Income and Wealth Heterogeneity in the Macroeconomy

Per Krusell and Tony Smith (JPE 1998)

Georgetown Macro Reading Group

Presentation by Jinhui Bai
Quick Summary

Questions

- What determines wealth inequality in the economy?
- How does heterogeneity affect evolution of aggregate variables?

Answers

- Evaluate two hypotheses of wealth inequality
 - Inequality from accumulated labor market shock: no
 - Inequality from both labor market luck and heterogeneous thrift: yes

- Heterogeneity on aggregate variables
 - In all models evaluated, small effect on capital, investment and GDP
 - In most models evaluated, small effect on consumption
 - But in heterogeneous thrift model, a large effect on consumption

Methodological Contribution

- Develop a method to compute models with heterogeneity
A Recursive Competitive Equilibrium Formulation:

\[
v(k, \epsilon; \Gamma, z) = \max_{\{c, k'\}} \left\{ u(c) + \beta E \left[v(k', \epsilon'; \Gamma', z' | z, \epsilon) \right] \right\}
\]

s.t.

\[
c + k' = r(\bar{k}, \bar{l}, z) k + w(\bar{k}, \bar{l}, z) \bar{\epsilon} + (1 - \delta) k,
\]

\[
\Gamma' = H(\Gamma, z, z'),
\]

\[
k' \geq 0,
\]

where \(\Gamma \) is the joint distribution on \((k, \epsilon) \) and

\[
r(\bar{k}, \bar{l}, z) = az \left(\frac{\bar{k}}{\bar{l}} \right)^{\alpha - 1},
\]

\[
w(\bar{k}, \bar{l}, z) = (1 - \alpha) z \left(\frac{\bar{k}}{\bar{l}} \right)^{\alpha}.
\]

Q: How to approximate \(\Gamma \), an infinite-dimensional object?
Solution Method

• Some possible approximation
 • Parameterize Γ, say normal, Pareto, etc
 • Use other distributional statistics: e.g., percentile
 • *Use moments of distribution: e.g., mean and variance*

• Solution Procedure
 • Replace Γ with moments, say \bar{k} and $\text{var}(k)$
 • Conjecture a functional form for $H(\Gamma, z, z')$: say, log-linear
 • Solve the household problem
 • Simulate the economy and get a time series of moments
 • Use simulated data to estimate parameters in H
 • Iterate until convergence
Approximate Aggregation

- Approximate aggregation results:

\[
\log k' = 0.095 + 0.962 \log k, \quad R^2 = 0.999998, \\
\log k' = 0.085 + 0.965 \log k, \quad R^2 = 0.999998.
\]

- Economic Intuition
 - Rich people hold most of capital stock
 - Rich people has a close to linear saving function (due to good self insurance)

- Interpretation: \textit{Inequality} and aggregate variables
 - Changing wealth inequality and aggregate variables

- Interpretation: \textit{Heterogeneity} and aggregate variables
 - The economy may behave close to \textbf{some} representative-agent economy
 - But not necessarily \textbf{the} representative-agent economy with \textbf{the same} utility and constraint
Can benchmark model match inequality?
- No: the model generates a Gini Coefficient of 0.25

Introduce heterogeneity of discount rate (β)
- Interpretation: imperfect transmission of genes across generations
- Generates a realistic wealth inequality compared to the data
Effect of heterogeneity on macro aggregates

- small for capital stock, investment and GDP
- For most of cases, small for consumption
- But in stochastic β model, the consumption behavior is quite different

Why is consumption behavior quite different?

- Poor people take a big fraction in consumption
- Poor people are not well insured, hence consume differently compared with complete market economy
Discussion

- Economic Question: Determination of inequality?
- Methodology: Other numerical tools?
 - JEDC Special Issue on computation
Firm Heterogeneity and Aggregate Dynamics
The interaction of heterogeneity and economic policy
 - Distributional Effects of economic policy:
 - Economic Policy Determination:
 - Optimal Policy Determination
 - Political process
Examples: Fiscal Policy, Monetary Policy, Labor Policy, Immigration, etc
Question: how difficult on the technical side?