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Abstract

We study informal insurance within communities, explicitly recognizing the possibility
that subgroups of individuals may destabilize insurance arrangements among the larger
group. We therefore consider self-enforcing risk-sharing agreements that are robust not
only to single-person deviations but also to potential deviations by subgroups. However,
such deviations must be credible, in the sense that the subgroup must pass exactly the
same test that we apply to the entire group; it must itself employ some self-enforcing
risk-sharing agreement. We observe that the stability of subgroups is inimical to the
stability of the group as a whole. Two surprising consequences of this analysis are that
stable groups have (uniformly) bounded size, a result in sharp contrast to the individual-
deviation problem, and that the degree of risk-sharing in a community is generally non-
monotonic in the level of uncertainty or need for insurance in the community.

We are grateful for comments by seminar participants at the University of Chicago,
Princeton University, the INRA/Delta in Paris, the University of California at Irvine,
the Summer Meeting of the Econometrics Society at the University of Maryland and
the NEUDC in Cornell University. We also thank two anonymous referees for useful
comments on an earlier draft. Address all correspondence to ggenicot@uci.edu and
debraj.ray@nyu.edu.



1 Introduction

Risk is a pervasive fact of life in developing countries. As a response to the large fluctu-
ations in their income, individuals — mainly in rural areas — often enter into informal
insurance or quasi-credit agreements. To be sure, such arrangements are potentially
limited by the presence of various incentive constraints. As a first cut, it appears that
the most important constraint arises from the fact that such agreements are not written
on legal paper, and must therefore be designed to elicit voluntary participation. To be
self-enforcing, the expected net benefits from participating in the agreement must be at
any point in time larger than the one time gain from defection.1

There is a growing body of literature, both theoretical and empirical, on self-enforcing
risk-sharing agreements. Some important theoretical contributions are Posner [1980],
Kimball [1988], Coate and Ravallion [1993], Kocherlakota [1996], Kletzer and Wright
[2000], and Ligon, Thomas and Worrall [2002].2 Our starting point is the following
observation: all these studies (and to our knowledge all existing studies) define “self-
enforcing” agreements as those that are proof from defection by individual members of
the group. As a consequence, the common practice in the literature is to define self-
enforcing risk-sharing agreements as subgame perfect equilibria of a repeated game (in
which self-insurance is always an option), and to characterize the Pareto frontier of such
equilibria. But this raises the obvious question: if a “large” group — say the village
community or a particular caste or kinship group within the community — can foresee
the benefits of risk-sharing and reach an agreement, why might smaller groups not be
able to do so? Why would subgroups not be able to agree to jointly defect and share
risk among themselves? This concern implies that to be truly self-enforcing, an informal
risk-sharing agreement needs to be immune to joint deviations by subgroups. At the
same time, it seems only natural to require that deviating groups themselves satisfy the
same criterion. To be of any value — or to pose a credible threat to the group at large —
a deviating coalition should also employ self-enforcing arrangements. These embedded
constraints characterize the concept of self-enforcing risk-sharing agreements and stable
coalitions that we define in this paper.

Despite their importance, issues of participation and group formation have been little

1Udry [1994], in his study of rural northern Nigeria, finds this constraint to be the most important
in describing the structure of reciprocal agreements. While this does not prove that other informational
asymmetries are of second-order importance (for instance, they may limit the choice of whom to transact
with in the first place), we feel that the self-enforcement constraint represents a good first approximation.

2The literature on risk-sharing without commitment in rural societies started with the suggestions
of Posner [1980] and Kimball [1988] that schemes of mutual insurance with limited commitment were
possible. In an important paper, Coate and Ravallion [1993] characterized mutual insurance arrangements
with a restriction to stationary transfers for a symmetric two-household model. A recent strand of
literature investigates efficient dynamic contracts in the absence of commitment (Kocherlakota [1996],
Ligon, Thomas and Worrall [2002], Kletzer and Wright [2000]).
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discussed in the literature on informal risk-sharing. As we shall see, this criticism is not
just one of methodology, it has substantive implications. The most important of these is
that the “individual deviations” framework places no bound on group size. For instance,
in a homogeneous population, the larger the group the higher the per-capita utility
from risk-sharing. Barring other impediments to group size, the theory implies that
any efficient agreement has to be at the level of the “community.” That is why most
empirical tests of insurance (Deaton [1992], Townsend [1994], Udry [1994], Jalan and
Ravallion [1999], Ligon, Thomas and Worrall [2002], Grimard [1997], and Gertler and
Gruber [2002]) take the unit of analysis as exogenous and study the extent of insurance
at the level of the village or even larger groups.3 Of course, this is not say that group
limits are not taken seriously. But other considerations — caste, kinship, or even the
informational decay that must ultimately affect large groups — must be brought in to
complete the picture. One could, of course, model this in several ways: for instance, by
positing some cost of group formation which increases with the size of the group (see,
e.g., Murgai et al [2002]).

We abstract from all such factors. We endogenize not just the extent of insurance
within a given groups, but the process of group formation within a community. Without
invoking any of the additional considerations described in the previous paragraph, we
show that there are limits to group size (though at this time we have not obtained clear
characterizations of these limits). Indeed, we show that for any parametric configuration
of the environment, only a finite number of group sizes can be stable, even though — in
principle — every potential group size is allowed for.

An important and paradoxical consequence of this observation is that an increase in
the need for insurance — stemming either from a change in the environment or in some

3These studies typically test for full insurance at the community (village) level in less developed
countries, many of them inspired by Townsend [1994]’s well-known study of risk and insurance in village
India. In this study, Townsend finds evidence consistent with substantial insurance but rejects full
insurance. Similar conclusions have been found by many authors such as Deaton [1992] in the context
of Côte d’Ivoire, Ghana and Thailand, by Udry [1994] for northern Nigeria, and Jalan and Ravallion
[1999] in villages of rural China. Ligon, Thomas and Worrall [2002] test the constrained efficient or
dynamic limited commitment model on the ICRISAT Indian households. Gertler and Gruber [2002] look
at consumption insurance in case of major illnesses in Indonesia. Grimard [1997] tests the full insurance
model among even larger groups defined along ethnic lines in Côte d’Ivoire. All the above reject complete
risk-sharing at the level of the community or even larger ethnic group, but provide significant evidence
of partial insurance. From a related perspective, Townsend [1994] and Chaudhuri and Ravallion [1996]
finds that the poor have only limited insurance against idiosyncratic shocks. Rosenzweig [1988] studies
the transfers themselves in the same data set and estimates these to typically be less than 10% of the
typical income shocks in bad periods. Morduch [1991] obtains similar results using the Indian ICRISAT
data. He finds evidence of risk sharing within groups, but not across groups. He finds that the poor have
only limited insurance against idiosyncratic shocks. He also notes a caste effect. Cox and Jimenez [1997]
find that just 40% of black South African households and fewer than 10% of white South African either
give or receive transfers.
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behavioral parameter such as the degree of risk aversion — can decrease the extent of
risk-sharing among the population. Indeed, it can do so by reducing the maximal stable
group size. It is important to note that such an observation cannot be obtained in a
model with only individual deviations, even if considerations of kinship or information
are brought in to close off group size. With an increase in output uncertainty, these
considerations would be given somewhat less importance at the margin, so equilibrium
group size can only expand.4

We do not attempt, in this paper, to provide empirical support for the possibilities
raised here. But it is worth noting that the few papers actually addressing the issue of
risk-sharing among subgroups find convincing evidence for it; see Fafchamps and Lund
[2001] and Murgai et al. [2002].5 Both these studies suggest that the explanation for
the formation of these subgroups must lie in the existence of “group costs” that increase
with the number of participants in the risk-sharing agreement. For instance, Murgai et
al. (2002) observe that: “If establishing and maintaining partnerships is indeed costless,
there is no reason for a mutual insurance group not to be community-wide or world-
wide. Real world limits to group size must therefore be the result of costs relating to the
formation and maintenance of partnerships.”

We suggest that there may be more fundamental reasons for group splintering. Nat-
urally, one can think of many reasons for which group size may be limited, and we have
already mentioned some of these. Individuals belonging to a certain religion, caste or
ethnicity may prefer not to transact with anyone outside their group. Asymmetries of in-
formation and the lack of enforcement may be less pronounced among people living next
to each other, sharing the same relatives, having the same activities, etc. But although
these motives may limit the number of people one may consider sharing risk with, that
generally leaves a significant group of people still available.

Further theoretical and empirical investigation of risk-sharing agreements — with
a sharp focus on strategic group formation — would be very useful, especially given
the potential importance of the policy implications. From a theoretical perspective, a
tighter characterization of stable group sizes is much needed. Once these limits are well-
established for the homogeneous case, heterogeneity among the agents can be better
studied. For instance, the consequences of endogenous matching — e.g., along wealth
levels (Hoff [1997]) or risk characteristics (Ghatak [1999] and Sadoulet [1999]) — may be

4It is logically possible that an increase in output uncertainty can simultaneously increase informa-
tional asymmetries, so much so that equilibrium group size shrinks as a consequence. But one would
need rather strong assumptions to derive such a prediction.

5Fafchamps and Lund [2001] examine — in the context of the rural Philippines — whether gifts and
loans circulate among networks of friends and relatives, or whether risk is efficiently shared at the village
level. Murgai et al. [2002] investigate water transfers among households along a watercourse in Pakistan’s
Punjab. They find that reciprocal exchanges are localized in units smaller than the entire watercourse
community. Unfortunately — these exceptions apart — issues of participation and group formation have
been little discussed in the literature on informal risk-sharing.
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investigated against this background.

2 The Formation of Mutual Insurance Groups

2.1 Introduction

A community of n identical agents is engaged in the production and consumption of a
perishable good at each date. Each agent produces a random income which takes on
two values: h with probability p and � with probability 1 − p. The terminology h and
� naturally suggests the ordering h > � > 0. Income realizations are independent and
identical, over people as well as dates.

Each agent has the same utility function, increasing, smooth and strictly concave in
consumption. We thus have an instance of a classical group insurance problem. The
(symmetric) Pareto optimal allocation is reached by dividing equally — and among all
members of the community — the aggregate available resources at each period. Naturally
the larger the group the smaller the dispersion of per-capita output, and the larger the
potential value of insurance.

As motivated and discussed in the Introduction, we focus on the theme that insurance
arrangements must be self-enforcing, and that this requirement constrains the form of
such arrangements. Briefly, the enforcement constraint refers to the possibility that at
some date, an individual who is called upon to make transfers to others in the community
refuses to make those transfers. The constraint is then modelled by supposing that
the individual is excluded from the insurance pool, so that he must bear stochastic
fluctuations on his own (there may be additional sanctions as well). If the power of such
punishments is limited, then perfect insurance (which calls for extensive transfers) may
not be possible. The literature cited above concentrates on the structure of “second-best”
self-enforcing schemes.

In this paper, we extend the enforcement constraint in a natural way. There is no
reason to believe that only an individual will deviate from an ongoing arrangement. An
entire subset of individuals — a coalition — may instigate a joint deviation by refus-
ing to contribute to the wider community and thereafter forming their own reciprocity
“subgroup.” To be sure, the subgroup itself may be vulnerable to further deviations and
so may lack “credibility” in its threats (see Ray [1989]). Thus we only permit credible
coalitions — those that are stable in their own right — to pose a threat to the community
as a whole. We shall show that these threats have a dramatic effect on our predictions
concerning the extent of insurance, and especially on the way the need for insurance
varies with the amount of (exogenous) environmental risk.

Our insistence on immunity with respect to blocking coalitions is reminiscent of re-
cent literature on endogenous coalition formation (see, e.g., Bloch [1996, 1997] and Ray
and Vohra [1997, 1999, 2001]). But there is a difference. In the cited literature, coalitions
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respond to a proposed ex ante arrangement by blocking it, or by proposing alternatives,
etc. In this case, a tighter constraint must be observed; namely, that created by the
realization of income shocks at every date. Thus, in contrast to the “participation con-
straints” of the literature on endogenous coalition formation, these are truly “incentive
constraints.” In this sense, our approach also bears a close connection to coalition-proof
Nash equilibrium (Bernheim, Peleg and Whinston [1987]).

In the main part of the paper, we develop the theory of group enforcement con-
straints under the simplifying assumption that each coalition or group, once formed,
attempts to implement some symmetric and stationary risk-sharing arrangement. This
assumption allows us to make the main points very cleanly. But it is not a critical as-
sumption. In a later section, we point out how the theory can be extended to the case in
which coalitions implement arbitrary (nonsymmetric, nonstationary, history-dependent)
arrangements among their members.

This is not to say that our analysis is entirely devoid of restrictive assumptions. Most
important of these is the assumption that only subsets of existing groups are permitted
to deviate. We discuss this and other issues in Section 4.

2.2 Stable Groups

Because the stability of a group is threatened by subgroups of individuals, it is possible
to define group stability recursively. To this end, we begin with individuals (or singleton
coalitions). The lifetime utility of an individual in isolation (normalized by the discount
factor to a per-period equivalent) is simply

v∗(1) ≡ pu(h) + (1 − p)u(�).

Because singleton groups have no proper subsets, this is the stable worth of an individual.
Recursively, having defined stable worths for all m = 1, . . . , n − 1, consider some

coalition of size n. We first define a (symmetric and stationary) transfer scheme. This
may be written as a vector t ≡ (t1, . . . , tn−1), where tk is to be interpreted as the
(nonnegative) transfer or payment by a person in the event that his income is h and k
individuals draw h. We only consider nontrivial schemes in which tk > 0 for some k.

With a transfer scheme in mind we can easily back out what a person receives if
his income draw is � and k individuals produce h. The total transfer is then ktk, to be
divided equally among the n − k individuals who produce l. Thus a transfer scheme t
implies the following: if there are k high draws, then a person consumes h − tk if he
produces h, and � + ktk

n−k if he produces �. It follows that the expected utility from a
transfer scheme t is given by

v(t, n) ≡ pnu(h) + (1 − p)nu(�) +
n−1∑
k=1

p(k, n)
[
k

n
u(h− tk) +

n− k

n
u

(
�+

ktk
n− k

)]
, (1)
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where p(k, n) is just the probability of k highs out of n draws.6 Define a (nontrivial)
transfer scheme to be stable if for all k = 1, . . . , n− 1,

(1 − δ)u(h− tk) + δv(t, n) ≥ (1 − δ)u(h) + δv∗(s) (2)

for every stable s ≤ k.
The interpretation of stability is quite simple. We require that for all possible income

realizations, the stipulated transfers be actually carried out. If (2) fails for some k and
s ≤ k, this means that there is a stable coalition of size s who can credibly refuse to pay
what they are required to pay (when k individuals draw high). Such a transfer scheme
will, sooner or later, break down.7

Say that a group of size n is stable if a stable transfer scheme exists for a group of
size n. Define v∗(n) to be the maximum possible value of v(t, n), where the maximum
is taken over the set of all stable transfer schemes for a group of size n. Otherwise, n is
unstable and v∗(n) is not defined.

3 Group Stability And The Need for Insurance

Our main interest lies in examining the relationship between the “need for insurance”
and the “stability of insurance groups.” We begin by making these phrases more precise
in our particular context.

The need for insurance is, of course, a composite object: it will vary with the extent
of environmental uncertainty (proxied by the gap between h and �), and given the en-
vironment, it will vary with the degree of risk aversion. For our purposes, it will turn
out that a useful measure of the need for insurance is the ratio u′(�)−u′(h)

u′(h) , which we
henceforth denote by θ. Keeping everything else constant, notice that a mean preserv-
ing spread between h and � increases θ. Moreover, for the same income distribution, a
utility function that exhibits a higher risk aversion throughout its domain will translate
into a higher need for insurance. Hence, our measure incorporates both environmental
uncertainty and attitudes towards risk, albeit in summary form.

The “stability of insurance groups” is a more problematic concept. One might be
interested, for instance, in the entire set of stable groups, which can behave in a com-
plicated fashion. We simply assume that there is some given population size in the

6That is, p(k, n) = n!
k!(n−k)!p

k(1 − p)n−k.
7It might be objected that this definition of stability is too stringent, in the sense that it requires the

group of size n to be immune to every possible realization of the random shocks, and not simply those
which occur with “high enough” probability. However, provided expected payoffs are calculated properly,
it is easy enough to see that the two definitions are equivalent. For suppose that a transfer scheme is
stable under the weaker definition, noting that in the “unstable” low probability states no transfers will
be implemented. Then a new transfer scheme which is the same as the old except for suitably chosen
small transfers in the previously “unstable” states will be stable in our sense.
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community, and ask how close we can get to this without forsaking stability. In other
words, we are interested in the largest stable group.

3.1 The Individual Enforcement Problem

It will be useful to begin by considering the well-known problem in which only the
individual enforcement constraint must be respected. Fix a population of n individuals,
and let v̂(n) denote the maximum value of (1) when (2) is only invoked for s = 1. In
other words, v̂(n) is the solution to the following problem

max
t
v(t, n) (3)

subject to
(1 − δ)u(h− tk) + δv(t, n) ≥ (1 − δ)u(h) + δv∗(1) (4)

for all k = 1, . . . , n− 1.
If there is some nontrivial transfer scheme that solves this problem, say that a group

of size n is individually stable, or i-stable for short.
The following proposition fully characterizes i-stability for symmetric stationary equi-

libria.

Proposition 1 A group size n is i-stable if and only if

θ >
1 − δ

δp(1 − pn−1)
(5)

Proposition 1 states that some minimal need for insurance is required for a group
to be i-stable; indeed, when the need for insurance is very low no group is i-stable. To
see this, notice that the right hand side of (5) is bounded below (uniformly in n) by the
expression 1−δ

δp , so that if the need for insurance is lower than this value no group size,
however large, can be stable.

As the need for insurance increases above this absolute minimum, i-stable groups
begin to appear. Indeed, they appear in a particular order. An easy consequence of
Proposition 1 is

Corollary 1 If n is i-stable, so is n′ for all n′ > n.

This tells us that larger groups do better in terms of i-stability than smaller groups
do.
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3.2 Low Need for Insurance

The preceding discussion has an immediate implication. Fix a community of size n,
and carry out the thought experiment of raising the need for insurance (for instance by
creating a mean-preserving spread of the income distribution) from a value close to zero.
By Proposition 1, a group of two or more individuals must initially not be i-stable, and a
fortiori , it must be unstable. At some point θ crosses the critical threshold given by the
right hand side of (5). Just at this point, the only i-stable group size is n itself (and all
larger sizes, but these are irrelevant). It follows that n must be stable as well, because
all smaller groups are unstable.

We may summarize this discussion in the following proposition, which is an obvious
corollary of Proposition 1.

Proposition 2 As the need for insurance increases, the first group to attain (full) sta-
bility is the entire community.

3.3 High Need for Insurance

As the need for insurance continues to rise, smaller groups become i-stable. The question
is: does the newly acquired stability of these groups threaten to disrupt the stability of
larger groups?

General arguments that apply to the comparison of any two i-stable groups are hard
to obtain, as the following example shows.

Example 1. Set community size n equal to 3, and assume that individuals have the
CRRA utility indicator

u(c) =
1

1 − ρ
c1−ρ

where ρ is the Arrow-Pratt coefficient of relative risk aversion.
The following parameters are set through the example: δ = 0.83, ρ = 1.6, and p = 0.4.

We consider several options for � and h, keeping mean income constant throughout,8 but
progressively raising the value of θ. The results are reported in Table 1.

The table shows that stability is a complex object to check for. When the need
for insurance is low, the three-person community is stable, in line with Proposition
2. Thereafter, two-person groups also acquire stability, but fail to generate enough
insurance to threaten the community as a whole. The situation changes, however, when
the need for insurance is still larger. While both two- and three-person groups gain in
i-stability, the gain enjoyed by the former is large enough to render the three-person
community unstable. Contrary to the notion that more uncertainty generates larger

8We set mean income equal to 2.4 through the example.

9



θ 2 stable? 3 stable?

≤ 0.6096 × ×
0.7195 × √
0.9136

√ √
1.6375

√ ×
2.6601

√ √

Table 1: Stability for Various Values of θ.

insurance groups, the maximal stable group size falls. Yet, as the final row of Table 1
shows, the fall is not inevitable: for still higher degrees of uncertainty, the three-person
community regains its stability.9

It should be clear from this example that general results regarding stability will be
hard to come by, though the possibility that stable group size responds perversely to
greater uncertainty is well illustrated even in this special case. In the remainder of this
section, we outline some general findings.

In what follows, it will initially be useful to fix the need for insurance and ask a
preliminary question: in a given environment, are there an infinity of stable groups? To
be sure, the answer must be in the negative when the need for insurance is “small”; to
be precise, when θ < 1−δ

δp . For we know from Proposition 1 that in this case there is
no i-stable group (other than the singletons), and consequently no stable group either.
Once this critical bound is passed, however, Corollary 1 tells us that an infinity of i-stable
groups appear. The lowest i-stable size is the smallest value of n for which (5) holds, and
every group size exceeding this bound is also i-stable. The question of whether there is
an infinite number of stable groups now becomes nontrivial, and is answered in

Proposition 3 For each level of need for insurance θ > 1−δ
δp , there are thresholds n̄(θ)

and n(θ) such that
2 ≤ n(θ) ≤ n ≤ n̄(θ) < ∞, (6)

for every stable group size n. Moreover,

n(θ) ↑ ∞ as θ ↓ 1 − δ

δp
. (7)

Figure 1 provides a graphical description of the proposition. The lower bound n(θ) is
easy enough to obtain: it is simply the size of the smallest i-stable group and is therefore

9The detailed numbers are available on request from the authors.
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Figure 1: An Illustration of Proposition 3.

the smallest value of n such that (5) holds. This immediately explains why n(θ) ≥ 2
(once θ lies above the critical threshold 1−δ

δp ), and why this threshold becomes infinitely
high as θ descends to the critical threshold.

The nontrivial part of the proposition asserts the existence of an upper bound on
stable groups. This observation, by the way, contrasts with the existence of infinitely
many stable sizes in the coalition formation literature (see, e.g., Bloch [1996] and Ray
and Vohra [1997] for results on stable cartels in oligopoly, and Ray and Vohra [2001] for
results on the efficient provision of public goods). It is peculiar to the insurance problem.

To see why, consider this intuitive account of the proof. If the assertion were false,
there would be (for some need for insurance ) an infinity of stable sizes. But we do know
that the marginal “diversification gain” from an increase in size ultimately tends to zero.
Therefore, we may pick a stable size n such that a coalition of size n is able to reap most
of the benefits of sharing risk: a larger stable group improves the per-capita utility of its
members by only a small amount. It follows from the enforcement constraint that in any
larger stable coalition, the transfers made whenever at least n people have a good shock
have to be close to 0. Because the set of stable sizes is infinite, we can choose this stable
coalition sufficiently large such that the probability that at least n people have a good
shock is close to 1. Therefore the worth of such a coalition can be brought arbitrarily
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close to autarkic utility, but this contradicts the presumed stability of that coalition.10

In addition Proposition 3 allows us to derive a general “nonmonotonicity” result akin
to the sort indicated in Example 1.

Proposition 4 There is an integer ñ with the following property. For every community
size n ≥ ñ, there exist degrees of uncertainty θ1 and θ2, with θ2 > θ1, such that n is
stable under θ1 but is unstable under θ2.

The proof follows immediately from an examination of Figure 1. The lower bound ñ
can be taken to be any value that lies above the “stable correspondence” at some point.
Then for any n ≥ ñ, it is obvious that stability obtains at the value of θ that corresponds
to the inverse image of n (evaluated at n) — θ1 in the figure — while stability fails once
n̄(θ) falls below n — e.g., at θ2 in the figure.

These propositions are silent on just how restrictive coalition considerations can be.
Unfortunately, we have no general results to this effect. But an example may be illus-
trative.

Example 2. Consider a community of ten individuals with the same functional form
for utility as in Example 1;

u(c) =
1

1 − ρ
c1−ρ,

where ρ is the Arrow-Pratt coefficient of relative risk aversion. We also use the same
specific parameters as in Example 1: δ = 0.83, ρ = 1.6, p = 0.4, � = 2, and h = 3.

We evaluate — for each group size ranging from 1 to 10 — the return to informal
insurance. One natural way to do this is to look at the gain over and above autarky,
compared to the corresponding per-capita gain that the first-best provides in the com-
munity of all ten. If ṽ denotes this latter value and v̂(n) is the i-stable value for a group
of size n, then the i-stable gain may be reported as

v̂(n) − v(1)
ṽ − v(1)

× 100

in percentage terms. Similarly, if v∗(n) is the stable value for a group of size n, then the
stable gain is described as

v∗(n) − v(1)
ṽ − v(1)

× 100,

again in percentage terms. The results for this example are reported in Table 2.
10The argument is much more subtle when history-dependent and asymmetric strategies are involved.

The subtlety arises from the fact that to prevent a group deviation by n individuals, only a subset of
them (one, at best!) need be deterred. With general strategy spaces, this additional flexibility arising
from unequal treatment becomes available. We return to these issues below.
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n Stable? i-Stable Gain (%) Stable Gain (%)

1
√

0 0
2

√
10 10

3
√

50 38
4 × 61 ∅
5 × 69 ∅
6 × 75 ∅
7 × 78 ∅
8 × 81 ∅
9 × 84 ∅
10 × 85 ∅

Table 2: Stable Gains are Limited.

It turns out that within this population of 10 and for the parameter values described,
only individuals and groups of size 2 and 3 are stable. The question arise then: which
groups do we expect to see and if there are groups of different sizes which payoffs do we
look at? Since we are looking at constrained efficient schemes among identical agents, a
good contender is the partition of the population into stable groups that maximizes the
expected utility of an agent, under the assumption that his probability to be in any given
group is proportional to the size of the group. In this example, this rule predicts that
the population would break into three stable groups of three and one individual (which
means a ninety percent chance to get v∗(3) and a ten percent probability to get v(1)).
That is, an individual’s stable payoff gain is 38% (see Table 2) with probability 9/10 and
0 otherwise. This implies a stable gain of only 34% which is less than half the return
(85%) were we not to account for coalition formation.

Much has been written on “social capital” in the past few years. In the insurance
context one could measure the return to such capital very much as we have done here.
Clearly, recognizing the possibility of coalition deviations dramatically reduces the esti-
mated return on social capital.

One might object that Example 2 is only described for a very special set of param-
eter values. Computations for several parameter values11 reveal both robustness and
sensitivity, in the following sense.

Equilibrium group sizes and the need for insurance are very sensitive to the param-
eters. As Coate and Ravallion [1993] observed in their computations, “[o]ne striking
feature of the results ... is how sharply the performance varies. Even quite a success-

11See http://www.econ.nyu.edu/user/debraj/Papers/GenicotRaySims.pdf.
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ful risk-sharing arrangement may vanish with certain seemingly modest perturbations
to parameter values, such a small decline in the participants’ aversion to risk.” These
observations are compounded by an order of magnitude in our model. Even an increase
in risk (or in the aversion to it) may destroy previously successful insurance arrange-
ments as previously non-viable subgroups now become viable, destroying the viability of
the larger community. In this example, for instance, increasing the need for insurance θ
from 0.91 to 1 causes a group of size 3 to become unstable. Several perturbations of θ
and p cause the stable gain to fluctuate from 20% (a fifth of the corresponding i-stable
gain) to 37% (45% of the corresponding i-stable value). This suggests a great deal of
sensitivity in the quantitative magnitudes. However, the results are surprisingly robust
in the sense that potential coalition deviations inevitably cause a large fraction of the
potential benefits from insurance not to be reaped.

4 Limitations and Possible Extensions

We have made several assumptions in the analysis so far, some of them implicit. In this
section, we discuss the more important restrictions (several of them will be taken care of
as we move on to the nonstationary case in Section 5).12

4.1 On Group Formation

An important restriction runs through the entire exercise, and it is unclear how crucial
this is for the results we obtain. This is the assumption that only subgroups of existing
groups can deviate. In other words, when we consider further deviations from subgroups,
we do not permit new groups to form by putting together fragments from several existing
groups, nor do we permit wholesale mergers of existing groups. But the emphasized
phrase in the previous sentence is important: we certainly allow groups of any size to
form at the outset; no restriction is imposed at that stage.

The problem arises because it is unclear how to formalize arbitrary deviations, and
not because there is some a priori suspicion that this will invalidate our results. One
issue is the potential threat of “cyclical blocking chains,” which often frustrates the
basic task of formulating a satisfactory solution concept.13 Suppose that there are three
agents. Consider all possible groupings of two individuals each. At first blush, each such
group is unstable: for instance, the group {12} could disintegrate when person 1 gets a
good shock: 1 could refuse to make any transfers, team up with person 3, and replicate

12Some of the obvious suspects are not crucial at all. For example, it is easy to generalize the ideas of
this paper to the case in which there are several income realizations, not just two, as well as to the case
in which income shocks are correlated across agents, as in Kocherlakota [1996]).

13The restriction to “internal deviations” is common ever since the possibility of cyclical chains of
blocking was raised by Shenoy [1979].
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whatever it is that {12} planned to do in the future. The same argument holds with
each pair of individuals. But this approach is inconsistent: if all pairs are known to lack
viability, then a particular pair should be able to exploit the consequent instability to
attain viability on its own (under the credible threat that any alliance with an outside
agent will itself disintegrate).

There are two ways around this conceptual problem. First, symmetry may need to
be broken: coalition {12} may be deemed stable while all other pairwise groups are
deemed unstable.14 [This idea generalizes to communities with more agents.] This is
consistent: groups {13} and {23} are both unstable because of the perceived threat from
{12}, while this last pair is stable because there is no credible threat from the other pairs.
Second, one might entertain symmetric probabilistic solutions, in which deviations occur
stochastically so that each pair has an uncertain lifetime. This will require, of course,
that a potential deviator be indifferent between remaining in the group and joining hands
with an outsider, and this indifference condition will pin down group value (see Konishi
and Ray [2002] for an approach to coalition formation along these lines).

Notice that neither approach compromises our results in any qualitative sense, though
it is possible that the list of stable group sizes will be altered.

4.2 Who Deviates?

Notice that in our definition, we consider potential deviations only by agents whose
income realizations are high. Might people with a bad shock never want to deviate?
There are two responses to this question. First, once we consider asymmetric or history-
dependent equilibria there is no reason to exclude low draws from the list of potential
deviants: they may well be called upon to make transfers. We take this fully into account
in Section 5.

Second, it is possible that low draws may participate in group deviations even when
we consider symmetric, stationary equilibria. Our analysis makes an implicit — but, in
our view, reasonable — assumption that rules out this possibility. To clarify this, suppose
that a subgroup of two agents in a community of four receive a good shock. Suppose,
moreover, that the two-person enforcement constraint is satisfied, either because a two-
person coalition is unstable and does not pose a threat, or it is stable but the gains from
deviation are not worth the cost of moving from four to two persons. However, assume
that a three-person group is indeed stable, and that our two high drawers would prefer
to deviate and enjoy the benefits of a three-person arrangement thereafter. Now, there
is no apparent reason why a person with a low draw should join this group: she is about
to receive money and she will thereafter stay with a four-person group, rather than with
three. But it still might happen: if each of the two low drawers were to believe that the

14Bernheim and Ray [1989, p. 307] discuss this issue of asymmetric labelling in a related context.
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other would join if she didn’t, it might pay to agree. But this sort of behavior depends
crucially on a coordination failure among the low drawers. If no agent with a low draw
were to join the deviants, then no such agent would want to join.

The same reasoning applies for any number of agents. Given this equilibrium selec-
tion, checking the enforcement constraints only for stable subsets of highs is necessary
and sufficient when considering symmetric stationary strategies.

4.3 Stability Relative to Some Given Scheme

The analysis so far goes some way towards explaining the role of group deviations in fully
bounding stable group size. It also explains why the extent of insurance might change in
paradoxical ways as the need for insurance changes. But the arguments we employ are
limited, in that we do not provide a tighter characterization of stable groups. We believe
this is a very hard question, though certainly not an impossible one.15

One possible approach is to specify some insurance scheme, and then to attempt
to describe the set of stable groups relative to that scheme. An obvious candidate
is full insurance, in which individuals within a group must attempt to equalize their
consumption in every period. Such a scheme may be socially determined, for instance:
it may be incumbent on all members, conditional on being in the same community, to
share their resources to the maximum extent. To be sure, an insistence on such norms
may ultimately cause the community to split up. Using a notion of stability for equal
sharing — first-best stability — it is possible to make some progress.

Let ṽ(n) denote the expected utility from a first best transfer scheme.16 By definition,
individuals are first best stable and the worth of a singleton group is ṽ(1). Recursively,
having assessed first-best stability for all m = 1, . . . , n− 1, a coalition of size n is said to
be first-best stable if, for all k = 1, . . . , n− 1,

(1 − δ)
(
u(h) − u

(
k

n
h+

n− k

n
�

))
≤ δ (ṽ(n) − ṽ(s)) (8)

for every first-best stable s ≤ k. If n is first-best stable then its worth is simply ṽ(n).
Note that for a given first-best stable size s it actually suffices to check the constraint
for k = s since the left-hand side is decreasing in k.

With quadratic preferences, it is possible to show that the set of first-best stable sizes
is a “connected” set of integers:

15Bloch [1997], Ray and Vohra [2001] and Yi [1996] all contain applications in which characterizations
of stable groups are provided. These applications include Cournot oligopoly, public goods coalitions,
and customs unions. However, apart from the general methodology, the analysis is typically application-
specific.

16That is ṽ(n) ≡ ∑n

k=0 p(k, n)u( k
n
h + n−k

n
�).
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Observation 1 Let u have the special form u(x) = −(B − x)2 for some B > h. Then
n is stable if and only if for every 1 ≤ k ≤ n− 1,

C

k
+
k

n
≥ 2
θ

+ 1, (9)

where C = δ
1−δp(1 − p) and θ = h−�

B−h is the need for insurance, as defined earlier.
In particular, if a group of size n is not first-best stable then a group of size n′ > n

is not first-best stable either.

Given (9), the reason for the set of first-best stable sizes being connected is simple: if
condition (9) fails for some group size n and some subgroup size k, then it must fail for
the very same subgroup size at all values n′ > n.

A corollary of this observation is that a necessary and sufficient condition for the
existence of some nontrivial first-best stable size is the same as the condition for a two-
person group to be nonempty.17 A specialization of (9) to the case of n = 2 and k = 1
reveals that the required necessary and sufficient condition is

δθp(1 − p)
1 − δ

≥ 3/2. (10)

The condition (9) may also be used to obtain a tighter description of the maximal
first-best stable group. We illustrate this by neglecting integer constraints (which are
easily accounted for). Observe that the left-hand side of (9) is minimized (in k) when
k =

√
nC, this condition being applicable when n > C. Solving for the minimum value,

we see that the maximal group size M is bounded above by the inequality

M ≤ max{C, 4C(
2
θ + 1

)2 } (11)

Notice that M is bounded uniformly in θ. Whether or not this is a general observation
is an open question (our proposition for stability establishes “pointwise” bounds).

4.4 Strong Stability

One might wish to drop the requirement that blocking groups be credible. This is
a “strong equilibrium” notion. In our view, this is very restrictive. It places severe
constraints on the original group, but does nothing to subcoalitions. [The concept is not
consistent in a very basic sense.] It is true that if something survives strong blocking, it
passes a big test, but we may be throwing a lot out.

17With first-best stability, a two-person group reaches stability at a lower threshold of θ than any
group of larger size (at least with quadratic preferences). While this superficially runs against the grain
of Corollary 1, there is no contradiction here. First-best stability is different from i-stability.
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Briefly, one could define the concept as follows. Say that a (nontrivial) stationary
transfer scheme t is strongly stable if for all k = 1, . . . , n,

(1 − δ)u(h− tk) + δv(t, n) ≥ (1 − δ)u(h) + δṽ(s) (12)

for every s ≤ k.18

The set of non-trivial strongly stable sizes may or may not be empty. For instance,
the members of a two-person group can divide their income equally each period with no
incentive to deviate alone, given sufficient patience. Under those circumstances a two-
person coalition would be strongly stable. Less trivially, one can write down examples of
three-person insurance schemes which are immune to two-person deviations that employ
the first best insurance scheme thereafter.

More generally, observe that if n is strongly stable it has to exhibit perfect risk-
sharing, otherwise the peculiar logic of strong stability renders it vulnerable to a deviation
by n itself! So strong stability is very close to examining the stability of first-best schemes,
as discussed in Section 4.3. In fact, when the set of stable sizes is connected (as in the
quadratic case discussed in Section 4.3), the two concepts can be shown to be equivalent.

The set of strongly stable sizes has a finite upper bound. Since first-best risk-sharing
is stationary and symmetric, the proof of this statement is very similar to the proof of
proposition 3 and is therefore not included.

4.5 Group Deviations and Asymmetric Treatment

Our use of symmetric equilibrium may be criticized along the following lines. When
group deviations are important, symmetry necessitates that we must compensate all
potential deviants in a subgroup in order to prevent a deviation. If the symmetry is
broken (perhaps stochastically), then not all deviants need to be so treated. A subset
will suffice, containing the minimal number that must be compensated in order to avoid
the deviation. It appears, then, that asymmetric treatment is a conceivable reaction to
group deviations, possibly widening the scope of stability for a community.

As an illustration, consider an environment similar to example 1. We solve this nu-
merically so specific parameters are involved: a population of 3 individuals with constant
relative risk aversion of 1.6 and a discount factor of 0.83 face an income distribution with
mean 2.4 and a probability p = 0.4 of a low income. It is easy enough to pick a level of
insurance need θ = 1.13 (h = 3.1, � = 1.9) such that, using symmetric and stationary
agreements, the only (non-trivial) stable group size is 2. The stability of groups of size
2 prevents the stability of the full community.

Now we can show that a stable stationary insurance scheme exists for the entire
community: one that makes use of asymmetric transfers among the three agents. Define

18Recall that ṽ(n) is the expected utility from a first best transfer scheme.
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τ1 = 0.33 and τ2 = 0.13 and consider the following scheme. When only one individual
draws high, he pays τ1 which is divided equally among the two lows as before. The
difference appears when two members have high incomes. The scheme selects randomly
one of the highs and requires him to pay τ1 to the agent with a low income. The other
agent with a high draw is asked only to transfer τ2. Under this scheme, it is easy to see
that the second agent will not want to deviate in a group of 2 while the first (who makes
the larger transfer) would not want to deviate alone. Hence, the asymmetric scheme is
stable. Clearly, different agents with the same income realization are treated differently
although the randomization ensures that symmetry is respected ex-ante.

The points made here and in the previous subsections strongly suggest that an exam-
ination of asymmetric and fully history-dependent schemes is called for as a robustness
check on the results. Fortunately, we are able to report some progress on this important
question.

5 On Nonstationary Insurance Arrangements

The reader familiar with the insurance literature might ask whether our results extend
to non-stationary schemes. As we have already noted, Section 4 provides additional
motivation for such a query. To this it must be added that history-dependent schemes
are of interest even in the case of individual deviations. Indeed, as Fafchamps [1996],
Ligon, Thomas and Worrall [2002], Kletzer and Wright [2000], Kocherlakota [1996] and
others have observed, second-best i-stable schemes are generally history-dependent once
the first-best fails to be self-enforcing.

In addition, as several authors have argued, history-dependent schemes appear to
receive considerable empirical support. Numerous studies in the economic and anthro-
pological literature provide evidence that informal risk-sharing agreements and informal
credit arrangements are not clearly separated (see, for instance, Evans-Pritchard [1940],
Platteau and Abraham [1987] and Udry [1994]). These studies report a large reliance on
what is observationally equivalent to informal loans with an implicit repayment scheme
contingent on the lender’s needs and the borrower’s ability to repay. This is actually
well reflected in the structure of history-dependent schemes. Ligon, Thomas and Worrall
[2002], in their analysis of ICRISAT data, observe that the history-dependent “dynamic
commitment model does better than any of several alternatives in explaining actual con-
sumption allocations. It provides a better explanation than the benchmark of perfect
risk-pooling; it also performs better than the [stationary] limited commitment model.”
Foster and Rosenzweig [2001] extend this framework to include altruism19: this permits

19They use three different data sets, all from South Asia: the ICRISAT Village Level Studies (VLS)
survey, the Additional Rural Income Survey of the National Council of Applied Economic Research
(India), and the IFPRI’s Pakistan Food Security Survey.
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them to uncover variations in history-dependence as a function of, say, within-family
vs. cross-family arrangements. Such variation is borne out in their analysis, lending
further credence to the view that history-dependence is an outcome of lowered commit-
ment ability (proxied here by altruism). Fafchamps and Lund [2001] also obtain evidence
that the “quasi-credit” nature of insurance appear to fit the data best.20 They conclude
that “[the] bulk of the evidence appears in agreement with the theoretical predictions of
[limited commitment] models: risk sharing takes place through repeated informal trans-
actions based on reciprocity; mutual insurance takes place through a mix of gifts and no
interest loans; and informal indebtedness reduces borrowing.”

5.1 Insurance Arrangements

We first define general insurance arrangements. For a group of size n, let y be a vector of
realized incomes; that is, yi is either h or � for each i = 1, . . . , n. Let c be a nonnegative
vector of consumptions. Say that c is feasible (under y) if

∑
i ci =

∑
i yi. For any date

s, an s-history — call it Hs — is a list of all past income realizations and (feasible)
consumption vectors. [At s = 0, simply use any singleton to denote the 0-history.]

Define M(y) to be the set of all probability measures over consumption vectors c
such that c is feasible for y. An insurance arrangement is a list of functions σ = {σs}∞

s=0
such that for all s ≥ 0, σs maps the product of s-histories and current income realizations
y to lotteries in M(y). We’ll say that an insurance arrangement is nontrivial if it places
positive probability on schemes that involve nonzero transfers for some states.

Observe that an insurance arrangement generates a vector of expected payoffs fol-
lowing every s-history Hs: call this vector v(Hs, σ, n). [These are discounted normalized
expected payoffs for each individual in the group, before the realization of current in-
comes and, of course, the consumption lottery.] Also observe that by standard dynamic
programming arguments, an insurance scheme may be viewed as a lottery over current
consumption schemes, followed by a vector of continuation payoffs, all contingent on the
realization of the income state.

Notice that this general definition allows for history-dependence, asymmetries, and
randomization. Notice that nothing is to be gained from randomization when individual
deviations alone are considered, (the set of stable payoffs from deterministic schemes
is convex in any case). However, as discussed in section 4.5, randomization makes an
appearance when group deviations pose a threat.

5.2 Stability

Just as in the stationary case, we proceed recursively. Individuals (or singleton coali-
tions) are automatically branded stable. Indeed, there is only one stable payoff for an

20They study transfers in a panel of Philippine rice farmers.
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“individual coalition”, which is just the no-insurance payoff at every date. That is, if we
define

v∗(1) ≡ pu(h) + (1 − p)u(�), (13)

then the set of stable payoffs is just V ∗(1) ≡ {v∗(1)}.
Now suppose that we have defined stable payoff sets V ∗(m) for all m = 1, . . . , n −

1 (some of these may be empty). Pick a group of size n and a nontrivial insurance
arrangement σ for this group. Say that σ is stable if the following two conditions are
satisfied:

[Participation.] For no s-history Hs is there a subgroup of individuals (of size m < n)
and a stable payoff vector v ∈ V ∗(m) such that vi(Hs, σ, n) < vi for all i = 1, . . . ,m.

[Enforcement.] The following is a zero-probability event under σ: there is an s-history
Hs, an income realization y, and a prescribed consumption allocation c such that for
some subgroup of individuals (of size m < n) and some stable payoff vector v ∈ V ∗(m),

(1 − δ)u(yi) + δvi > (1 − δ)u(ci) + δvi(Hs+1, σ, n), (14)

where Hs+1 is the (s+ 1)-history obtained by concatenating Hs with y and c.

If σ is stable, then say that v(h0, σ, n) is a stable payoff vector for n. If no such vector
exists, we say that n is unstable and set V ∗(n) to the empty set.

Observe that our recursion yields stable payoff sets that only depend on group size,
and that such stable payoff sets must be symmetric (if a payoff vector v is in the set,
then so are all permutations of v).

Next, with these definitions in hand it is easy enough to put the usual enforcement
constraints in perspective. Say that an insurance scheme (or group) is individually stable,
or i-stable for short, if the participation and enforcement constraints are satisfied for
singleton subgroups. In fact, in this case, we can ignore the participation constraint
because it will be implied by the enforcement constraint. Moreover, as already discussed,
no randomization will be necessary.

5.3 General Results

The following proposition extends our main result to the general case.

Proposition 5 For every value of θ such that some stable group exists, the maximal
stable group size is finite.

This proposition is the key result that establishes the finiteness of stable groups
without taking recourse to parameters such as the cost of group formation. It is a
considerably more complex result than its counterpart for the stationary case. There
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are two reasons for the increased complexity: equilibria make possible use of history
and of asymmetric strategies in subgames. The two, acting in concert, significantly
reduce the bite of the no-deviation constraint for groups. Recall that in a symmetric
and stationary equilibrium, every member of a potentially deviant subgroup must be
simultaneously compensated for staying with the ambient group. Such compensations
become impossible because the marginal gains to group size vanish, while deviation gains
are bounded away from zero, precipitating the boundedness result in the stationary case.
In the general case, it is possible to carefully switch to asymmetric strategies following
appropriate histories of good and bad draws. With these asymmetries, it is no longer
necessary to compensate every member of every potential subgroup; it is only necessary
to compensate some member of every potential subgroup. The question is: does this
effective relaxation of the constraints permit very large groups to form? The answer is
still no (which is the substance of the proposition).

The main idea of the proof (see Section 6 for details) is the construction of a particular
set of average payoffs. For each stable size n and v ∈ V ∗(n), let a denote the average
payoff under v, and let a∗(n) stand for the maximum value of a over V ∗(n). Now for
each integer k (stable or not), consider the maximum stable size no larger than k — call
it m(k) — and consider the value a(m(k)). The point is this: if v = (v1, v2, . . . , vn) is a
payoff vector in a group of size n, arranged in increasing order of payoffs, the kth entry
vk must exceed a∗(m(k)). Otherwise such a payoff would surely be “blocked” (see the
proof of Lemma 6). In other words, this construction limits the extent of asymmetric
treatment that can be generated in equilibrium.

Once these limits are set, there are bounds on the average payoffs that can be gener-
ated for any subgroup of a larger group of size n. The average value of these sub-payoffs
cannot exceed a∗(n) by “too much” because then the remainder would have to suffer
enough asymmetric treatment so that they necessarily block the outcome. To be sure,
small groups can be still treated asymmetrically but the degree of asymmetric treatment
shrinks with relative subgroup size. [This is the subject of Lemma 9.]

Once this hurdle is cleared, the rest of the proof is relatively straightforward, and
follows a modified version of the stationary case. This is the remainder of the formal
argument starting with Lemma 10, and continuing through the end of the proof for the
proposition.

Can this proposition be employed — as it was in the stationary case — to establish
the nonmonotonicity of maximal stable groups in the need for insurance? To a large
extent, it can, but unfortunately it isn’t enough to settle the question. It would be, if
we could show that the minimum i-stable group size becomes unboundedly large as the
need for insurance θ descends to the minimum level necessary for viability (for some
group size). In turn, all this means is that (on the grounds of single-person deviations
alone) larger groups should do better than smaller ones, in the sense that they should
exhibit lower thresholds (in θ) for i-stability. Then larger groups would be i-stable strictly
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“before” any of their smaller counterparts, and would consequently be (fully) stable in
our sense.

We believe that this observation is true. [It is true for stationary equilibria; see
Proposition 1.] But we have not been able to prove it,21 and so leave matters open in
the form of a conjecture:

Conjecture. The minimum i-stable group size goes to infinity as the need for insurance
descends to its critical lower bound for which some group is stable.

6 Proofs

6.1 The Stationary Case

Lemma 1 Suppose that a transfer scheme t satisfies (4). Then so does the transfer
scheme λt for every λ ∈ (0, 1).

Proof. It is easy to see, using (1), that v(t, n) is concave in t. Because u(h − tk) is
concave in tk (and therefore in the vector t), the expression

(1 − δ)u(h− tk) + δv(t, n)

is concave in t for each k = 1, . . . , n − 1. Finally, notice that v∗(1) is simply v(0.t, n).
Using all this information, we see that (4) must hold for λt if it holds for t.

Let t(t) denote the (symmetric stationary) transfer scheme in which tk is set equal
to a constant t ≥ 0, for all k = 1, . . . , n− 1. Define, for t ≥ 0 and small,

d(t, n) ≡ (1 − δ)u(h− t) + δv (t(t), n) . (15)

We denote by d′(t, n) the partial derivative of t with respect to t.

Lemma 2 A nontrivial transfer scheme satisfying the individual enforcement constraint
(4) exists if and only if d′(0, n) > 0.

Proof. [Necessity] Suppose that there is some nontrivial transfer scheme t̂ satisfying
(4). Choose λ > 0 such that λt̂k ≤ [h − �]/n for all k. By Lemma 1, λt̂ satisfies (4).

21It is not enough to prove that larger groups are viable whenever smaller groups are. This
leaves open the possibility that the threshold viability conditions are exactly the same. Once this
is the case, however, there is no guarantee that the minimum stable group size becomes unbound-
edly large as θ descends to the minimum threshold. Indeed, all this discussion motivates the
search for a necessary and sufficient condition that guarantees the viability of a given group of size
n. This is a hard question. Some new results are reported in the supplementary material: see
http://www.econ.nyu.edu/user/debraj/Papers/GenicotRayConjec.pdf.
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Now observe that v(t, n) is increasing in any component tk as long as tk < [h− �]/n; it
follows that the constant scheme t(t) in which t is set equal to to the maximum value
of λt̂k (over k) also satisfies (4). Noting that v∗(1) is just v (t(0), n), we have therefore
shown that

d(t, n) ≥ d(0, n).

To complete the proof of necessity, observe that d is strictly concave in t.
[Sufficiency] If d′(0, n) > 0, then for small positive t we have d(t, n) > d(0, n). But this
means that we have found a nontrivial transfer scheme (with tk = t for all k = 1, . . . , n−1)
such that

(1 − δ)u(h− t) + δv (t(t), n) ≥ (1 − δ)u(h) + δv∗(1),

so that (4) is satisfied.

Proof of Proposition 1. By Lemma 2, a necessary and sufficient condition for the
i-stability of n is d′(0, n) > 0. Using the definition of d and (1), simply unpack this
condition. It is equivalent to the requirement that

−(1 − δ)u′(h) + δ[u′(�) − u′(h)]
n−1∑
k=1

p(k, n)
k

n
> 0,

which, on rearrangement, yields (5).

Proof of Corollary 1. Simply note that if (5) is satisfied for some n, then it is satisfied
for all n′ > n.

Proof of Proposition 2. Let m be the size of the community. Pick θ such that (5) is
satisfied at n = m but fails at n = m−1. Then every (nonsingleton) group below m fails
to be i-stable and is therefore unstable. Thus the stability of m is only to be assessed
using individual deviations, and its i-stability implies stability.

We now prepare for the proof of Proposition 3.

Lemma 3 If n and n′ are both stable and n′ < n, then v∗(n) ≥ v∗(n′).

Proof. Simply use the constraint (2) for s = k = n′ when the group size is n, and the
fact that tn′ ≥ 0.

Lemma 4 For any ε > 0, define t(ε) by

u(h) − u (h− t(ε)) ≡ δ

1 − δ
ε, (16)

and let
t(ε, x) ≡ min{t(ε), (1 − x)(h− l)} (17)
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for ε > 0 and x ∈ [0, 1]. For ε > 0 and each positive integer n define

v(ε, n) ≡
n∑

k=0

p(k, n)
[
k

n
u (h− t(ε, k/n)) +

n− k

n
u

(
�+

kt(ε, k/n)
n− k

)]
. (18)

Then there exists ψ(ε) with ψ(ε) → 0 as ε → 0, such that

lim sup
n∈N

|v(ε, n) − v∗(1)| ≤ ψ(ε) (19)

Proof. Consider any sequence of integers in N . By a simple large-numbers argument
for Bernoulli trials (see, e.g., Feller [1968, p. 152, eq. (4.1)]), it must be the case that
for fixed ε,

lim
n
v(ε, n) = pu (h− t(ε, p)) + (1 − p)u

(
l +

pt(ε, p)
1 − p

)
.

It is easy to check from (16) and (17) that t(ε, p) → 0 as ε → 0. It follows that

lim
n
v(ε, n) → v∗(1) as ε → 0,

which proves the lemma.

Proof of Proposition 3. The only nontrivial part of this proposition (given the previous
propositions) is the assertion that n̄(θ) is finite. Suppose that Proposition 3 is false. Then
there exists an infinite set N such that for all n ∈ N , n is stable. By Lemma 3, if n and
n′ are both in N and n < n′, then v∗(n) ≤ v∗(n′). Moreover, {v∗(n)}n∈N is bounded. It
follows that for any ε > 0, there exists n(ε) ∈ N such that for all n ∈ N with n > n(ε),

v∗(n) − v∗(n(ε)) < ε. (20)

Moreover, it is easy enough to choose n(ε) satisfying both (20) and the requirement that

v∗(n(ε)) ≥ v∗(1) +A (21)

for some A > 0 and independent of ε.
Now consider some stable n > n(ε), and let tk be the optimal transfer in this coalition

when there are k successes. Applying the constraint (2) when k ≥ n(ε), we see that

(1 − δ)u (h− tk) + δv∗(n) ≥ (1 − δ)u(h) + δv∗(n(ε)),

so that — rearranging terms —

(1 − δ)[u(h) − u (h− tk)] ≤ δ[v∗(n) − v∗(n(ε))] ≤ δε,
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using (20). It follows (using (16)) that tk ≤ t(ε). Consequently, applying the definition
of t(ε, x), we can conclude that

n∑
k=n(ε)

p(k, n)
[
k

n
u (h− tk) +

n− k

n
u

(
�+

ktk
n− k

)]

≤
n∑

k=n(ε)

p(k, n)
[
k

n
u (h− t(ε, k/n)) +

n− k

n
u

(
�+

kt(ε, k/n)
n− k

)]
.

It follows that for some finite constant B,

v∗(n) ≤ v(ε, n) + Pr{k < n(ε)}B. (22)

Now it is obvious that as n → ∞, Pr{k < n(ε)} → 0. That is, we may use (22) to
conclude that there exists a function h(n) such that h(n) → 0 as n → ∞ (in N ), and
such that

v∗(n) ≤ v(n, ε) + h(n). (23)

Combining (23) with the conclusion — see (19) — of Lemma 4, we see that

lim sup
n∈N

[v∗(n) − v∗(1)] ≤ ψ(ε) + h(n).

This shows, in particular, that for large enough n and small enough ε,

v∗(n) − v∗(1) < A. (24)

Combining (24) and (21), we see that

v∗(n) < v∗(n(ε)),

which contradicts Lemma (3).

6.2 Observations in Section 4.3

Proof of Observation 1. With u(x) = −(B − x)2, it is easy to see that ṽ(n) =
−(B − µ)2 − p(1−p)

n (h− �)2. It follows that

δ(ṽ(n) − ṽ(k)) = δ
p(1 − p)(n− k)

nk
(h− �)2,

while routine computation reveals the left-hand side of (8) to be

(1 − δ)
n− k

n

[
2B(h− �) − k + n

n
h2 +

n− k

n
�2 + 2

k

n
h�

]

26



Recall that to check stability, it is necessary and sufficient to put k = s in (8). Combining
the expressions above with this observation, we see that the required condition is

(1 − δ)
[
2B(h− �) − k + n

n
h2 +

n− k

n
�2 + 2

k

n
h�

]
≤ δ

p(1 − p)
k

(h− �)2

for all 1 ≤ k ≤ n− 1. Some tedious simplification shows this to be equivalent to (9)
Clearly, for any given k the left-hand side of (9) is decreasing in n. It follows that if

(9) is violated for some n and k, will be violated for a group of size n′ > n and the same
k. This proves the observation.

6.3 The Nonstationary Case

Before we proceed to a proof of Proposition 5, the following preliminary lemma is useful.

Lemma 5 For any ζ > 0, define t(ζ) by

u(h) − u (h− t(ζ)) ≡ δ

1 − δ
ζ, (25)

For ζ > 0 and each positive integer n, define a(n, ζ) to be the maximum value of average
expected utility (in one period, and neglecting any incentive constraints) over a group of
size n, assuming that in no event can a total transfer exceeding t(ζ)n be made. Then
then there exists ψ(ζ) with ψ(ζ) → 0 as ζ → 0, such that

lim sup
n→∞

[a(n, ζ) − v∗(1)] ≤ ψ(ζ). (26)

Proof. By symmetry and strict concavity of u, and because no incentive constraints
are involved, it must be the case that for each state, consumption should be equalized
over successes, consumption should be equalized over failures, and the transfer between
success and failure individuals should aim at equality of consumption across both types
of persons, subject to the constraint that the total transfer not exceed t(ζ)n. That is, an
optimal per-capita transfer from any successful individual, defined for each n and each
number of successes k, is given by

t(k, n) = min{n
k
t(ζ),

n− k

n
∆}, (27)

where ∆ ≡ h− �. Moreover,

a(n, ζ) =
n∑

k=0

p(k, n)
[
k

n
u (h− t(k, n)) +

n− k

n
u

(
�+

k

n− k
t(k, n)

)]
. (28)
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By the same large-numbers argument as in the proof of Lemma 4, it must be the case
that if ζ > 0 and small enough,

lim
n
a(ζ, n) = pu

(
h− t(ζ)

p

)
+ (1 − p)u

(
�+

t(ζ)
1 − p

)
,

Because t(ζ) → 0 as ζ → 0,

lim
n
a(ζ, n) → v∗(1) as ζ → 0,

which proves the lemma.

Proof of Proposition 5. Suppose that the proposition is false. Then there exists an
infinite subset of indices M such that for all n ∈ M , n is stable. We will employ the
following notation. For any integer n, we let m(n) stand for the maximum stable size not
exceeding n. For each stable size n and v ∈ V ∗(n), let a denote the average payoff under
v, and let a∗(n) stand for the maximum value of a over V ∗(n). [This is well-defined
because V ∗(n) is compact by standard arguments.] Also, define for each n (stable or
not),

ã(n) ≡ 1
n

n∑
k=1

a∗(m(k)). (29)

Lemma 6 For every stable n > 1,

a∗(n) ≥ ã(n), (30)

and in particular, the sequence {ã(n)} is nondecreasing in n.

Proof. Let n > 1 be stable. Now, there exists a stable payoff vector v in V ∗(n) with
average value precisely equal to a∗(n). Without loss of generality vk ≤ vk+1 for all
k = 1, . . . , n− 1. We claim that

vk ≥ a∗(m(k)) (31)

for all k = 1, . . . , n. Suppose not. Then there is some first index k such that (31) fails.
That is,

(v1, . . . , vk) � {a∗(m(k)), . . . , a∗(m(k))} (32)

where there are k entries on the RHS. [Note that if k = n, m(k) must be less than n.] If
the equal payoff a∗(m(k)) is stable for m(k), (32) immediately contradicts the stability
of v. Therefore the equal payoff must be unstable.

Notice that — by the symmetry of V ∗(m(k)) — the equal payoff a∗(m(k)) can be
generated as a convex combination of vectors in V ∗(m(k)). Therefore, if the equal payoff
is unstable, this can only be because of the participation constraint. Randomization
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cannot affect the ex-post enforcement constraint, which applies ex-post and would be
satisfied by every vector making up the required convex combination. Consequently,
there is some n′ < m(k) and a stable payoff v′ ∈ V ∗(n′) such that

{a∗(m(k)), . . . , a∗(m(k))} � v′ (33)

(where there are n′ entries on the LHS). Combining (32) and (33), we contradict the
stability of v. Therefore our claim is true, and (31) holds. Averaging this inequality over
k = 1, . . . , n, we conclude that

a∗(n) =
1
n

n∑
k=1

vk ≥ 1
n

n∑
k=1

a∗(m(k)) = ã(n− 1),

which is (30).
Now notice from (29) that for any n,

ã(n+ 1) =
1

n+ 1
a∗(m(n+ 1)) +

n

n+ 1
ã(n). (34)

If m(n+ 1) = n+ 1, then — using (30) — it follows immediately from (34) that ã(n) is
nondecreasing. Otherwise m(n+ 1) = K for some stable K ≤ n. Then it is easy to see
that ã(n) = λa∗(K)+ (1−λ)ã(K) for some convex combination λ. Applying (30) again,
we may conclude that

a∗(m(n+ 1)) = a∗(K) ≥ λa∗(K) + (1 − λ)ã(K) = ã(n),

and using this information in (34), we conclude that ã(n) must be nondecreasing.

Lemma 7 There exists A > 0 such that for all n ∈ M with n > 1,

a∗(n) ≥ v∗(1) +A. (35)

Proof. For any stable n > 1, a stable payoff vector must be supported by transfer
schemes that are nonzero for some states: consequently, by the enforcement and par-
ticipation constraints applied to singleton deviations, the average payoff under a stable
vector in any stable (nonsingleton) group must strictly exceed v∗(1).

To establish that this excess is uniform over the set of stable groups, observe that
ã(n) (being a convex combination of the a∗’s) is also strictly in excess of v∗(1), as long
as n exceeds some stable group size that exceeds unity. Because ã(n) is nondecreasing
(Lemma 6), the excess is uniform. Now (30) of the same lemma yields the desired result.
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Lemma 8 For each ε > 0, there exists a stable n(ε) and an infinite subsequence of stable
sizes exceeding n(ε) — call the set M(ε) — such that for all n ∈ M(ε),

a∗(n) − a∗(n(ε)) < ε. (36)

Proof. By Lemma 6, ã(n) is nondecreasing in n. Obviously it is bounded. So it
converges. Moreover, it is easy to verify (see, e.g., Knopp [1956, Exercise 2.4.1.2]) that

lim
n
ã(n) ≥ lim inf

n∈M
a∗(n).

So for each ε > 0, there is a stable size n(ε) and a subsequence M(ε) such that

a∗(n) − ã(n(ε)) < ε

for all n ∈ M(ε). By Lemma 6, the desired property (36) follows immediately.

Lemma 9 Let ε > 0 and x ∈ (0, 1) be given. Then there exists an integer m(x, ε) > n(ε)
(the latter given by Lemma 8) such that for any stable group n ≥ m(x, ε), any subgroup of
players of size k ≥ xn and any vector of continuation payoffs v(n) ∈ V ∗(n), the average
payoff to the subgroup cannot exceed a∗(n) + ε/x.

Proof. First we describe m(x, ε). To this end, let a∗ denote the supremum of a∗(n) over
stable n, and let m(x, ε) be any positive integer no smaller than n(ε)[a∗ + ε]/xε.

Consider any n ≥ m(x, ε), and let v(n) ∈ V ∗(n). Let the average payoff under this
vector be denoted by a(n). Of course, a(n) ≤ a∗(n).

Consider any subgroup of k people, where k ≥ nx. Let a(k) denote the average payoff
they receive under v(n). Now consider two cases. First, suppose that k ≥ n−n(ε). Note
that

a(k)k ≤ na(n) ≤ na∗(n),

Rearranging and using the fact that k ≥ n− n(ε),

a(k) ≤ a∗(n) +
n(ε)

n− n(ε)
a∗ ≤ a∗(n) + ε,

where the last inequality uses the fact that n ≥ m(x, ε). Because x ∈ (0, 1), we are done
in this case.

Otherwise, k < n−n(ε). Now, by the stability of the payoff vector v(n), no more than
n(ε) individuals can receive strictly less than a∗(n(ε)).22 Since we are proving an upper

22The proof is very similar to the argument used to establish (31). If a∗(n(ε)) is a stable (constant)
payoff for n(ε), the assertion is obviously true. If a∗(n(ε)) is not stable, this can only happen because
of the participation constraint. But then there is a still smaller group — say n′ — and a stable payoff
vector v′ for n′ such that v′ dominates a∗(n(ε)) in every component. The existence of this vector now
establishes the assertion.
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bound on average payoffs, we can suppose without loss of generality that our subgroup
of k is drawn from the remaining individuals (who receive at least a∗(n(ε)) each). In this
case,

a(k)k + [n− n(ε) − k]a∗(n(ε)) ≤ na(n) ≤ na∗(n).

Combining this inequality with the fact that a∗(n(ε)) ≥ a∗(n)− ε (see Lemma 8), we can
conclude that

a(k) ≤ εn

k
+
n(ε)[a∗(n) − ε]

k
+ a∗(n) − ε

≤ ε

x
+
n(ε)[a∗(n) − ε]

nx
+ a∗(n) − ε

≤ a∗(n) +
ε

x
,

where the second inequality uses the fact that k ≥ nx, and the third inequality uses the
fact that n ≥ m(x, ε). Thus in both cases, the proof is complete.

Lemma 10 For any ε > 0 and x ∈ (0, p), suppose that n ≥ m(x, ε) (where m(x, ε) is
given by Lemma 9) and n ∈ M(ε), where M(ε) is given by Lemma 8. Consider the
supporting insurance scheme for any v(n) ∈ V ∗(n). Then the total transfer T made
across agents in any realization must be bounded as follows:

T ≤ max{t(ε(1 + x)/x)n, xhn} (37)

where the function t(.) is defined by (25).

Proof. Let K be a group of people called upon to make transfers. Suppose first that
|K| ≡ k < nx. Then the total transfer in this case can obviously not exceed xhn, so the
lemma is trivially true in this case.

Now suppose that k ≥ nx. Recalling how m(x, ε) was defined in the proof of Lemma
9 and noting that n ≥ m(x, ε), we see that k ≥ n(ε), where n(ε) is given by Lemma 8.
Therefore all stable subcoalitions of K of size n(ε) or less are potential deviants.

Arrange the members of K in decreasing order of the transfer ti that they make, so
that ti ≥ ti+1. Recall that by familiar dynamic programming arguments, the associated
transfer scheme (once the state is realized and all lotteries have been resolved) can be
described by a set of current consumptions and a set of continuation payoff vectors. In
this particular state, let v′

i stand for the continuation utilities of members of K.
We claim that for every i ∈ K,

u(h) − u(h− ti) ≤ δ

1 − δ
[v′

i − a∗(m(i))], (38)
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where m(i), it will be recalled, is defined as the largest stable group size not exceeding
the integer i. The proof of this claim is easy (and is similar to the proof of (31)): if it
were to fail for some integer i, then by the ordering of the group members by transfer
size, we have for every j ∈ K, j ≤ i, that

u(�) − u(�− tj) ≥ u(h) − u(h− ti) >
δ

1 − δ
[v′

i − a∗(m(i))],

Thus, if a∗(m(i)) is stable for group m(i), this is an immediate violation of the enforce-
ment constraint: a group of size n(i) can now profitably form and deviate. Otherwise, if
it is not stable, this can only be due to the participation constraint (recall our discussion
of randomization). But then a subgroup smaller than m(i) will deviate.

So (38) must be true.
Let us add (38) over all individuals in K, and divide by the group size k. We then

have
u(h) − 1

k

∑
j∈K

u(h− tj) ≤ δ

1 − δ
[a(n,K) − ã(k)], (39)

where a(n,K) simply stands for the average continuation payoff accorded to members of
K, and ã(k) is the moving average defined in (29). Now by the concavity of u,

1
k

∑
j∈K

u(h− tj) ≤ u(h− tK),

where tK is the average transfer made by K. Moreover, a(n,K) ≤ a∗(n)+ε/x, by Lemma
9. Finally, because k ≥ n(ε) and n ∈ M(ε), we know from (36) that ṽ(k) ≥ a∗(n) − ε.
Using all these three inequalities in (39), we may conclude that

u(h) − u(h− tK) ≤ δ

1 − δ

ε(1 + x)
x

.

Invoking (25), we see that

tK ≤ t

(
ε(1 + x)

x

)
,

and recalling that the total transfer T equals ktK ≤ ntK , the lemma is established.

Lemma 11 For some stable v(n) ∈ V ∗(n) and some supporting insurance scheme, let
w(n) denote the expected current utility averaged across all agents associated with that
scheme. Then, if a(n) is the average payoff under v(n), we have

a(n) ≤ (1 − δ)w(n) + δa∗(n), (40)
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Proof. Recall that the supporting insurance arrangement is expressible as a randomiza-
tion over various current consumption schemes and continuation payoffs, both contingent
on realizations of the income state. Fix any such scheme in the support of the arrange-
ment. For each individual i, let ci(n, S) describe his current consumption and vi(n, S)
his continuation payoff, where S is the set of currently successful people. Then

vi(n) = (1 − δ)
∑
S

Pr(S)u(ci(n, S)) + δ
∑
S

Pr(S)vi(n, S).

If we average this over all individuals, we see that — by definition —

a′(n) = (1 − δ)w′(n) + δ
∑
S

Pr(S)

[
1
n

n∑
i=1

vi(n, S)

]
.

where a′(n) is average payoff after the lottery is realized (but not the state), and
w′(n) is average current payoff evaluated under exactly teh same conditions. However,
(1/n)

∑n
i=1 vi(n, S) ≤ a∗(n) for every S. Using this in the equation above, we see that

a′(n) ≤ (1 − δ)w′(n) + δa∗(n).

Finally, take expectations over all schemes in the support of the insurance arrangement
to establish the lemma.

We now complete the proof of the proposition. To this end, fix a small positive
number ε, and then choose x ∈ (0, 1) small enough so that xh < t(ε), where t(·) is
defined in (25). Now recall M(ε) from Lemma 8, n(ε) from Lemma 8 and the consequent
definition of m(x, ε) in the proof of Lemma 9. Pick any n in M(ε) with n ≥ m(x, ε).

Consider any stable v(n) ∈ V ∗(n), and some insurance arrangement associated with
it. By Lemma 10, the total transfer T under any realization cannot exceed

max{t(ε(1 + x)/x)n, xhn}.

But our choice of x guarantees that the first of the two terms above always binds, so
that

T ≤ t(ε(1 + x)/x)n

for any total transfer T under any realization. It follows that any scheme in the support
of the insurance arrangement is a feasible scheme over which maximization occurs in
Lemma 5. Consequently, (current) expected utility averaged across all agents and over
all schemes in the support of the insurance arrangement — call it w(n) — must satisfy
the inequality:

w(n) ≤ a (n, ε(1 + x)/x) . (41)
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Now consider any sequence of stable n such that n ≥ m(x, ε) and n ∈ M(ε), and any
sequence v(n) ∈ V ∗(n) such that the associated average value

a(n) = a∗(n) (42)

Lemma 5 and (41) together tell us that for any associated sequence of current consump-
tion schemes,

lim sup
n∈M(ε);n→∞

w(n) ≤ lim sup
n∈M(ε);n→∞

a (n, ε(1 + x)/x) ≤ v∗(1) + ψ (ε(1 + x)/x) . (43)

Now choose ε and then x such that the RHS of (43) is smaller than v∗(1) +A, where A
is given by (35). We may then conclude that for large enough n ∈ M(ε),

w(n) < a∗(1) +A.

Combining this inequality with (40) of Lemma 11, we see that

a(n) ≤ (1 − δ)[v∗(1) +A] + δa∗(n),

where a(n) is the (lifetime) expected utility averaged over all agents under the scheme.
But we’ve chosen this so that a(n) = a∗(n) (see (42)). Consequently, we may conclude
that for large enough n ∈ M(ε),

a∗(n) < v∗(1) +A,

but this inequality contradicts (35) of Lemma 7 and completes the proof of the proposi-
tion.
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