules.2 The book is an ambitious attempt to show that
chemical structure is meaningful for quantum-mechanical molecules despite the fact
that chemical shape is not. Moreover, Bader attempts to show how his notion of
chemical structure can recover the explanatory power that chemical shape was sup-
posed to have. A discussion of Bader’s program occupies the second and third sec-
tions. Finally in the last section I propose that Bader’s proposal, though
philosophically unsatisfying at first blush, may be made more satisfying (or at least
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brought into line with some popular views of proper explanatory structure) by recast-
ing it in analogy with gauge theory.

GAUGE THEORY AND NOVEL PROPERTIES

To illustrate the notion of gauge theory, I'll appeal just to the example of electro-
dynamics. This will keep the discussion manageable, but will still allow its interest-
ing and novel explanatory strategy to emerge. Naturally this discussion is too
compressed for a full analysis of gauge theory. In particular, it is not uncontroversial
to suggest that the appeal to novel properties is generic of gauge theories and not just
those theories with Aharonov—Bohm type effects. I think it is correct, but I won’t
argue for it here.?

The vector potential in electrodynamics, which is the field that forced a change
in our understanding of the ontology of electrodynamics, is not really a new field.
What is new is the conviction, widely held by physicists and philosophers of physics,
that we must take it seriously as a physically significant quantity. The potted history
goes like this: from early in the development of electrodynamics as a mathematical
field theory, it was known that the magnetic field could be used to define another
field, the vector potential, via VX A = B, where B is the magnetic field. But this
equation does not uniquely specify A, for one can always add the gradient of an ar-
bitrary scalar function to A to obtain a new vector potential A’ that satisfies the de-
fining condition. (A complementary point obtains with respect to the scalar potential
0. The electric field can be given as E = V¢, but ¢ is not uniquely defined thereby.
One can always add some constant to a given scalar potential to produce a different
potential that is, nonetheless, physically equivalent.) This is what is called a gauge
transformation, and A is called a gauge field or gauge potential. There is a significant
number of different ways of expressing the mathematical concept of gauge, and
some of these are explained in the literature I cite below. But for the purpose I have
in mind, this description of A as a gauge potential should do nicely. The crucial fea-
ture [ want to highlight is that no particular choice of A is the vector potential. The
vector potential is in some sense all As and in some sense none. The equations of
motion do not single out a unique A, so we have no grounds for saying that one is
privileged over the others. We are simply stuck with an ill-defined electromagnetic
property.® Until the second half of the 20th century the ill-definedness of A could be
safely ignored.

It was thought because of the gauge freedom in A that the vector potential had no
metaphysical (or even physical for that matter) significance. Nothing distinguishes
the “right” A from all the others, and A is dispensable in all of our electrodynamical
explanations. Then rather than maintaining that despite all appearances to the con-
trary there really is just one real A, why not simply abandon it? The appropriate
stance seems to be to acknowledge the irreality of both A and ¢, and to regard them
as merely mathematical fictions. Assessments of the appropriateness of this stance
changed with the publication of Aharonov and Bohm’s famous paper in 1959.

In that paper, Aharonov and Bohm proposed a thought experiment that would
show the “reality” of both A and ¢. For the former they suggested scattering a quan-
tum-mechanical electron around a solenoid. Because the solenoid was so long, there
would be no appreciable magnetic field in the region of motion of the electron even
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when there was a current flowing in the solenoid and hence a magnetic field inside.
And yet, when the current was flowing there would be a measurable effect: the in-
terference pattern of the electron would be shifted from that produced when the cur-
rent was zero. Thus, since A was non-zero in the region of travel, Aharonov and
Bohm concluded that it was real. (There have been a number of experimental con-
firmations of this well-known effect. Indeed researchers now regularly use “Aha-
ronov-Bohm flux rings” to probe quantum-mechanical mesoscopic effects.)

Before I say what lesson was drawn from this experiment, I want to explain why
there is one lesson that certainly should not be drawn: that gauge fields are real only
when they are quantum-mechanical. I make this explanation is more detail else-
where,® but in its simplest form, the argument goes like this: the electromagnetic
field used to observe the efficacy of A was itself—in the context of the derivation as
well—a classical field. Thus it is the classical A that was observed, not a quantum-
mechanical A. So whatever we decide about how to understand A, and gauge fields
generally, will have to apply to our understanding of classical field theories as well.

To return to the Aharonov—Bohm effect: now that the reality of A has been estab-
lished, there are a number of approaches one could take to its interpretation. The
simplest, [ suppose, would be simply to say “oops, I guess one of the fields was the
real one,” and then move on to more pressing issues. There are important consider-
ations though that apparently disallow this option. Looming large among them are
various combinations of worries about non-determinism, non-locality, and episte-
mological underdetermination. I will not consider these here in any detail.” Instead
I will simply repeat the consensus view of those physicists and philosophers of phys-
ics who have written on this: one cannot choose the naive option. There, however,
the consensus very nearly ends. For there are a number of conflicting proposals set-
ting out the right way to understand A. But what all these approaches have in com-
mon is their willingness to accept the causal efficacy of A—while denying the
efficacy of any one member of the family of functions that makes up A. For, it is ar-
gued, A is clearly what causes the shift in interference patterns: there is no E field
there; there is no B field there; the shift is functionally related to A, which is non-
zero there; so it has to be A. Thus in one way or another we have a new kind of entity
that appears to be a family of vector fields—again, none of which exists—which it-
self does exist and exerts an influence on the paths of electrons. What could be
stranger than that?® We conclude from this that on the current best view of the phys-
ics and philosophy of physics community that gauge fields are causally efficacious;
that the “unreality” of a quantity is no argument against its role in causal explana-
tions, for the sense of unreality may be no more than an effect of the need to choose
a new kind of property.

The most important reason for considering gauge theory in this context is to see
whether the techniques of physics can be imported into analyses of chemistry with-
out begging the question of the autonomy (or dependency) of chemistry from (or on)
physics. So while I think there is an important sense in which gauge theoretical tech-
niques can be applied to chemistry—especially in the context of debates over chem-
ical structure—this work is speculative. I will not be presenting a mathematical
embedding of chemistry into the category of gauge theories. I will not even be show-
ing the mathematical possibility of re-characterizing certain chemical properties as
gauge fields. Instead I will be pursuing an analogy between chemical properties and
gauge theories, and observing that the way theorists who reason about the connec-
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tion between gauge theory and properties in physics has a resonance with some ways
of reasoning about chemical properties. The conclusion I draw is that further work
on this issue is warranted in order to see whether this analogy can be fruitfully sup-
ported with more detailed characterization of chemical properties as, say, con-
strained Hamiltonian systems.

MOLECULAR STRUCTURE: THE CHARGE DENSITY

As I pointed out above, concern with (and suspicion about) the notion of structure
in chemistry is not new. But I can here offer neither a comprehensive overview of the
history of structure debates in chemistry nor an analysis of the present consensus or
lack thereof about what constitutes chemical structure.!? Instead I will be focusing
exclusively on Bader’s account of how we ought to understand and define chemical
structure. But note that I am not particularly concerned with whether Bader’s pro-
posal holds up to critical scrutiny. And I will not be offering much such scrutiny my-
self. I am, however, very interested in the pattern of explanation he employs, and the
way this pattern connects with patterns of explanation employed by those who study
gauge theories. It is this that I wish to explore here. So while the remarks I make will
be specific to his account, I believe that the lessons I draw will be more general.

I begin this part of the paper with a brief account of Richard Bader’s paradigm
for attributing structure to molecules described by quantum-mechanical state func-
tions. After a brief clarification in this section of one of his candidate physical prop-
erties, I suggest, in the next section, how this paradigm might be seen as an
application of gauge theoretical ideas to the question of molecular structure. I will
indicate below certain similarities between the resources to which Bader appeals in
his account of structure and the general account of gauge theories given above. The
key point is that appeals to underlying but unrealized features of the situation in
chemistry resemble—both in a technical sense and in what might be called their
philosophical flavor—the physicists’ appeal to dynamical variables that never take
on particular values.

Bader begins his account of chemical structure with a litany of the problems that
cannot be solved by appeals to geometric analyses of structure: we are unable, he
says

...to assign a single geometric structure, average or otherwise, to rotation- or inver-
sion-related isomers, to a molecule in an excited vibrational state with geometrical pa-
rameters very different from those for the same molecule in its ground state, or to a

molecule in a “floppy” state wherein the nuclear excursions cover a wide range of geo-
metrical parameters. (p. 54)

He identifies the cause of these inabilities as follows:

In reality, these are shortcomings of attempts to impose the classical idea of geometry
on a quantum system. The nuclei, like the electrons, cannot be localized in space and
instead are described by a corresponding distribution function. (p. 54)

Before detailing Bader’s solution to the conundrum of applying geometry to
quantum systems, I need to back up a little and outline the most important resource
he has developed for this purpose. This is what Bader calls “the charge density.”
Now this is a funny quantity. As he assures us in various places, “the charge density,
p(r), is a physical quantity which has a definite value at each point in space.” (p. 13)
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Since this quantity plays such a central role in his analysis, it is crucial that we see
what precisely it is. The charge density, or “electronic” charge density as he some-
times calls it, is the probability density of the electron wave function multiplied by
the unit of electronic charge. (chapt. 1, especially pp. 6—7) In what sense is this a
charge density? In fact it simply isn't, except at best in some collapse theories of
quantum mechanics where y*y is taken to be density of stuff. But Bader can’t be
using one of these versions since he needs his electrons to be fully non-localized.
That is, he needs for what follows to define a charge distribution that is continuous
and twice continuously differentiable (except at the location of the nuclei). But on
collapse, the electron wave function localizes to a delta function distribution. Of
course this localization spreads almost immediately to a distribution throughout
space, but this doesn’t help in Bader's quest for an in-principle notion of structure.
More crucially Bader will need to be able to show that the properties of the electronic
charge distribution attain local maxima only at the location of nuclei. But on any col-
lapse model the electron’s wave function will be peaked sharply about its localiza-
tion position. Thus it is clear that Bader is using a no-collapse model of quantum
mechanics. (Note that it won’t do to suggest that there is some kind of continuous
collapse going on here, induced by the coupling of the vibrational or rotational
modes of the molecule, or by some other mechanism. Bader’s argument for why we
cannot use classical geometry is a principled objection. No matter how small the
magnitude of the probability density far away from the classical nuclear location,
that density is non-zero. Bader is under no illusions about this, but is not always ex-
plicit about what is entailed by the fact that the “nuclei...cannot be localized in
space.”)

I will not comment on the various complications introduced into Bader’s account
by his lack of attention to the quantum-mechanical measurement problem (which is
what the above issue amounts to). Instead I will suggest that he would do just as well
to consider what his charge density really is: the expectation value for the charge at
each point of space. What’s the difference? Well first, it isn’t an average. For while
the expectation value of the charge at some given point may be non-zero, on a no-
collapse view of quantum mechanics there is no answer to the question “what’s the
average charge here?” To have an “average charge” at a point, one needs the charge
at that point to be well-defined at each moment. But on a no-collapse view of quan-
tum mechanics, there is no answer to the question “what’s the charge here now?”
Even on a collapse view, where these questions do have answers, the answer is not
Bader’s “charge density.” It is perfectly consistent to suppose a non-zero expectation
value for the charge at a point while also supposing that no charge is ever at that
point. I submit that since Bader’s “charge density” as defined is really just the ex-
pectation value of the charge, he should not obscure matters by calling it the average
charge.!! On the other hand, the expectation value won’t do as a quantum-mechan-
ical quantity which couples to, say, the nuclear charge of some atom. This is essen-
tially the point to Rosenfeld and Bohr’s 1933 paper, where they show that
expectation values of the charge cannot, for experimental reasons, play the role of
the electric field. Instead, they show, the electric field in quantum mechanics must
itself be a true quantum-mechanical field.!?

Now because Bader’s account of the charge density is incorrect, we cannot say
that the behavior of the molecule is specified by the action of this scalar field. So
what do we have instead? I'll return to this question after outlining the rest of Bader’s
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proposal. Here I will merely suggest that the results he obtains employing the notion
of equivalence classes of geometries suggest that we take seriously the idea that the
topology of the “electronic charge density” is the real dynamical quantity of interest,
and that we follow Bader in rejecting geometric configuration as primary. To this I
now turn.

MOLECULAR STRUCTURE: EQUIVALENT GEOMETRIES

We have, as Bader shows us, a notion of structure given in the pre-quantum un-
derstanding of the atomic constituents of molecules. This is simply that molecular
structure is the molecular geometry given by the arrangement of constituent atoms.
The principle distinction between the quantum and pre-quantum cases is that in the
latter we can make coherent the notion of a fixed geometry. But in the former case,
recall, a fixed geometry of unsharply localized electronic and nuclear constituents is
incoherent. To get around this problem, Bader will use instead the idea of equiva-
lence classes of geometries as the structure of the molecule. An equivalence relation
over possible nuclear configurations provides Bader with the notion of structure he
requires to carry out his program of demonstrating “that the existence of atoms with
definable properties and the associated concepts of the molecular structure hypoth-
esis are a consequence of the quantum description of matter.”(p. 2)

The new notion of structure is complicated in execution, but quite simple in idea.
The rough and ready outline goes like this: pick, as exemplar, a classical geometry
of the atoms involved in the molecule of interest. Consider, in “geometry space” the
neighborhood of the exemplar geometry. For all geometric configurations in the re-
gion defined by the molecular bond structure of the exemplar molecule, we say that
these geometric configurations have the same molecular structure.(p. 54ff) These
then are equivalent geometries. But notice that we cannot mean by this the following
hypothetical suggestion: “If the actual geometry of the molecule is in the equiva-
lence class for most of some period of time, we assign it the structure associated to
that class. If, on the other hand, it spends most of its time exemplifying the geome-
tries of another class, we assign it the structure of that class.” For the whole problem
is that molecules just don’t have a given geometry. On the other hand, if we allow
that Bader has succeeded in his descriptive task, we can understand that the geomet-
ric possibilities of the molecule are constrained to lie inside a given equivalence
class of geometries.

Bader takes it that a conception of structure developed along these lines will al-
low for a solution to the “central problem of molecular structure—to predict the dis-
continuous changes in structure that are caused by a continuous change in nuclear
coordinates.” (p. 88) Here Bader makes it clear that for him the issue is not primarily
about whether we can attribute structure to molecules in the way outlined, since he
takes himself to have succeeded already in that. Rather the issue is how, given that
they do have structure, we can account for the observed evolution of molecular struc-
tures. As a philosophical issue, however, the connection between attribution of struc-
ture and its causal agency is not so clear.

Bader immediately goes on blandly to observe:

It is important to remember that, while the structural aspects of the theory of atoms in
molecules are described by the dynamical changes in the topology of the charge densi-
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ty, the theory is rooted in quantum mechanics. It is the atom and its properties which
are defined by quantum mechanics. The bond paths and the structure they define just
mirror and summarize in a convenient way what the atoms are doing, performing the
same role here as does the assignment of a set of bonds in the molecular structure
hypothesis. (p. 89)

But the bond paths he mentions are summaries of the properties of the “charge
density,” as are the sets of bonds. For us it is important to remember this, for it is
here that Bader’s reasoning is most transparent. Molecular structure is irreal. It is a
kind of “mirror” of the behavior of atoms. But the atoms don’t have any particular
behavior that is being mirrored. That is where we started this investigation. Instead
the atoms have a connection to the expectation value of the charge distribution. But
this is itself irreal—irreal in the sense that it cannot be taken to be the way various
charges interact with electronic fields. As I said above, this is precisely the point that
Rosenfeld and Bohr make. That said, the expectation value of charge is still well-
defined. The problem is how to understand that it (or rather the structure it is used to
define) has any efficacy. Assuming, along with Bader, that this notion of equivalence
classes of geometry is sufficient to his purposes, however, seems to commit us to the
idea that irreal properties are causally potent. For this reason, I suggest that the
resources of gauge theory are sufficient to underwrite an explanation for the causal
powers of chemical structure.

WHY CHEMICAL STRUCTURE IS A GAUGE PROPERTY

First to summarize the problem: The idea that there is some definite meaning that
attaches to the topology of molecules but not to their geometries is a little puzzling.
For again, as Bader tells us, the reason that molecules have no geometry is that the
nuclei of their constituent atoms, being quantum-mechanical, have no definite loca-
tion. (p. 54) And yet a similar problem obtains for the topological features of the
molecules as well. There is no definite sense to the claim that a nucleus is on this
side of some critical surface of structure change as opposed to that side. One could,
I suppose, invoke some theory of quantum-mechanical measurement at this point
and say that the nucleus is localized by the observer, or the environment, or whatever.
But again, and more strongly, if there is any spread at all in the wave-function of the
nucleus, then there is spread to arbitrary distances. And then there cannot be a sharp
demarcation from one equivalence class of structure to another. So we must explain
in a different way how we understand structure as well as how we understand change
of structure.

It is here that I think the analogy between chemical theories and gauge theories
may be fruitfully articulated. For we know that the attribution of structure is crucial
to much of chemical practice. Some of the analogical features are the following: (1)
The equivalence classes Bader defines may be seen as constraint manifolds, with
change of structure given by the breaking of constraints by the introduction of out-
side forces—a “lifting off of”” the manifold; (2) Attributing a particular geometrical
configuration to a molecule is like picking out a single point of the constraint mani-
fold, and tracking the choice would be analogous to specifying a gauge trajectory—
but this apparently violates determinism and is disallowed; we needn’t (indeed we
cannot) believe that a given structure is reflective of just one single configuration of
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the molecule, just as a particular choice of gauge need not be associated to a given
gauge potential—structure is crucial, but no given geometry is real.

Then to summarize the “solution”: We have, in chemistry, a situation that is sim-
ilar in certain respects to the situation in gauge theories. On the face of things it
seems impossible to attribute structure to quantum-mechanical molecules. And yet
we require structure to underwrite much of our explanatory practice in chemistry.
Fortunately we can make sense of this explanatory practice without imposing an
arbitrary notion of structure on chemistry, without, that is, appealing to extra-
chemical physical resources, by noting how a similar practice in physics is under-
written using gauge-theoretic techniques—techniques that are not themselves partic-
ular to physics but should be considered general principles of physical theorizing.

What remains to be done is clear, but not easy. One would need to show, at a min-
imum, that the analogy I have suggested between chemical structure and gauge the-
ory can be extended in the following way: One would have to show that we can recast
analyses of chemical structure (and here I refer specifically but not necessarily ex-
clusively to Bader’s account) into the mathematical language of gauge theory. There
are a number of different candidates for that language, but the likeliest choice for use
in chemistry is that of constrained Hamiltonian systems. The idea would be to rep-
resent the various different geometries in each equivalence class as points in a sub-
manifold of configuration space, find an appropriate sense of dynamical evolution
for geometric states, and then characterize the tendency of molecules to remain with-
in a single equivalence class as the operation of a weak constraint on the system. (We
assign weak constraints because we know that molecules can, without outside inter-
ference, move between geometric equivalence classes.) We then would try to repre-
sent the interactions of molecules in terms of the constraints they jointly obey. It is
too early to report much in the way of progress on this front, but the work is ongoing.

In advance of carrying out the project of the previous paragraph, I still think there
is something that can be said in terms of the usefulness of the project for the philos-
ophy of chemistry. What we see here is that possibilities exist for the peaceful co-
existence of chemistry and physics as “fundamental” theories. How so? “If any-
thing,” a critic might say, “this program reduces even more chemistry to physics, by
its importation of constrained Hamiltonian systems, principle fiber bundles—the
whole panoply of physics tools.” And yet that’s all that’s being imported: the rela-
tively new mathematical tools associated with gauge theory. On the other hand, the
application of these tools shows how to speak meaningfully about the autonomy of
systems that are clearly built up out of other systems. If these tools are applied in the
way I have suggested, then one need neither pose nor answer the question: “Is chem-
istry reducible to physics?” The irrelevance of that question will be manifest.
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