Jackson Pollock's Industrial Expressionism
Author(s): Barbara Jaffee
Published by: College Art Association
Stable URL: http://www.jstor.org/stable/4134506
Accessed: 01/02/2010 11:42

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=caa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

College Art Association is collaborating with JSTOR to digitize, preserve and extend access to Art Journal.
In 1957 the art historian Meyer Schapiro suggested that the significance of avant-garde art lay in its positing of an alternative to the technological extremes of corporate capitalism, observing that, within the developmental logic of modernity, the realm of the historically fine arts of painting and sculpture was the last refuge from total instrumentality. Schapiro asserted further that American avant-garde painting, i.e., Abstract Expressionism, addressed this charge more vigorously than had any avant-garde art movement before it, by formulating techniques that seemed to wed intention more closely to expression. Among these, according to Schapiro, were spontaneity and an innovative use of line, exemplified by the allover, linear “signature” of Jackson Pollock’s poured canvases of the late 1940s. But the question of the relationship between technique and intention turns out not to have been trumped by Schapiro’s proximity to the artists. A generation of social historians of art, examining closely the relationship between Abstract Expressionism and power, has concluded that the movement owed its success to its usefulness to the ideological interests of the then ruling class. Even David Craven’s recent recovery of a reception of Abstract Expressionism more closely in line with what he, following Schapiro, has argued were the artists’ intentions, seems to fall short of the demand of Schapiro’s essay. Techniques—even those as celebrated for their originality as Pollock’s or as reviled for their repetitiveness as American industrialism’s—have histories. And Schapiro’s claim, that “the consciousness of the personal and spontaneous in the painting and sculpture stimulates the artist to invent devices of handling, processing, surfacing, which confer to the utmost degree the aspect of the freely made,” does not preclude the possibility that the social facts of industrialism determine the limits of that invention.

What Schapiro’s essay demands is a thoroughgoing interrogation of the relationship between Abstract Expressionist technique and the techniques of industrial production. In the case of Pollock, that technique or, more precisely, its origins, presents something of a problem to the inquiring mind. Pollock’s art studies were uneven at best—most famously with Regionalist realist Thomas Hart Benton in the 1930s. Much art-historical hay has been made over the question of Benton’s influence. Pollock himself described it as a negative. But Pollock scholar Francis V. O’Connor argued that Benton’s example was crucial to Pollock’s development. His May 1967 article “The Genesis of Jackson Pollock: 1912–1943” both rehabilitated Benton’s credentials as a modernist (of admittedly complex genealogy) and offered a historically contextualized antidote to then-MoMA director William Rubin’s epic formalist cycle “Jackson Pollock and the Modern Tradition” Parts I–IV (which had linked Pollock to Cubism through retinal evidence alone). In the March 1979 issue of Arts, Stephen Polcari and Mark Roskill revisited the question by comparing Pollock’s later work to Benton’s “Mechanics of Form Organization in Painting,” a series of optimistically titled essays on the theory of pictorial composition—complete with diagrammatic illustrations—published by Benton in 1926–27. These essays outlined the major tenets of a conceptual structure that the artist was by then employing to secure the formal coherence of his own figurative subjects; Benton addressed them to readers more objectively, however, as a “preliminary effort to develop a system

Barbara Jaffee

Jackson Pollock’s Industrial Expressionism

3. As in Michael Baxandall’s concept of a “period eye,” the development of distinctive visual skills and habits that become identifiable elements in a painter’s style. Michael Baxandall, Painting and Experience in Fifteenth-Century Italy: A Primer in the Social History of Pictorial Style (London: Oxford University Press, 1972).
of teaching composition and comparative analysis of structure.” As visual evidence, the diagrams are striking: it is as though Benton’s at times luridly sentimental subjects have been “stripped bare” to reveal their modernist heart. No less a figure than Rosalind Krauss accepted the comparison of Pollock’s work and Benton’s theorizing as orthodoxy when she used it as a visual aid to her 1993 argument about the “unconscious anxieties” at the core of modernism (in general) and Pollock’s painted performances (in particular).6 Somewhat more cautiously, Pepe Karmel offered an elaborate demonstration of the effect, insisting in the catalogue produced by the Museum of Modern Art in conjunction with its 1998–99 Pollock retrospective (and thereby updating Rubin) that what Pollock “did” in his classic poured paintings was to transform the graphic flatness of Benton’s diagrams into optical flatness through an obsessive layering.7

For my own part, I am perfectly willing to accept the comparison, not in the sense that it tells us everything we might ever want to know about Pollock’s technique, but in that it does tell us something worth considering The question, it seems to me then, is not, is there a connection, but what does the connection mean.8 To answer, Benton’s essay must first be considered on its own terms, within the context of its own historical moment. The five installments of “The Mechanics of Form Organization in Painting” appeared between November 1926 and March 1927 in The Arts, a popular magazine for artists and art amateurs published in New York from 1920 to 1931. Their author was then a young instructor of composition at the Art Students League, some three years away from the commission that would make his reputation—his mural paintings at the New School for Social Research—and five years away from interaction with his most famous


student. Benton, once an eager student of European modernism (the result of friendships formed in Paris in 1909 with such stylistic progressives as the co-inventor of Synchronism, Stanton Macdonald-Wright), was on the cusp of a dramatic transition in his own work, from aspiring abstractionist to rustic realist. What Benton proposed in his article, pointedly in the text and vividly in the diagrams (the diagrams were commissioned originally by the collector Albert Barnes to illustrate his 1925 book The Art in Painting, a project that fell through when Benton objected that the Impressionist painting with which Barnes was concerned was ill suited to diagrammatic treatment), was to create for an old topic—the art of composition—a new aura of scientific rationality.

In Part I of his “Mechanics” Benton focused on relationships of line and mass in two dimensions. These consist of the qualities of equilibrium (in which “static” horizontal and vertical lines and “dynamic” diagonal lines are deployed across the picture in carefully calculated juxtaposition), sequence (arranging lines and shapes so that there is the appearance of paths that, to the empathetic viewer, imply movement into and around the fixed rectangle of the canvas), and rhythm (an equilibrium achieved by using measured intervals between dynamic sequences, suggestive of repeating patterns). The next three parts are concerned with techniques for suggesting depth. Benton’s greatest enthusiasm was reserved for the least stable forms of construction. Regarding equilibrium, Benton recommended compositions be built asymmetrically. In terms of sequence, he emphasized that the artist should capitalize on a viewer’s “natural” tendency to imagine incomplete forms (like arcs) as complete and to reconcile even the most dramatically opposed elements into singular movements. In his discussion of rhythm, Benton called particular attention to a form he described as “centrifugal.” Unlike more common, “centripetal” forms, in which the intervals between opposed elements are designed to lead a viewer imaginatively into the center of a composition, centrifugal designs coerce the viewer’s eye away from implied surfaces.

The most demanding of these are compositions that extend horizontally, necessitating the clustering of rhythms into a series of loosely interwoven sets. Part V, the concluding section, is devoted explicitly to the analysis of paintings in which rhythmic composition appears to be acting in deep space.

In their treatment of the “inspired” art of composition as an educable skill (in sharp divergence from the European academic tradition), Benton’s diagrams were far from unique. The systematic teaching of composition had been popular in American art schools at least since the turn of the twentieth century, and Benton certainly was familiar with the best-known practitioners. In his hugely successful and widely disseminated 1899 book Composition, educator Arthur Wesley Dow of Pratt Institute in New York created compositional formulae based on his analyses of Japanese design and encouraged art students to explore what he called a picture’s “line idea”—an intuitive division of the canvas that was to precede and make possible the subject of representation. “A picture,” Dow wrote, “may be said to be in its actuality a pattern of lines. Could the art student have this fact in view at the outset, it would save him much time and anxiety. Nature will not teach him composition.” By the 1920s, illustrator Jay Hambidge’s more scientistic Dynamic Symmetry had replaced Dow’s in popularity. Based on a mathematical theory of proportion (the laws of which, Hambidge claimed, had been distilled by the ancient Egyptians and Greeks from their observations

8. Polcar’s essay (see n. 5) is exhaustive in its treatment of the visual aspects of the comparison. Meaning, on the other hand, clearly is Krauss’s interest, and her provocative treatment of the Pollock/Benton case inspires my own investigation.
9. Yet as Erika Doss has pointed out, Benton defended the style of his new pictures in 1928 in unabashedly modernist terms. See Doss, 13.
10. Arthur Wesley Dow, Composition: A Series of Exercises in Art Structure for the Use of Students and Teachers (Garden City, N.Y.: Doubleday, Page, 1920). Dow was rewarded for his efforts with a position on the faculty of Columbia University’s Teachers College, and a generation of American modernists including Georgia O’Keeffe and Max Weber came of age under the guidance of his and similar systems.
of the enclosing rectangle, which proportion the details of the foot and the lip, do not need explanation, beyond mention that AB is a square in the center of CD, this area being a whirling square rectangle.

The red-figured lekythos, G. R. 589, Metropolitan Museum, New York. Fig. 16, supplies the ratio 1.528 (compare Amphora, Fig. 1, page 91, Chapter VIII). This form may be subdivided into two 1.309 shapes, 1.528 divided by two

Fig. 14. Lekythos G. R. 540, Metropolitan Museum, New York. (Measured and drawn by the Museum Staff.)


had been distilled by the ancient Egyptians and Greeks from their observations of the organic growth of shells and the sequence of leaf distribution in plants), the sequential diagonals of Dynamic Symmetry provided the abstract scaffolding secreted within such pictorial works as George Bellows’s Elinor, Jean, and Anna (1920). Mexican muralist José Clemente Orozco, an artist Pollock admired enormously, chose the angular and mechanical forms prescribed by Dynamic Symmetry to organize his own frescoes for the New School—a commission executed at the same time and for the same purpose as Benton’s.

This interest in technologically sophisticated systems for composition was part of a relentless standardization and self-conscious modernization of artists’ methods that began in the United States immediately following the Civil War—aimed ultimately (and with increasing urgency) at assisting industry by establishing the teaching of art on a more practical basis. In Massachusetts, the Free Instruction in Drawing Act of 1870 had provided a mandate for instruction in industrial or mechanical drawing for any citizen of that state over fifteen years of age and established compulsory public-school drawing education in the British style that emphasized the flattening of natural forms based on geometric convention. Educators reached a new consensus following the poor reception of American decorative and applied-arts products at the Paris Exposition in 1889, arguing that an education in broader principles would enhance a student’s appreciation of and, ultimately, ability to produce objects of beauty. In order to satisfy what was essentially a pragmatic need, to provide drawing education for industry, advocates of industrial-arts education in the United States exploited


18. Professional art schools responded to the pressure to offer students more “practical” trained habits of neatness and accuracy, taste, imagination, and the powers of invention. 16 In 1902, the largest educational organization in the United States, the National Education Association (comprising members from every level of education, kindergarten teachers to university presidents), adopted design, defined as the fundamental elements of color, tone, and their harmonious composition, as the goal of art education for the whole country. 17 As a result of this conflation of the utilitarian and the ideal, the effects of modernization may be traced in the professional practices of painters and sculptors, so-called fine artists, at least as much as in the vocational contexts for which it was intended. 18

Benton encountered “modernized” art education as a student at the School of the Art Institute of Chicago (SAIC) between 1907 and 1908. According to Benton, what he learned at SAIC was his first insights into the art of designing—of consciously planning, or composing, pictures before attempting to execute them. Japanese prints were, very largely because of James McNeill Whistler’s influence, much in favor at this time. Fredrick Oswald, my favorite teacher at the Institute, was enthusiastic about these and encouraged continuous study of the way they were put together. Through continued observation of the prints I learned to arrange my pictures in definite patterns and acquired a taste, from such artists as Hokusai, for flowing lines which lasted all my life. 19

Despite its reputation as a conservative, Beaux Arts academy (due in no small part to anecdotes such as Georgia O’Keeffe’s disastrous encounter there with academic figure-drawing teacher John Vanderpoel in 1905, and various
ing in composition as well. In 1899, for example, the popular mural painter Will Low accused the traditional art academies of “glutting” the art market with too many ill-prepared young hopefuls (he named the School of the Art Institute of Chicago in particular). According to Low, art students needed training in composition—what he described as the art of “welding” together the raw materials of representation into articulate expression—in order to be competitive: “As at present constituted our schools serve principally to enable a student to draw and paint, more or less correctly, a figure from life... He advances through various grades of the school, and at last steps out into the world to find that he has learned how but not what to do...” Low laid out his argument in practical terms. Art schools, he claimed, were producing more artists than the market reasonably could be expected to absorb. Only a tiny proportion of these possessed the genius to operate ahead of trends and tastes. It was therefore the duty of the art school first to be more selective about admitting only students likely to succeed at their profession, and second to provide those students with the tools to practice within the mainstream world of commercial art. The perfect school, Low argued, would be similar to the workshops of the Italian Renaissance, where students imbibed the secrets of their art through the pragmatics of its execution. Absent this possibility, Low recommended that more significance be attached to such courses in composition as already existed in some art schools.

19. Thomas Hart Benton, An American in Art (Lawrence, Kans.: University Press of Kansas, 1969). When his name first appears in SAIC’s 1902–03 catalogue, Oswald is listed as an advanced student acting as assistant teacher in the juvenile classes held on Saturdays—this at a time when course work in Arthur Dow’s methods was required of all student teachers by the School’s Normal department.


22. The Art Institute of Chicago Twenty-Second Annual Report of the Trustees for the Year Ending June 1, 1901 (Chicago: Art Institute of Chicago, 1901).

accounts of reactionary students and faculty during the 1913 exhibition of the Armory Show), SAIC was from the beginning an eclectic and pragmatic institution.20 Chicago was one of the nation’s largest centers for commercial printing, including binding, lithography, photoengraving, and electrotyping—industries that employed large numbers of artists and craftsmen—and SAIC offered technical training to working-class men as early as 1882. Composition courses were introduced in 1897, in the context of the school’s new program in the “modern arts” of illustration and advertising.21 SAIC’s catalogue for 1901 notes that academic life- and antique-drawing classes were restricted to mornings only; afternoons featured more progressive fare—including still-life painting, courses that concentrated on drawing geometric forms from solid blocks, composition, illustration, and figure classes for beginners that emphasized sketching and memory practice.22 In fact, SAIC so enthusiastically embraced the latest trends in pedagogy that, upon the occasion of Vanderpoel’s death in 1911, Art Institute director William M. R. French was moved to observe that, in line with the trend of the time, the school had become a “modern school of color and composition.”

It is no coincidence that the question of how best to train young artists had acquired its urgency at the same moment that the emphasis in America’s factories was on increasing industrial output through the rationalization of the processes of production. Taylorism, the system of time management originated in the late nineteenth century in the United States by Frederick Winslow Taylor and publicized in his 1911 book The Principles of Scientific Management, encouraged the idea that there was a “science” for the efficient implementation of every job—and art was no exception. Yet Taylor not only did not eschew spontaneity in his initial formulations, his system actually depended on a certain amount of it. As Taylor observed and analyzed both the laboring body and the processes of production, breaking down tasks into their constitutive parts and assigning each an ideal time for its execution, he made no prescriptions as to how (that is, by what techniques) a worker was to satisfy the increased demands of the new schedule. Taylor simply dismissed anything less than ideal performance as “soldiering”—his term for intentional malingering or laziness. In 1957, however, Meyer Schapiro was able to offer the simple fact of Abstract Expressionist spontaneity as self-evidently critical of the culture of work. (Craven, though not Schapiro, fingers the ideology and restrictive practices of Taylorism by name.) This is because the efficiency movement in American manufacturing escalated in the increasingly competitive and profit-driven climate of the 1920s, as concerned Taylorites moved to redress the absence of direct demonstration in their founder’s system. For Taylor, who understood human efficiency as analogous with that of a machine, it had been enough to link the analysis of work processes with ideal times for their execution. The problem for Taylor’s followers and rivals, notably the contracting engineer Frank B. Gilbreth and his wife, the psychologist Lillian M. Gilbreth, was that this left the exact motion required subject to interpretation—more a matter of art than science.

The Gilbreths devoted themselves to the study of motion—literally to the quest to find each task’s perfect execution—by concentrating their attention on talented individuals and the specific tasks at which they excelled. Marshaling the technology of the chronocyclograph to record ideal motion as exactly as possible, the Gilbreths later “fixed” the results of their photographic motion studies in the
form of three-dimensional wire models that carefully calibrated movement against axes representing time and space. In theory, these could then be studied by other workers (in this example, the model illustrates successive attempts to perform a specialized task by a retired, though once expert, worker). The Gilbreths’ Darwinian determinism, with its codification of what was once individual ingenuity and initiative, triumphed in the 1920s over Taylor’s less obviously hierarchical or exacting methods. So did Benton’s mechanics, themselves an escalation of earlier, more or less spontaneous approaches such as Dow’s. Not only was Benton’s compositional system more demonstrative and less technical than others, it was more directly concerned with metaphysics—understanding the new paradigms of time and space posited in the psychological theory of empathy, for example. In their foray into the all-important case of deep space—for Benton, the expressive apotheosis of painting (he notes that in composition two forms of diagrammatic representation are necessary, one that fol—
MECHANICS OF FORM ORGANIZATION IN PAINTING

BY THOMAS H. BENTON

EDITORIAL NOTE: As this essay enters a comparatively new field in which there is much to be discovered, the author would be very glad to receive suggestions or criticisms from readers. The first three parts of this essay appeared in our November, December and January issues.

PART IV.

The first figures of this paper were devoted to rhythmical arrangements of lines and masses: it will be necessary now to show that the same principle of movement and counter-movement holds good for the relations of convexities and concavities. A simple demonstration of this can be found very readily in the human body. Take for instance an arm stripped to the shoulder (Fig. J). There are here a series of masses which bulge and hollows which recede. These are organized around a central vertical, the bone, and are so distributed that there is no possibility of collision between the bulging masses when a change in the arm’s position causes them to shift. This shifting takes place along the lines of the hollows which are filled, emptied and refilled with the changing positions of the arm.

For every movement of a mass there is an equilibrium counter-movement which finds “expression” also in a new alignment of the hollows (Fig. K). It will be noticed that the arrangement of these hollows and bulges forms a very clear rhythmical pattern, that is, there are repetitions at alternate intervals of similar movements, different in the different positions of the arm.

During the Renaissance in Italy beginning with Signorelli and finding consummate expression in the sculptures and single figures of Michael Angelo, this physiological principle was consciously applied in a form of direct transference to the building up of plastic structures. Muscular shift and counter-shift as visible external phenomena became a specific compositional determinant. Facts of direct muscular experience were projected into the actual building process.

This finds an interesting sort of theoretical parallel in the Einfühlung Theory of Lipps and Groos, paraphrased in England under the name of Empathy by Lee and Thompson and later in this country used for aesthetic evaluations by W. H. Wright. Simply stated, the theory presents aesthetic perceptions as the results of changes in physiological functions which produce feelings of exhilaration, keenness, expansion; or negatively, depression, weariness, disgust, which are automatically projected back from the object originally engaging the perceptive activities, causing us to like or dislike it, to respond to it or turn away from it.

Like most theories which attempt to explain the whole of art on the basis of some single principle, it fails by omission. The physiological facts on which the theory is based accompany every perceptive activity and could hardly be sufficiently descriptive or explanatory of the special form of artistic experience to be worth their isolation for the purpose.

They accompany our aesthetic responses but are no more determining factors than many other psychological concomitants of such experience.

In the practical field of actual construction, however, observation of the rich and intricate field of muscular action is responsible for much fine compositional work. Engaging developments of the principle as applied to “color construction” were made by the neo-Cézannists. In this country the work of E. Macdonald Wright from 1916 to 1918 grew very richly from such interests.

The whole development of Renaissance form in its material aspect, blossomed one might say from an interest in anatomy! The strictly mechanical values of all Renaissance composition from Signorelli to Rubens can be traced to an extension of muscular action patterns. Had the theories of Lipps and his followers been limited to a simple mechanical transference, they might have had more applicability.

Line, for Benton, signaled intellectual activity (thus his diagrammatic treatment) but also remained rooted in the immediacy of bodily performance. In fact, Benton’s mechanics emphasized deep space, a space distorted for maximum psychological and expressive effect. More significantly, he argued that all compositional organization is based on a shared experience of embodied movement:

“in the ‘feel’ of our own bodies,” he wrote, in the sight of the bodies of others, in the bodies of animals, in the shapes of growing and moving things, in the forces of nature and in the engines of man, the rhythmic principle of movement and counter-movement is made low superficial rhythmic relationships and another that translates these patterns into their cubic equivalents)—Benton’s diagrams do more than provide the generative framework of Dow’s two-dimensionally oriented line-idea or Hambidge’s flexible triangles. Like the Gilbreths’ wire models, Benton’s diagrams insist upon the priority of a “one best way.”

25. This, of course, had always been the goal of Taylor’s methods; what the Gilbreths add is the means.
manifest. But in our own bodies it can be isolated and understood. This mechanical principle which we share with all life can be abstracted and used in constructing and analyzing things which also in their way have life and reality.

The illusion of depth, according to Benton, whether it appeals to the visual sense (through such devices as the overlapping of flat planes) or to the tactile (through perspectival projections of cubic forms), is always a function of analogy—always, in his word, inferred. Human anatomy, he insisted, is the basis of that analogy: the characteristic action of muscular movement, with its succession of rippling bulges and recessions organized around a fixed center of bone, Benton told his readers, is “responsible for much fine compositional work.” What Benton’s mechanics do, in other words, is to aestheticize the country’s industrial-age obsession with efficient movement.

No one learned this lesson better than Jackson Pollock. To be sure, Pollock’s concept of allover composition closely follows Benton’s recommendations—but the connection between Pollock’s technique and Benton’s pedagogy is deeper than surface similarity. What Pollock did certainly looks like Benton’s diagrams (obsessively layered or not); it is also deeply, ideologically implicated with them. What Pollock did, I suggest, was to invert his mentor’s system, using it to reconceive the relationship between the schematic representation of the gesture or pose of the human figure in action and the representation of his own embodied gesture. In this sense, the image of human motion visualized in the early twentieth century by Frank and Lillian Gilbreth may serve as a model for reading Pollock. I’ll remind you that the Gilbreth models represent successive attempts to recapture past performance by a once-expert worker—not simply the “one best way,” but the incremental progress through which perfection was to be achieved. Under the force of the comparison, the artist’s gestures appear not so much spontaneous as mechanical—repetitive marks arrayed diagrammatically within the flattening of time and space that is the (presumptive) perspectival grid of the canvas. One imagines that as Pollock flailed somewhat awkwardly toward the elusive goal of mastery, covering his tracks (so to speak) as he went, his faith in the ideology of the “one best way” was sorely tested. The pathetic beauty of the


27. Choreographed, to use the suggestive terms of Andy Warhol’s 1962 series Dance Diagrams.
work that resulted dramatizes the uneasy relationship between movement and mechanization, the individual and the assembly line, becoming, paradoxically (or perhaps I should say, as the Gilbreths would have hoped), the model for successive generations of mannered performance.

Produced under the standardizing imperative of industrialism, Pollock’s work is more like work—ordinary work—than art history has been able to acknowledge. At the very least, recognizing this similarity restores to Pollock’s project an aspect of its ambivalent sociability. At the same time, the recognition serves to dispel the kind of reactionary logic that has posited the “mechanical” art of the 1960s as a reaction to the “manual” art of the 1950s. Celebrated for its physicality, Pollock’s innovative line (to use Schapiro’s term) signifies within a tradition of scientifically managed production the loss of spontaneity that such systems as Taylor’s made inevitable. The ironic substitution of terms (mechanical for spontaneous, ordinary for heroic, standardized for original) gives the case of Benton and Pollock its particular pleasures. But my argument has larger implications. The tangled trajectory of fine- and applied-arts education in the United States—the conflation of the utilitarian and the ideal in progressive-era movements such as manual training and industrial arts—ensures that most early-twentieth-century American artists had some form of technical education. Pollock’s own first brush with progressive education came several years before he met Benton, at, as it turns out, approximately the same moment that Benton’s essays were appearing in print: between the fall of 1926 and spring 1927, when Pollock was enrolled at the Manual Training School in Riverside, California, and immediately after, through fall 1929, when he attended Manual Arts High School in Los Angeles. If this troubles our understanding of what modernist painting was (in my own late-modernist art-school education we learned to paint as if it were a natural act), then all the better. With due apologies to Schapiro, making visible the effects of this largely invisible history on the “advent” of American modernism (and abstraction in particular) must be part of the project to reconceptualize modernism’s developmental contexts in their full complexity.

Barbara Jaffe is assistant professor of art history at Northern Illinois University, DeKalb. Her work on American modernism and design has appeared in a number of journals and anthologies.