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1. Introduction

These notes complement Genicot and Ray [2002]. Our purpose here is to outline
a conjecture regarding the conditions under which a self-enforcing insurance scheme
exists. We describe a sufficient condition for such schemes to be viable, which is
weaker than known sufficient conditions in the literature. Our conjecture is that
this condition is also necessary.

2. Model

A community of n agents is engaged in the production and consumption of a
perishable good at each date. Each agent produces a random income which takes
on two values: h and � with h > � > 0. A state s is simply a listing of all output
draws by agents. Denote by yi(s) the output draw of agent i.

Let π(s) denote the probability that state s occurs. We will assume that π(s) > 0
for every s, and that π(s) is symmetric in the sense that if s′ is obtained from
s by permuting the output draws in any arbitrary way across the agents, then
π(s′) = π(s). State realizations are i.i.d over time.

Each agent has the same utility function, assumed to be increasing, smooth
and strictly concave in consumption. We thus have an instance of a classical
group insurance problem. The (symmetric) Pareto optimal allocation is reached
by dividing equally — and among all members of the community — the aggregate
available resources at each period. Of course, there are other first-best allocations,
which are asymmetric.

An important reason why first-best allocations may not be achievable is the
presence of an enforcement constraint. This refers to the possibility that at some
date, an individual who is called upon to make transfers to others in the community
(as part of some reciprocity arrangement) refuses to make those transfers. The
constraint is then modeled by supposing that the individual is excluded from the
insurance pool, so that he must bear stochastic fluctuations on his own.

To describe matters more formally, say that a nonnegative vector of consump-
tions c = (c1, . . . , cn) is feasible at state s if

∑
i ci ≤ ∑

i yi(s). For any date t, an
t-history ζt is a list of all past states and consumption activity at those states.1

An insurance scheme is a list of functions σ = {σs}∞
s=0 such that for all t ≥ 0, σt

1At t = 0, simply use any singleton to denote the 0-history. Note that, given our interest
in stable insurance schemes, we won’t concern ourselves with histories in which “defaults” have
taken place. As far as the present model is concerned, the story is the over.
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maps the product of t-histories and current state to feasible consumption vectors
for that state.

An insurance scheme σ defines continuation values vi(σ, ζs) for each person i
following any t-history ζt. These are simply the discounted expected utility of all
consumptions prescribed by σ following ζt. We may also define lifetime standalone
values for each individual: v∗ ≡ (1 − δ)−1 ∑

s π(s)u (yi(s)). By our symmetry
assumptions v∗ is obviously independent of the particular index i used to define it.

An insurance scheme is nontrivial if there is some t-history and some state for
which the prescribed consumption vector fails to equal the vector of output draws
at that state.

An insurance scheme σ is stable if for every current state s and every t-history ζt,
the prescribed feasible consumption vector c satisfies the enforcement constraint:

(1) u (ci) + δvi(σ, ζt+1) ≥ u (yi(s)) + δv∗,

for every individual i, where ζt+1 is simply the (t+1)-history obtained by concate-
nating ζt with (s, c).

A recent literature (Kocherlakota [1996], Ligon, Thomas and Worrall [2002],
Kletzer and Wright [2000]) describes the structure of nontrivial (and efficient) sta-
ble insurance schemes, assuming these exist. However, an open question remains:
can one precisely characterize the set of parameters under which such schemes
exist? These notes attempt to answer that question.

3. A Sufficient Condition

We begin with notation. Let p(j) denote the probability of obtaining an outcome
in which precisely j individuals draw high. Next, for some given set of individuals
of size i, let p(i, j) denote the probability of obtaining an outcome in which j
individuals draw high, conditional on the event that not all individuals in the
given set draw high. By symmetry, this definition is insensitive to the particular
choice of set.

Next, define θ ≡ [u(′(�) − u′(h)]/u′(h). By the strict concavity of u and the
assumption that h > �, it is obvious that θ > 0. An parametric increase in h
may correspond to an increased spread between high and low draws, or it may
correspond to increased curvature of the utility function. For these reasons, θ may
be interpreted as the “need for insurance” (see Genicot and Ray [2001]).

To complete notation, recall by the Fröbenius theorem (see, e.g., Takayama
[1974]) that every strictly positive square matrix A admits a unique strictly positive
eigenvalue; call this eig(A).

Theorem 1. A nontrivial stable insurance scheme exists if

(2) eig(P ) >
1
δ
,
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where P is an n × n matrix with (i, j) entry pij given by

(3) pij = p(j) + θp(i, j)

for 1 ≤ i ≤ n and 1 ≤ j < n, and

(4) pin = p(0) + p(n)

for 1 ≤ i ≤ n.

4. Proof of the Theorem

4.1. Preliminaries. It will be convenient on to concentrate on excess equilibrium
payoffs, which we define to be the difference between various equilibrium payoffs
and the baseline quantity v∗. Sometimes we shall drop the qualifier “excess” and
use the term “equilibrium payoffs” or simply “payoffs”. Denote by E the set of all
(excess) equilibrium payoffs. To be sure, E ⊆ IRn

+.
Well known arguments (see, e.g., Abreu, Pearce and Stacchetti [1986]) allow us

to express E as the fixed point of a suitable mapping. This viewpoint is critical to
our approach, so we develop it in some detail. Let B be any symmetric2 compact
set of nonnegative excess payoffs. Say that the payoff e ≥ 0 is supported by B
if there are payoff vectors e(s) ∈ B and transfer vectors t(s) ∈ IRn (for every
conceivable state s) such that for every individual i,

(5) ei =
∑

s

π(s) [u (yi(s) + ti(s)) + δei(s)] − (1 − δ)v∗,

while at the same time,

(6)
n∑

j=1

tj(s) = 0

and

(7) u (yi(s) + ti(s)) + δei(s) ≥ u (yi(s))

for every state s.
Notice that there is always some payoff vector that can be supported in this way:

simply consider any payoff vector generated by assigning zero transfers. Denote by
Ψ(B) the convex hull of the set of all (excess) payoff vectors which are supported
by B. Notice that Ψ(B) is symmetric, because B is. Moreover, observe that if B
itself is convex, then the requirement of taking the convex hull is redundant: the
set of all payoffs supported by B is automatically convex. This is certainly true of
the set of equilibrium payoffs, which standard arguments inform us to be a fixed
point of Ψ. Nevertheless, it will be technically convenient to define the mapping
Ψ by requiring convexification, as this permits us to consider a wider domain of
support sets.

2A set B ⊆ IRn is symmetric if x ∈ B implies every permutation of x is also in B.
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Lemma 1. A nontrivial stable insurance scheme exists if and only if Ψ(B) ⊇ B
for some nonempty symmetric compact set B of excess payoffs, with B �= {0}.
Proof. Suppose that a nontrivial stable insurance scheme exists. Set B = E,
the set of all excess stable payoffs. Then B is symmetric and compact, and by
nontriviality, B �= {0}. Moreover, Ψ(B) = B, so it is trivially the case that
Ψ(B) ⊇ B.

Conversely, suppose that Ψ(B) ⊇ B for some nonempty symmetric compact set
B �= {0}. Note that there is some M < ∞ such that the infinite-horizon payoff to
an individual cannot exceed M . Let B̄ be the set {e ∈ IRn|0 ≤ ei ≤ M for all i}.
It is easy to see that B must be a subset of B̄.3 Define C(B) to be the collection of
all nonempty symmetric compact sets B′ of payoff vectors such that B ⊆ B′ ⊆ B̄.
It is trivial to check that C(A) is a Moore family of subsets of B̄ (Birkhoff [1995, p.
111]), and is therefore a complete lattice under the set-inclusion ordering (Birkhoff
[1995, Chapter V, Theorem 2]). Moreover, because Ψ is isotone and Ψ(B) ⊇ B,
it follows that Ψ maps C(B) to itself.4 By the Tarski fixed point theorem (see,
e.g., Birkhoff [1995, Chapter V, Theorem 11]), there is some set B′ such that
Ψ(B′) = B′. Because B′ must be convex, no randomization is needed, so Ψ(B′)
is precisely the set of points supported by B′. It is now easy to see every point in
B′ must represent an equilibrium payoff. Because B′ ⊇ B �= {0}, it follows that a
nontrivial stable insurance scheme exists.

4.2. Main Proof. We begin the main proof by showing that if (2) is satisfied,
then there exists a nontrivial stable insurance scheme. By Lemma 1, it suffices
to exhibit a nonempty compact set B of excess payoffs, with B �= {0}, such that
Ψ(B) ⊇ B.

To this end, pick strictly positive numbers (e1, . . . , en), and λ ∈ (0, 1). For each
index k, consider an excess payoff vector of the form (λek, . . . , λek, 0, . . . , 0), where
λek > 0 pertains to the first k entries, and the remaining entries are zero. Now
consider all permutations of this vector. Do the same for every k. Consider the
resulting collection of all such vectors, along with the collection (0, . . . , 0). This is
a symmetric set of excess payoff vectors which depends on both (e1, . . . , en) and λ.
It will be convenient to explicitly track all dependence on λ so we denote this set
of excess payoffs by Bλ.

Consider, for any index k, the problem of finding the largest symmetric excess
payoff for some given set of k individuals that can be supported by Bλ. For ease in
discussing the problem, we call the individuals in this given set masters, and the
remainder the slaves.

3If this is not true, then there is some e ∈ B with ei > M for some i. But then, the definition
of Ψ will not permit Ψ(B) ⊇ B.

4If B′ ∈ C(B), then B̄ ⊇ Ψ(B̄) ⊇ Ψ(B′) ⊇ Ψ(B) ⊇ B. Also, if B is compact and symmetric,
so is the set of all payoff vectors supported by B, and consequently so is the convex hull of this
set. Therefore Ψ(B′) ∈ C(B).
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This problem can be solved “state by state”.5 We shall employ a particular
feasible solution to this subproblem. [Later, we show why this particular feasible
solution gives us the exact characterization that we need.]

Consider any state s. Denote by a(s) the number of masters with high draws,
and by b(s) the number of slaves with high draws. Let j(s) ≡ a(s) + b(s) be the
total number of high draws. Use the following rules:

[I] If j(s) = 0, then choose as continuation payoff λen for every individual. Define
r1(λ) by

(8) u (� − r1(λ)) + δλen ≡ u(�),

and require all slaves (who are all low) to make this transfer.6 The entire transfer
is divided equally among the k masters (who are all low too), so that each master
receives

(9) t1(λ) ≡ (n − k)r1(λ)
k

.

[II] If j(s) > 0 and a(s) < k, then choose as continuation payoff λej(s) for all the
high draws, and 0 for all the low draws. In addition, make no transfer to (nor
demand any from) any low slaves. Define r2(λ) by

(10) u (h − r2(λ)) + δλej(s) ≡ u(h),

and require all high drawers to make this transfer. The entire transfer is divided
equally among the k − a(s) low masters, so that each low master receives

(11) t2(λ) ≡ j(s)r2(λ)
k − a(s)

.

[III] If j(s) > 0 and a(s) = k, then choose as continuation payoff λej(s) for all
the high draws, and 0 for all the low draws. In addition, make no transfer to
(nor demand any from) any low slave. Recall the definition of r2(λ) from (10) and
require all high slaves (if there are any) to make this transfer. Divide the entire
transfer equally among the k (high) masters, so that each master receives

(12) t3(λ) ≡ b(s)r2(λ)
a(s)

=
b(s)r2(λ)

k
.

With this description in mind, we can write down the expected payoff (call it
êk(λ)) to a master. The easiest way to do this is to write the average payoff of all

5The reason is that when continuation payoffs for each player is only restricted to be nonnega-
tive, the enforcement constraints imply the participation constraints. This means that there are
no ex-ante constraints.

6Of course, if k = n, there may not be any low slaves, but this is automatically handled here
(and in what follows later) by the notation.
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the masters in every state, weight by the probability of that state, and then add
over all states. Doing so, we see that

êk(λ) = π(s�) [u (� + t1(λ)) + δλen] +
∑

s:j(s)>0
a(s)<k

π(s)
[
a(s)
k

u(h) +
k − a(s)

k
u (� + t2(λ))

]

+
∑

s:j(s)>0
a(s)=k

π(s)
[
u (h + t3(λ)) + δλek+b(s)] ,

where s� denotes the state in which all draws are low.

Now suppose that we can show that for some λ > 0 and some choice of (e1, . . . , en) 	
0,

(13) êk(λ) ≥ λek

for every k = 1, . . . , n. Then it must be the case that Ψ(Bλ) ⊇ Bλ. To see this,
observe that the zero vector 0 is supported by Bλ, and so — by construction —
are all vectors of the form

(
êk(λ), . . . , êk(λ), 0, . . . , 0

)
(in which êk(λ) appears in

the first k entries and 0 thereafter), and permutations thereof. Now take convex
combinations of all these and recall (13) to complete the claim.

So it remains to establish (13). Observe that both sides of this inequality go to
zero as λ → 0, so a sufficient condition for the desired result is

(14)
dêk(λ)

dλ |λ=0
> ek

for all k. Differentiation of the expression êk(λ) with respect to λ involves evalua-
tion of the derivatives of t1, t2 and t3 with respect to λ. Carrying out these com-
putations and making appropriate substitutions, we see that (14) can be rewritten
as

(15) π(s�)Mn +
∑

s:j(s)>0
a(s)<k

π(s)M j(s) u′(�)
u′(h)

+
∑

s:j(s)>0
a(s)=k

π(s)M j(s) >
Mk

δ
,

where Mk ≡ kek for each k.
Further simplification of this inequality is possible. Recall that p(j) stands for

the overall probability of j high draws, and that p(k, j) denotes the probability
of j high draws conditional on the k masters not all drawing high simultaneously.
Then (15) may be rewritten as

n−1∑
j=1

[p(j) + θp(k, j)]M j + [p(0) + p(n)]Mn >
Mk

δ

for every k, for some vector (M1, . . . , Mn). It is easy to see that this condition is
equivalent to (2), and the proof is complete.
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5. Conjecture

It appears that (2) is weaker than known sufficient conditions in the literature.
For instance, it can be checked that (2) is implied by condition (5) in Proposition
1 of Genicot and Ray [2002].

Indeed, our conjecture is that (2) is not just sufficient, it is necessary. We have
not been able to establish this result generally, though we have done so when n = 2.
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