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Abstract

A pillage game is a formal model of Hobbesian anarchy as a coalitional game. The
technology of pillage is specified by a power function that determines the power of each
coalition as a function of its members and their wealth. A coalition can despoil any other
coalition less powerful than itself. The present paper studies the extent to which the
exercise of power can be constrained by a shared concept of legitimacy. The basic pillage
game is augmented by a set of extrinsic variables that can convey information about
past behavior. Depending on the power function, the illegitimate use of power can be
inhibited by legitimizing the subsequent use of power against the transgressors. Legitimacy
is modeled in a static sense, called quasi-legitimacy, using the stable set (von Neumann-
Morgenstern solution) of the augmented pillage game, and in an explicitly dynamic sense,
called simply legitimacy, using a concept of farsighted core. Quasi-legitimacy is shown
to be a necessary but not sufficient condition for legitimacy. The sets of quasi-legitimate
wealth allocations are characterized, and an iterative process is developed for constructing
the largest quasi-legitimate set of allocations for each pillage game. If the power function
gives enough weight to coalition size that no individual can be as powerful as the coalition
of everyone else, then a natural augmentation of the basic pillage game can legitimize the
set of all allocations. However, if the power of each coalition is determined by its total
wealth alone, then even the weaker concept of quasi-legitimacy cannot stabilize anything
other than the stable set of the basic pillage game.



1. Introduction

A pillage game is a natural setting for the study of power. There is only one commod-
ity, wealth, which is allocated among a finite number of players. Since wealth is desired
by all, reallocation can only be effected by force. The technology of force is specified by a
power function that determines the power of each coalition as a function of its members
and their wealth. A coalition can take the wealth of any coalition less powerful than itself.
Pillage is costless and certain, but due to the absence of a commitment technology, it
can also be treacherous. Previous work on pillage games uses the concept of stable set to
identify the set of allocations that can be stabilized as a balance of power (Jordan (2005)
and Jordan and Obadia (2005)). Stable sets are also characterized as having a dynamic
representation as a farsighted core under rational expectations (Jordan (2005, Section 6)).
The balance of power in a pillage game is delicate, as evidenced by the fact that stable
sets can contain at most finitely many allocations. This raises the question whether the
exercise of power can be endogenously constrained to stabilize a larger set of allocations.

The more tightly power is constrained, the larger will be the set of stable allocations.
However, constraints on the use of power can only be enforced by the use of power itself.
An illegitimate use of power can only be discouraged by legitimizing the subsequent use
of power against the transgressors. Loosely speaking, we seek the narrowest concept of
legitimacy in the exercise of power that is still broad enough to be self-enforcing.

It is first necessary to extend the basic pillage game to add variables that can convey
information about past actions. This information is extrinsic to the environment of the
game, in the sense that it is irrelevant to the technology of power and does not enter
the players’ preferences, which are simply increasing in wealth. In Section 3, below, self-
enforcement is represented by the static concept of the stable set of the extended pillage
game. A set of allocations is called quasi-legitimate if it can be stabilized in the extended
game. Theorem 3.7 gives a general characterization of quasi-legitimate sets. Proposition
3.6 shows that the simplest possible extension, adding only a single boolean variable,
suffices to stabilize every quasi-legitimate set. Proposition 3.9 develops an iterative process
for constructing the largest quasi-legitimate set. The process is based on an induction
argument first used by Roth (1976) to establish the existence of the “supercore” for general
abstract games. In the present setting, the process requires only finitely many steps.
Section 3 also develops a more interesting extension, called the citizenship game. The
extrinsic information identifies each player as either a citizen or an outlaw. Any act of
pillage that victimizes a citizen causes all who benefit from the pillage to become outlaws.
However, any pillage that victimizes only outlaws enables all players to become citizens.
The citizenship game thus provides for both the punishment and redemption of outlaws.
This concept of legitimacy can fail to be self-enforcing if a player can, through pillage,
become wealthy enough to be too powerful to be punished. Accordingly, Proposition 3.15
shows that the set of all allocations in which only citizens possess wealth is a stable set of
the citizenship game if the power function gives at least enough weight to coalitional size
that no one player, even if possessed of the total wealth in the game, can be as powerful
as the coalition of everyone else. This restriction on the power function, called the no-
tyranny condition, is necessary as well as sufficient. Under the no-tyranny condition,
the entire set of allocations is quasi-legitimate, since they are stable if all players are
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designated as citizens. The no-tyranny condition is obviously violated by the wealth-is-
power (WIP) game, in which the power of each coalition is determined by its total wealth
alone. Proposition 3.13 shows that for the WIP game, legitimacy is a fruitless concept,
since no extension is capable of stabilizing any set of allocations other than the unique
stable set of the basic game.

The stable set solution concept has a dynamic interpretation but a static definition.
Harsanyi (1974) observes that in general, the dynamic interpretation can fail to be sup-
ported if players’ expectations are explicitly taken into account. As mentioned above,
stable sets of the basic pillage game are not vulnerable to this criticism, but the same
cannot be said in general for stable sets of extended pillage games. Accordingly, Section
4, below, strengthens the concept of legitimacy by using the more demanding concept of a
farsighted core under rational expectations. A set of allocations that can be stabilized in
this fashion is called legitimate. Proposition 4.3 shows that quasi-legitimacy is a necessary
condition for legitimacy. Theorem 4.5 shows that the citizenship game can be strengthened
in such a way that the set of all allocations in which only citizens possess wealth can be
stabilized as a farsighted core. Unfortunately, quasi-legitimacy is not a sufficient condition
for legitimacy. Proposition 4.6 shows that no legitimate set exists for the pillage game in
which the power of each coalition is the product of its total wealth and the number of its
members, despite the fact that this game admits a large quasi-legitimate set.

2. Pillage games

This section defines pillage games and records some results from Jordan (2005) that
will be used below. Three specific examples of pillage games are described at the end of
this section.

2.1 Definitions: The set of players is the finite set I = {1, . . . , n}, where n ≥ 2. Subsets
of I will be called coalitions. Let C denote the set of coalitions. The set of allocations is
the set A = {w ∈ IRI : wi ≥ 0 for each i, and

∑
i wi = 1}. A power function is a function

π : C × A → IR satisfying

p.1) if C ⊂ C ′ then π(C ′, w) ≥ π(C, w) for all w;

p.2) if w′
i ≥ wi for all i ∈ C then π(C, w′) ≥ π(C, w); and

p.3) if C �= ∅ and w′
i > wi for all i ∈ C then π(C, w′) > π(C, w).

An allocation w′ dominates an allocation w if

D) π(W, w) > π(L, w),

where W = {i : w′
i > wi} and L = {i : w′

i < wi}. Domination is a binary relation on
A, and will be denoted �. Domination is asymmetric but typically not transitive or even
acyclic.

The property (p.3) implies that power cannot be completely independent of wealth,
so the power of each coalition is endogenous. This prevents a pillage game from having a
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characteristic function. However, the pair (A,�) is a special case of an abstract game, so
the concepts of core and stable set can be defined as in Lucas (1992).

2.2 Definitions: For any set of allocations E, let U(E) denote the set of allocations
undominated by E, that is, U(E) = {w ∈ A : no w′ ∈ E dominates w}. The core of a
pillage game is the set of undominated allocations, that is, the core is U(A). A set of
allocations E is internally stable if no allocation in E is dominated by an allocation in E,
that is,

IS) E ⊂ U(E).

A set of allocations E is externally stable if every allocation not in E is dominated by some
allocation in E, that is,

ES) U(E) ⊂ E.

A set of allocations E is stable if it is both internally and externally stable, that is

S) E = U(E).

The core always exists, but can be empty. Since U(∅) = A, external stability (ES)
implies that stable sets cannot be empty, but they can fail to exist. External stability also
implies that a stable set must contain the core.

The core is the set of allocations that can be defended by force. That is, each player
who holds wealth must be at least as powerful as the coalition of everyone else. The
allocations most likely to satisfy this demanding requirement are those that give everything
to one player.

2.3 Definition: For each i, let ei denote the allocation that gives everything to player i,
that is, ei

i = 1. The ei’s are called tyrannical allocations.

The following result establishes that the core is nonempty only if it contains one or
more of the tyrannical allocations.

2.4 Proposition: The core is the set

{
w : {i : wi > 0} = {i : π({i}, w) ≥ π(I\{i}, w)}

}
.

For each i, the core contains ei if and only if π({i}, ei) ≥ π(I\{i}, ei). In particular, the
core is empty if and only if

NT) π({i}, ei) < π(I\{i}, ei) for all i.

Condition (NT), which is equivalent to the emptiness of the core, will be called the
no tyranny condition. The following proposition records the analytically useful fact that
internally stable sets are finite. This contrasts with characteristic function games, whose
stable sets typically contain a continuum of allocations (Lucas (1992)).
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2.5 Proposition: An internally stable set can contain at most finitely many allocations.

We close this section with three examples of pillage games, which will be further
discussed in subsequent sections. First, suppose the dependence of power on wealth is
complete, that is, the power of each coalition is simply its total wealth. It is immediate
that the core of this pillage game consists of the tyrannical allocations, together with the
allocations that give half the wealth to each of two players. The unique stable set consists
of all allocations in which each player with positive wealth has wi = ( 1

2 )ki for some positive
integer ki. In particular, the stable set for the four-player game consists of all permutations
of the allocations (1, 0, 0, 0), ( 1

2 , 1
2 , 0, 0), ( 1

2 , 1
4 , 1

4 , 0), ( 1
2 , 1

4 , 1
8 , 1

8 ), and (1
4 , 1

4 , 1
4 , 1

4 ).

2.6 The wealth-is-power pillage game (Jordan (2005)): The wealth-is-power (WIP)
game is specified by the power function

WIP) π(C, w) = Σi∈Cwi.

A number 0 ≤ x ≤ 1 is dyadic if x = 0 or x = 2−k for some nonnegative integer k. An
allocation w is dyadic if each wi is dyadic. Let D denote the set of dyadic allocations. For
each positive integer k, let Dk = {w : w is dyadic and for each i, if wi > 0 then wi ≥ 2−k}.
Then Dk ⊂ Dk+1 for each k, and D = ∪kDk. For the WIP game, D1 is the core and D is
the unique stable set.

At the opposite extreme from the WIP game is the traditional majority game, in
which the power of each coalition is equal to the number of its members. Since power is
independent of wealth in this case, the traditional majority game is not a pillage game.
However, there is a closely related pillage game in which the dependence of power on wealth
is lexicographically secondary to coalition size, that is, relative wealth only determines the
relative power of two coalitions if they have the same size. This majority pillage game
differs from the traditional majority game in a second important respect, namely that a
coalition can commit pillage without having an absolute majority, as long as it is larger
than the set of its victims.

2.7 The majority pillage game (Jordan and Obadia (2005)): The majority pillage game
is specified by any power function of the form

M) π(C, w) = #C + αΣi∈Cwi, where 0 < α < 1.

If n is odd, let Sn be the set of allocations consisting of all player-permutations of the
allocation ( 2

n+1 , . . . , 2
n+1 , 0, . . . , 0). The core of the majority pillage game is empty. If

n = 3, then S3 is the unique stable set. More generally, if n is odd, then Sn is the unique
symmetric stable set. If n is even and n ≥ 4, then no symmetric stable set exists.

The final example is the game in which the power of each coalition is the product of
its size and wealth. The principal interest of this game is that it has no stable set. This is
proved in Jordan (2005), but it also follows from the nonexistence of a legitimate set for
this game, which is proved in Section 4.
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2.8 The Cobb-Douglas pillage game (Jordan (2005): The Cobb-Douglas game is spec-
ified by the power function

CD) π(C, w) = #CΣi∈Cwi.

For the Cobb-Douglas game with n > 2, the core is the set of tyrannical allocations,
{ei : i ∈ I}, but no stable set exists.

3. Quasi-legitimacy

This section extends the basic pillage game by adding a set H of extrinsic social
information that can distinguish between legitimate and illegitimate uses of power. An
allocation w together with social information h constitutes a social state. An act of pillage
at a social state (w, h) results in a dominating allocation w′, together with new social
information h′. The social information plays no role in preferences or the technology of
force, so the chance from w to w′ must conform to the basic domination relation w′ � w.
The set H and the transition from h to h′ are interpreted as a social norm that characterizes
a particular extension. A given pillage game can have many different extensions, including
the trivial extension, which adds no information, or simply ignores the set H.

3.1 Social extensions: A social extension of a pillage game π consists of a set H of social
information, and a recording function σ : A × H × A → H. Define social domination, �s,
by

S) (w′, h′) �s (w, h) if w′ � w and h′ = σ(w, h;w′).

A social extension will be denoted by the pair (A × H,�s), and elements (w, h) of A × H
will be called states.

The definition of a social extension embodies an implicit assumption that social in-
formation is public and the recording function σ is known to all players. The recording
function is interpreted as a way of recording some information about the fact that, at the
state (w, h), an act of pillage changed the allocation to w′.

A social extension (A × H,�s) gives rise to stable sets of social states, that is, sets
S ⊂ A × H that are internally and externally stable under the relation �s. Moreover,
different extensions may stabilize different sets of allocations.

3.2 Definition: Given a pillage game π, a set X ⊂ A is quasi-legitimate if there is a social
extension (A×H,�s) of π with a stable set S ⊂ A×H with X = {w : (w, h) ∈ S for some
h ∈ H}.

The definition of a social extension places no limits on the size of H or the amount
of information that can be recorded. However, the smallest nontrivial set, H = {0, 1},
suffices to stabilize every quasi-legitimate set of allocations. This is a consequence of both
the mathematical elegance and conceptual weakness of the stable set concept.
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3.3 The Boolean extension: Given a pillage game π and a set E ⊂ A, let H = {0, 1}
and define σ : A × H × A → H as follows:

σ(w, h;w′) =

⎧⎨
⎩

1 if w′ � w, w′ ∈ E, and w �∈ E;
¬h if w′ � w and either w ∈ E or w′ �∈ E;
h if w′ �� w,

where ¬h denotes the element of H not equal to h.

The Boolean extension is defined for general sets of allocations E, but is only of
interest when E can be stabilized. This requires a condition called self-protection, which
is a generalization of stability. Suppose an element w ∈ E is dominated by an allocation
w′. If an allocation w′′ ∈ E dominates w′, then w′′ can be very loosely interpreted as
protecting w.

3.4 Definition: A set E ⊂ A is self-protected if for each w ∈ E and each w′ ∈ A such that
w′ � w, there exists some w′′ ∈ E such that w′′ � w′. Equivalently, E is self-protected is
E ⊂ U2(E).

Self-protection does not imply either internal or external stability, but is very useful
when combined with either of them. The following proposition, which is an immediate
consequence of the definitions, records the two properties that result.

3.5 Proposition: A set E ⊂ A is externally stable and self-protected if and only if

ESSP) U(E) ⊂ E ⊂ U2(E).

A set E ⊂ A is internally stable and self-protected if and only if

ISSP) E ⊂ U2(E) ⊂ U(E)

We can now show that quasi-legitimacy is completely characterized by by external
stability and self-protection. We first demonstrate the sufficiency of (ESSP) using the
Boolean extension.

3.6 Proposition: Given a pillage game π, let E ⊂ A and let A × H,�s) denote the
Boolean extension. Define S =

(
U(E) × {0, 1}

)
∪

(
(E\U(E) × {0}

)
. If E is externally

stable and self-protected, then S is stable, and thus E is quasi-legitimate.

Proof: We first show that S is internally stable. Let (w, h), (w′, h′) ∈ S. Suppose by
way of contradiction that (w′, h′) �s (w, h). Then w′ � w and w, w′ ∈ E. Since E is
self-protected, there is some w′′ ∈ E such that w′′ � w′. Therefore w′ �∈ U(E). Hence
w, w′ ∈ E\U(E), so h = h′ = 1. By the definition of �s, this contradicts (w′, h′) �s (w, h).

We now show that S is externally stable. Let (w, h) �∈ S. Then w �∈ U(E). Therefore
there is some w′ ∈ E with w′ � w. If w �∈ E then (w′, 1) �s (w, h). If w ∈ E, then
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w ∈ E\U(E), so h = 0, which also implies that (w′, 1) �s (w, h). Since (w′, 1) ∈ S, this
proves that S is externally stable.

We now complete the characterization of quasi-legitimacy by showing the necessity of
(ESSP).

3.7 Theorem: A set E ⊂ A is quasi-legitimate if and only if E is externally stable and
self-protected.

Proof: Sufficiency is given by Proposition 3.6, so it remains to show necessity. Let (A ×
H,�s) be a social extension with a stable set S satisfying E = {w : (w, h) ∈ S for some
h ∈ H}. We first show that E is externally stable. Let w �∈ E and let h ∈ H. Then
(w, h) �∈ S, so there is some (w′, h′) ∈ S with (w′, h′) �s (w.h). Then w′ ∈ E and w′ � w,
so E is externally stable. To show that E is self-protected, let w ∈ E, w′ ∈ A with w′ � w.
Since w ∈ E, there is some h ∈ H with (w, h) ∈ S. Since w′ � w there is some h′ with
(w′, h′) �s (w, h). Since S is internally stable, (w′, h′) �∈ S. Since S is externally stable,
there is some (w′′, h′′) ∈ S satisfying (w′′, h′′) �s (w′, h′). Then w′′ ∈ E and w′′ � w′, so
E is self-protected.

Since stable sets necessarily satisfy (ESSP), the following corollary is immediate. Since
stable sets also satisfy (ESSP), the following corollary is immediate.

3.8 Corollary: Every stable set is quasi-legitimate.

A pillage game may have many quasi-legitimate sets, but there is always a unique
largest quasi-legitimate set. Moreover, an inductive argument originally used by Roth
(1976) for general abstract games (see also Asilis and Kahn (1992) for further discussion
and applications) gives a procedure for constructing it. For general abstract games, the
process can involve transfinite induction, but the fact that internally stable sets in pillage
games are always finite (Proposition 2.5) implies that the process described below stops in
a finite number of steps.

3.9 Proposition: Given a pillage game π, let G0 = ∅ and let E0 = A. For each integer
t > 0, let Gt = U2(Gt−1) and Et = U2(Et−1). Then for each t ≥ 0, Gt ⊂ Gt+1 ⊂ Et+1 ⊂
Et. Also, for each t, Et = U(Gt) and Gt+1 = U(Et). Moreover, there exists T > 0 such
that Gt = GT and Et = ET for all t > T . In particular,

Gt ⊂ GT ⊂ ET ⊂ Et for all t.

Moreover, GT is internally stable and self-protected, and ET is externally stable and self-
protected.

Proof: Note that for any sets X, X ′ ⊂ A, if X ⊂ X ′ then U(X ′) ⊂ U(X), so U2(X) ⊂
U2(X ′). Since G0 = ∅, G0 ⊂ U2(G0) = G1. Hence by iteration, Gt ⊂ Gt+1 for all t.
Since G0 = ∅, G0 is internally stable and self-protected. Since the (ISSP) inclusions are
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preserved by U2(·), it follows that Gt is internally stable and self-protected for all t. Let
G∗ = ∪tGt. Since each Gt is internally stable and the sequence of sets is increasing, it
follows that G∗ is internally stable. By Proposition 2.5, all internally stable sets are finite,
so G∗ is finite, which implies that G∗ = GT for some integer T .

Since E0 = A, E1 = U2(E0) ⊂ E0. Since U2(·) preserves inclusion, the Et+1 ⊂ Et for
all t. Also, since E0 = A, E0 is externally stable, that is, U(E0) ⊂ E0. Since U2(·) preserves
this inclusion, Et is externally stable for all t. Since ∅ = G0 ⊂ E0 = A, applying the U2(·)
operator successively to this inclusion shows that Gt ⊂ Et for all t. Note that E0 = U(G0).
Hence U(E0) = U2(G0) = G1 and E1 = U2(E0) = U(G1). Hence Et = U(Gt) for all t,
so the required ET is ET = U(GT ). Finally, since ET = ET+1 = U2(ET ), ET is self-
protected.

3.10 Theorem: Given a pillage game π, let E ⊂ A be quasi-legitimate. Then GT ⊂ E ⊂
ET . In particular, ET is the largest quasi-legitimate set.

Proof: Since E is quasi-legitimate, Theorem 3.10 implies that E satisfies (ESSP). We will
prove the result by induction on t. Suppose that for some t, Gt ⊂ E ⊂ Et. Since E is
self-protected, E ⊂ U2(E). Since E ⊂ Et, U2(E) ⊂ U2(Et) = Et+1, so E ⊂ Et+1. Since
E is externally stable and E ⊂ Et, Gt+1 = U(Et) ⊂ E. Thus, if Gt ⊂ E ⊂ Et, then
Gt+1 ⊂ E ⊂ Et+1. Since G0 = ∅ and E0 = A, G0 ⊂ E ⊂ E0, it follows by induction that
GT ⊂ E ⊂ ET . The final assertion follows from the fact that ET satisfies (ESSP).

The following useful corollary is immediate.

3.11 Corollary: If GT = ET , then ET is the unique quasi-legitimate set and also the
unique stable set.

3.12 Corollary: If π satisfies the no tyranny condition (NT), then A is quasi-legitimate.

Proof: By Proposition 2.4, (NT) implies that the core, U(A), is empty, so the iterative
process terminates at the first step, with ET = E0 = A.

The iterative process for constructing ET can be applied to derive ET for the three
specific pillage games defined in the preceding section. The majority pillage game with
at least three players satisfies the no tyranny condition, so the entire set of allocations is
quasi-legitimate. For the Cobb-Douglas pillage game, the iteration terminates after the
first step, yielding a large quasi-legitimate step, despite the absence of a stable set for this
game. The WIP game, in contrast, allows no room for quasi-legitimacy beyond the unique
stable set.
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3.13 Proposition:

a) For the WIP game GT = ET = D.

b) For the majority game with n > 2, ET = A.

c) For the CD game,

ET = {ei : i ∈ I} ∪ {w : wi ≤
p(w) − 1

p(w)
for all i},

where p(w) = #{i : wi > 0}.

Proof: The proof given in (Jordan (2005)) that D is the unique stable set for the WIP
game uses an iterative construction that can be slightly modified to show (a). The majority
pillage game with n > 2 is a special case of Corollary 3.12. For the CD game, if n = 2,
it is immediate that G1 = E1 = {(1, 0), (0, 1), ( 1

2 , 1
2 )}. If n ≥ 3, the core is G1 = U(A) =

{ei : i ∈ I}. An allocation w is undominated by ei if and only if wi ≤ p(w)−1
p(w) , so

E1 = U(G1) = G1 ∪ {w : wi ≤ p(w)−1
p(w) for all i}. Now suppose that n = 3. Then

G2 = U(E1) = G1∪{w : wi = 2
3 and wj = wk = 1

6 for some i, j, k}, and E2 = U(G2) = E1,
so ET = E1. If n > 3, then G2 = U(E1) = G1, so again ET = E1.

The abstract simplicity of the Boolean extension is helpful in characterizing quasi-
legitimacy, but yields little insight about how power can be constrained. The following
more explicit, albeit less general extension is much easier to interpret. Suppose that each
player can be designated as either a citizen or an outlaw. A social state then consists of
an allocation together with a given designation for each player. The player designations
change with pillage in the following way. If any citizen is pillaged, all players who benefit
from the pillage become outlaws. However, if only outlaws are pillaged, then all players
become citizens. This social norm protects the property of citizens, provided that the
no tyranny condition is satisfied. Any player who participates in the pillage of a citizen
becomes an outlaw, and is thus left open to pillage by anyone. Even under the no tyranny
condition, it may not be possible for the remaining citizens to pillage all of the outlaws.
For example, in the majority pillage game, suppose that player 1 is a citizen and is pillaged
by the coalition of everyone else. Then player 1 will need to enlist the aid of at least half
of the outlaws to get some of his property back. In this case, half of the outlaws profit a
second time by betraying their fellow outlaws. The fact that at least one outlaw can be
left with nothing after the second pillage is what discourages the original pillage. This is
established using the static stable set concept, and further strengthened in the next section
by making the dynamics explicit.
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3.14 The citizenship extension: Let H = C and define σ : A×H ×A → H as follows:

σ(w, C;w′) =

⎧⎨
⎩

I\W if L ∩ C �= ∅;
I if L �= ∅ and L ∩ C = ∅;
C if L = ∅,

where L = {i : w′
i < wi} and W = {i : w′

i > wi}.

3.15 Proposition: Let (A × C,�s) be the citizenship extension of a pillage game π. Let
S =

{
(w, C) : {i : wi > 0} ⊂ C

}
. The S is a stable set if and only if π satisfies the no

tyranny condition (NT).

Proof: First assume that π has an empty core. Let (w, C) ∈ S and let (w′, C ′) be a
social state that dominates (w, C). Let W = {i : w′

i > wi} and L = {i : w′
i < wi}.

Since (w, C) ∈ S, L ⊂ C so C ′ ∩ W = ∅. Then for each i ∈ W , w′
i > 0 and i �∈ C ′, so

(w′, C ′) �∈ S. Thus S satisfies internal stability. Let (w, C) �∈ S. Then wi > 0 for some
i �∈ C. Let C ′ = I\{i} and let w′ satisfy w′

i = 0 and w′
j > wj for each j �= i. Then

(w′, C ′) ∈ S. By (NT), π(C ′, ei) > π({i}, ei), so w′ � w. Hence (w′, C ′) �s (w, C), so S
satisfies external stability.

Now suppose that π does not satisfy (NT), so π(I\{i}, ei) ≤ π({i}, ei) for some i. Then
ei is undominated, so the social state (ei, I\{i}) is undominated. Since (ei, I\{i}) �∈ S, it
follows that S does not satisfy external stability.

4. Legitimacy

Quasi-legitimacy is analytically convenient but conceptually inadequate. Quasi-
legitimate sets have a simple and complete characterization, and there is a finite iterative
procedure that generates the largest quasi-legitimate set. Unfortunately a stable set of a
social extension, unlike a stable set of the basic pillage game, is vulnerable to Harsanyi’s
criticism of the stable set concept (Harsanyi (1974)). To put Harsanyi’s criticism in the
present context, let (A × H,�s) be a social extension, and let S ⊂ A × H be a stable
set. The set S is interpreted as self-enforcing based in part on the following argument. If
(w, h) ∈ S is dominated by some (w′, h′), then since S is internally stable, (w′, h′) �∈ S.
Since S is externally stable, there is some (w′′, h′′) ∈ S that dominates (w′, h′). Since S is
internally stable (w′′, h′′) does not dominate (w, h), so the prospect of moving to (w′′, h′′)
discourages the move to (w′, h′). Harsanyi observed that if the players who benefit from
the move to (w′, h′) benefit still further, or at least don’t lose anything in the subsequent
move to (w′′, h′′), they will happily force the move to (w′, h′) in order to achieve in two
moves what internal stability prevents them from achieving in one. Of course, the natural
way to resolve this confusion is simply to make the expectation of the subsequent move
from (w′, h′) to (w′′, h′′) explicit for all players. For the basic pillage game, in which social
information is absent, Jordan (2005, Section 6) shows that stable sets not only survive the
Harsanyi criticism but can be characterized as the only sets that do. Unfortunately, the
stable sets of social extensions fare much worse.
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The vulnerability of the Boolean extension to the Harsanyi critique is pervasive and
in some cases irreparable. The largest quasi-legitimate set for Cobb-Douglas pillage game
is very large, as described by Proposition 3.13, but Proposition 4.6 below shows that the
Harsanyi critique prevents the existence of any legitimate set.

The citizenship game, as described in the preceding section, has an interesting de-
ficiency that is subject to the Harsanyi critique as well. The recording function σ uses
the allocations w and w′ to identify the pillaging coalition and its victims. If actions are
motivated by the anticipation of subsequent actions, the allocation w′ is only a step on
the way to w′′. The definition of σ allows farsighted players to force an action w′ with the
object of diverting punishment from themselves, and enabling themselves to benefit from
the punishment of players they have caused to be wrongly identified as transgressors. This
is corrected in the following definition, which enables the recording function to correctly
identify the coalition that forced an action and the players who unsuccessfully opposed it.

4.1 Definitions: A dynamic extension of a pillage game π consists of a set H and a
recording function δ : A×H×C2×A → H. An expectation is a function f : A×H → A×H
satisfying f2 = f . Since f2 = f , the set f(A×H) is the set of stationary states. Given an
expectation f , and states (w, h) and (w′, h′), let (w′′, h′′) = f(w′, h′). The state (w′, h′)
dominates (w, h) in expectation if

i) w′′ dominates w; and

ii) δ(w, h, W, L, w′) = h′,

where W = {i : w′′
i > wi} and L = {i : w′′

i < wi}.

The concept of domination in expectation is only of interest when the expectations are
fulfilled. The following definition of consistent expectations provides the requisite rational
expectation condition.

4.2 Definitions: An expectation f is consistent if for each (w, h), either

i) f(w, h) dominates (w, h) in expectation; or

ii) (w, h) is undominated in expectation and f(w, h) = (w, h).

The farsighted core is the set of states that are undominated in expectation. If S is a
farsighted core for a consistent expectation, the set {w : (w, h) ∈ S for some h ∈ H} is
said to be legitimate.

The following result shows that quasi-legitimacy is a necessary condition for legitimacy.

4.3 Proposition: Every legitimate set is also quasi-legitimate.

Proof: Let X ⊂ A be legitimate, and let S be a farsighted core for a consistent expectation
f , with X = {w : (w, h) ∈ S for some h ∈ H}. By Theorem 3.7, it suffices to show that X
is externally stable and self-protected. Let w �∈ X and let h ∈ H. Then (w, h) �∈ S. Then
by 4.2(i), f(w, h) = (w′, h′) for some (w′, h′) that dominates (w, h) in expectation. Since
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f2 = f , (w′, h′) ∈ S, so w′ ∈ X and w′ dominates w, which proves that X is externally
stable. Let w ∈ X and let w′ dominate w. If w′ �∈ X then since X is externally stable,
there is some w′′ ∈ X that dominates w′. Suppose w′ ∈ X. Let W = {i : w′

i > wi},
L = {i : w′

i < wi}, and h′ = δ(w, h, W, L, w′). Then (w′, h′) �∈ S, otherwise (w′, h′) would
dominate (w, h) in expectation. Therefore, as above, there is some w′′ ∈ X that dominates
w′.

The following definition adapts the recording function of the citizenship game as re-
quired for a dynamic extension. The resulting version of the citizenship game is then shown
to stabilize the full set of allocations as a farsighted core, provided, as before, that the no
tyranny condition is satisfied.

4.4 Definition: The dynamic citizenship extension is defined as follows. Let H = C and
define δ : A × H × C2 × A → H by

δ(w, C, W, L, w′) =

{
I\W if L ∩ C �= ∅;
I if L �= ∅ and L ∩ C = ∅;
C if L = ∅.

Let S =
{
(w, C) : {i : Wi > 0} ⊂ C

}
.

4.5 Theorem: Let π be a pillage game that satisfies the no tyranny condition (NT). For
the dynamic citizenship extension, let S =

{
(w, C) : {i : Wi > 0} ⊂ C

}
, and define the

expectation f : A × H → A × H by

f(w, C) =

⎧⎪⎨
⎪⎩

(w, C) if (w, C) ∈ S;
(w′, I) for some w′ that dominates w and satisfies

{i : w′
i < wi} ⊂ I\C, and w′

i = 0 for some i ∈ I\C,
if (w, C) �∈ S.

Then f is consistent and S is the farsighted core. In particular, the entire set A is legitimate.

Proof: We first show that f is a well-defined expectation. By the definition of S, (w, I) ∈ S
for all w, so f2 = f . Second, let (w, C) �∈ S. We need to show that the allocation w′

required in the definition of f exists. Since (w, C) �∈ S, there is some io with wio > 0
and io �∈ C. Let w′ = (w1 + wio

n , . . . , wio−1 + wio

n , 0, wio+1 + wio

n , . . . , wn + wio

n ). Since
π satisfies (NT), w′ dominates w, and w′ clearly satisfies the other required properties as
well. Therefore f is a well-defined expectation.

We now show that states in S are undominated in expectation. Let (w, C) ∈ S and
(w′, C ′) ∈ A × C. First suppose that (w′, C ′) ∈ S. Then (w′, C ′) cannot dominate (w, C)
in expectation, since (w′, C ′) is stationary, and since (w, C) ∈ S, w′ dominates w and
{i : w′

i < wi} ⊂ C, so by the definition of δ, (w′, C ′) �∈ S. Now suppose (w′, C ′) �∈ S
and suppose by way of contradiction that (w′, C ′) dominates (w, C) in expectation. Since
(w′, C ′) �∈ S, there is some (w′′, C ′′) ∈ S with f(w′, C ′) dominates (w′, C ′) in expectation
and f(w′, C ′) ∈ S. Let (w′′, C ′′) = f(w′, C ′). Since (w′, C ′) dominates (w, C) in expec-
tation, C ′ = δ(w, C, W, L, w′),where W = {i : w′′

i > wi} and L = {i : w′′
i < wi}. Since
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(w, C) ∈ S, L ∩C �= ∅, so by the definition of δ, I\W = C ′. Then , by the definition of f ,
there is some i ∈ W with w′′

i = 0,which contradicts the definition of W , which proves that
all states in S are undominated in expectation.

Let (w, C) �∈ S. We will complete the proof by showing that f(w, C) dominates (w, C)
in expectation. Let (w′, I) = f(w, C). Then (w′, I) is stationary and w′ dominates w. Let
W = {i : w′

i > wi} and L = {i : w′
i < wi}. Then I = δ(w, C, W, L, w′), so (w′, I) dominates

(w, C) in expectation. This proves that f is consistent and that S is the set of states that
are undominated in expectation.

The following result shows that the Cobb-Douglas pillage game with more than two
players has no legitimate sets. This result also implies that quasi-legitimacy is not sufficient
for legitimacy.

4.6 Proposition: For the CD game with n > 2, no legitimate set exists.

Proof: We will show there does not exist a consistent expectation for the Cobb-Douglas
game with more than two players. Let w ∈ ET satisfy

(∗) w1 ≥ w2 ≥ · · · ≥ wn > 0, w1 =
n − 1

n
, and

1
n

> w2 >
n − 2

n(n − 1)
.

Then π({1}, w) = π({2, . . . n}, w) and π({2}, w) > π({3, . . . , n}, w). Let w′ ∈ ET

also satisfy (∗) with w′
2 > w2 and Σi>2w

′
i < wn. Let W = {2} and L = {3, . . . , n}.

Suppose by way of contradiction that f is a consistent expectation for some dynamic
extension. Let h ∈ H, and let h′ = δ(w, h, W, L, w′). We will first show that (w′, h′)
dominates (w, h) in expectation. If f(w′, h′) = (w′, h′), this is immediate, since w′ � w
and h′ = δ(w, h, W, L, w′). Suppose instead that f(w′, h′) = (w′′, h′′) �= (w′, h′). Then
since f2 = f , f(w′′, h′′) = (w′′, h′′), so (w′′, h′′) is an element of the farsighted core and
w′′ � w′. By Proposition 4.3, w′′ ∈ ET , which, together with the fact that w′′ � w′,
implies that w′′ also satisfies (∗), with w′′

2 ≥ w′
2 > w2 and w′′

i < Σi>2w
′
i < wi for all i > 2.

Since h′ = δ(w, h, W, L, w′), this again shows that (w′, h′) dominates (w, h) is expectation.
If (w′, h′) = f(w′, h′) then since f is consistent, (w′, h′) is undominated in expectation.
However, since w′ satisfies (∗), the above argument can be repeated to construct a state
(w′′′, h′′) that dominates (w′, h′) in expectation. Therefore (w′′, h′′) = f(w′, h′) �= (w′, h′)
and (w′′, h′′) is in the farsighted core. However, w′′ also satisfies (∗), so (w′′, h′′) is also
dominated in expectation, which proves that f is not a consistent expectation.

A stable set of a pillage game is shown to be a farsighted core in Jordan (2005, Section
6). The trivial dynamic extension, H = {0}, extends this result to show that every stable
set of a pillage game is legitimate. For this reason, the nonexistence of a legitimate set in
the Cobb-Douglas game also implies the nonexistence of a stable set.
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