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∗The authors thank Susan Athey, Pierre-André Chiappori, Steve Coate, Bob Cooter, Garance Genicot,
Faruk Gul, Oliver Hart, Billy Jack, Philippe Jehiel, Todd Kaplan, Louis Kaplow, Jon Levin, Arik Levinson,
Alessandro Lizzeri, Albert Ma, John Matsusaka, Paul Milgrom, Mitch Polinsky, Bernard Salanié, Ananth
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When ye are passed over Jordan into the land of Canaan ... ye shall divide the

land by lot for an inheritance among your families ... every man’s inheritance

shall be in the place where his lot falleth ... (Num. 33:51-54)

1 Introduction

Suppose that a government wishes to distribute a resource such as public land or radio

spectrum. A natural option is to sell it at the market-clearing price, via a standard auction,

but other methods have a long history, as the passage above indicates. Land was assigned

on a first-come first-served basis during the 1889 Oklahoma Land Rush. In many countries,

new housing units may be subject to binding price caps, with the units assigned by lottery.1

Various priority rules are used as well. For example, children are accepted into public schools

based on where they live, which school their siblings attend, or the outcome of a lottery.

Priority rules also determine which transplant patients get organs, based on factors such as

the patient’s age and the severity of the condition.

According to the Coase theorem, the exact method of assigning a good does not affect

the efficiency of the ultimate allocation since individuals will negotiate until they exhaust

all gains from trade.2 In particular, if individuals are risk-neutral (i.e., have quasilinear

preferences) and have unlimited wealth, the final allocation is exactly the same no matter

the initial allocation, and it is Utilitarian efficient.

When individuals are budget-constrained, however, these last conclusions do not follow.

Then, resale may not correct an initial misallocation since non-recipients of the good with

higher valuations may be unable to buy from initial recipients with lower valuations. The

final allocation may therefore not be Utilitarian efficient. More important, the initial assign-

ment of the good matters. In particular, the ability to correct any misallocation depends on

the purchasing power of those who fail to receive the good.

We study various methods of assigning an indivisible good to agents who may be budget

constrained. The good could be a productive asset such as a license to operate a business

1In Singapore, most citizens live in units sold by the government at below-market prices. Some 82 per
cent of Singapore’s citizens live in “public housing flats,” and about 95 per cent of those residents own their
units. (See “Building Homes, Shaping Communities,” at http://www.mnd.gov.sg/, accessed on Nov. 13,
2008.) The price cap is as low as half of the price on the resale market (Tu and Wong, 2002). The same
fraction is given by Green, Malpezzi and Vandell (1994) for Korea.

2The Coase Theorem is invoked frequently when new assignment schemes are proposed. One example
concerns the Federal Communications Commission (FCC) spectrum license auctions. Opponents of the
FCC’s favored design argued that the design would not affect the ultimate allocation so revenue maximization
should be the only goal. See the discussion in Milgrom (2004).
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(e.g., an airport takeoff-and-landing slot or a taxi medallion) or to exploit resources (e.g.,

a hunting or fishing license), in which case the valuation reflects the monetary payoff that

the asset will generate. Or, it could be a consumption good such as housing or health

care, in which case the valuation reflects the utility from consuming it. Individuals’ budget

constraints may stem from low lifetime earnings, but more generally stem from limited access

to the capital market. When the good is a productive asset that generates a monetary return,

an agent may borrow against the return, using the good as collateral. But the returns may be

private information, prospective investors may not have good estimates of the returns, and

the collateral could lose value due to inadequate care. Likewise, for human capital assets

such as education and the right to immigrate, it is difficult to predict whether someone

will develop marketable skills, and it is difficult to collateralize such skills. These adverse

selection and moral hazard problems may limit agents’ ability to finance purchases. In other

words, budget constraints may result from imperfect capital markets.

Suppose that a mass S ∈ (0, 1) of a good is to be assigned to a unit mass of agents who

differ in their initial wealths (budgets) and valuations of the good (which are distributed inde-

pendently of each other). We compare three popular assignment methods: (1) Competitive

market (CM), wherein the good is sold at a market-clearing price; (2) random assign-

ment without resale (RwoR), wherein the good is assigned randomly at a below-market

price and the recipients are not allowed to resell the good; and (3) random assignment

with resale (RwR), wherein the good is assigned randomly at a below-market price and

then the recipients are allowed to resell the good on a competitive resale market. Some or all

of these methods have been employed in contexts such as assignment of public land, housing,

spectrum rights, immigration rights, public education and military recruitment.

We show that while the competitive market method dominates random assignment with-

out resale, it is strictly dominated by random assignment with resale in terms of Utilitarian

efficiency of the final allocation. The reason is that a market assigns goods to those individ-

uals who have high wealth as well as high valuations. In other words, the initial assignment

is biased toward the wealthy. By contrast, random rationing (at a below-market price) has

less of a bias. In particular, agents with low wealth who would not get the good in the

competitive market may now receive it. When resale is permitted, the low-valuation recip-

ients resell while the low-wealth high-valuation recipients do not. As a consequence, more

high-valuation agents consume the good than in the competitive market. By the same logic,

the lower the assignment price is, the more efficient the final allocation is under RwR, and

the welfare gap between the two mechanisms is amplified if wealth inequality grows in a

certain way.
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These three mechanisms are ex post individually rational, incentive compatible, and

do not incur a budget deficit. Most important of all, they are quite simple, which makes

them practically implementable, perhaps explaining their common use. At the same time,

a question arises as to the optimal mechanism for assigning the good. In particular, RwR

involves an in-kind subsidy (the good is offered initially at a below-market price) and it invites

speculators—those participating solely to profit from resale—which reduces the amount of

the good accruing to the low-wealth high-valuation agents. Questions arise as to whether

efficiency can be improved via cash subsidies (perhaps in lieu of the in-kind subsidy) and

whether participation by low-valuation agents can be more effectively controlled.

In order to investigate these questions, we study the optimal mechanism for assigning

the good within a class of mechanisms that are ex post individually rational, incentive

compatible and do not incur a budget deficit. We provide a partial characterization of the

optimal mechanism for the general model, showing that it involves cash transfers and random

assignment to a positive measure of agents. Thus, the optimal mechanism retains the key

features of RwR; i.e., a cash subsidy and an in-kind subsidy.

The intuition behind the role of the subsidies is made clear by studying a simple 2 × 2

type model with binary types for the budget and valuation, for which we obtain a com-

plete characterization of the optimal mechanism. The optimal mechanism makes the good

affordable to high-valuation but cash-poor agents. Since this makes it attractive for the

low-valuation agents to mimic, a cash payment must be offered to induce them not to claim

the good. The cash payment must in turn be financed by charging a high price to the high-

valuation high-wealth agents; for this to be incentive compatible, the optimal mechanism

“degrades” the contract for the target group by offering them a random assignment. We

also demonstrate that when the budget constraint binds sufficiently, the optimal mechanism

can be implemented via random assignment with regulated resale and cash subsidy. Unlike

in RwR, the resale market is taxed so as to make speculation unprofitable for low-valuation

agents, who then accept a cash subsidy in return for not participating. (The cash subsidy is

financed through the resale tax.) Finally, we extend the 2 × 2 type model by adding (veri-

fiable) signals that are correlated with wealth levels, and show that the optimal mechanism

involves need-based assignment that favors those who are more likely to be poor.

Our findings yield useful insights that are policy relevant. First, despite the widespread

use of non-market methods such as assigning goods at below-market prices, their efficiency

properties are not well-appreciated. The superior performance here provides a rationale for

their use when budget constraints are important. This observation is not a criticism of the

fundamental merits of markets, however, since non-market schemes succeed in conjunction
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with a resale market.

Second, our findings provide a new basis for subsidizing the poor. Need-based schemes

are common in college admissions, subsidized housing programs, and license auctions. While

these programs are often motivated by redistributive goals, our results suggest an efficiency

rationale.

Third, our findings shed light on the method of subsidization as well. Our analysis finds

that when an individual’s subsidy-worthiness (e.g., her wealth) is not observable, an in-kind

subsidy will be part of an optimal policy as it is less susceptible to mimicking by those

outside the target group.3 The optimal mechanism includes a cash subsidy as well, but

its role differs from the one envisioned by conventional wisdom (i.e., that subsidizing an

individual with cash is less distortionary than subsidizing her in-kind). In our model, the

cash subsidy is used to discourage low-valuation agents from claiming the good. While our

analysis is efficiency-based, we conjecture that these features would continue to apply when

the planner’s objective is just to benefit the poor.

Fourth, while resale performs a beneficial role, there may be benefits from regulating the

resale market. We show that a tax on the resale market can be used as a revenue source

for cash subsidies, which strengthen incentive compatibility. We also show that restricting

transferability (e.g., prohibiting resale before a certain date) may be desirable. When resale

is not restricted, subsidies to the poor — both in-kind and cash — attract speculators whose

participation undermines efficiency and redistribution goals. Restrictions on transferability

are typically justified by paternalistic arguments or concerns about fairness (e.g., those who

wish to sell an organ might not make rational decisions or only the wealthiest patients will

get a transplant), whereas the argument here is based on efficiency considerations.

The remainder of the paper is organized as follows. Section 2 lays out the model and

studies the performance of three common assignment methods. We study the optimal mech-

anism in Section 3. Further implications of our model are explored in Section 4 while related

work is described in Section 5. Concluding remarks are in Section 6.

3Currie and Gahvari (2008) and references therein have also shown that in-kind subsidies are effective
at preventing the wealthy from mimicking the poor. For instance, Gahvari and Mattos (2007) find that
an in-kind subsidy can be used to raise the utility of the poor, while keeping the wealthy from mimicking.
Their setting is different from ours, as consumers all have the same strongly quasiconcave utility function.
In addition, the consumers have the choice of either the in-kind subsidy from the government or a higher-
quality alternative from the private market. The welfare criterion is also different as Gahvari and Mattos
focus on achieving the Pareto-efficient frontier whereas our planner provides subsidies in order to maximize
Utilitarian welfare.
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2 Alternative Methods of Assigning Resources

2.1 Preliminaries

A planner wishes to assign a mass S ∈ (0, 1) of an indivisible good to a unit mass of agents.

Each agent consumes at most one unit of the good in addition to a divisible numeraire called

“money.” Each agent has two attributes: her endowment of money or wealth, w; and her

valuation of the good, v. She is privately informed of her type, (w, v). The attributes w

and v are distributed independently over [0, 1]2, according to the cumulative distribution

functions, G(w) and F (v), respectively, each of which has non-zero density in the support.

Independence is assumed largely for analytical ease; the results are robust to introducing

(even large) correlations between w and v. Further, independence helps to isolate the role

that each attribute plays.4

A type-(w, v) agent gets utility vx + w − t if she consumes the good with probability

x ∈ [0, 1] and pays t ≤ w. The agent cannot spend more than w. If w < v, we say she is

wealth-constrained as she is unable to pay as much as she is willing to pay. As noted above,

the limited ability to pay may stem from capital market imperfections.5

The welfare criterion we use is a Utilitarian welfare function. Given quasi-linear prefer-

ences, the total value realized is an equivalent criterion.6 This involves no restriction when

the value v of the good is a monetary return, as with productive assets or human capital:

if one allocation dominates another in terms of total value, there is a way for the realized

value to be redistributed from the former allocation to Pareto dominate the latter. The only

reason that final allocations are inefficient in the competitive market, for example, is the

lack of a means for such redistribution to occur; i.e., missing capital markets.

If the valuations of the good are non-monetary in nature, Pareto efficiency does not imply

Utilitarian efficiency, but the latter is still a compelling criterion from an ex ante perspective.

As argued by Vickrey (1945), each agent will rank alternative allocations using Utilitarian

welfare, prior to realizing her preferences, knowing only that she “has an equal chance of

4If the poor are more likely than the wealthy to have high valuations, schemes that benefit the poor
could be desirable simply because low wealth serves as a proxy for a high valuation. Assuming independence
avoids this confounding of effects.

5For instance, the good could be an asset with a random return. If the return is not verifiable, the owner
may be able to abscond with the proceeds. Then, lenders will be unwilling to invest in the project, causing
market failure. Even if the cash flow cannot be hidden, if the project requires noncontractible effort by the
borrower to be successful, the financing contract would involve capital rationing, thus causing capital market
imperfections.

6The wealth distribution has no effect because the marginal utility of wealth is constant and equal for all
agents.
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landing in the shoes of each member of the society.”7 Other criteria would give the same

ranking.

Given the scarcity of the good, the entire supply will be assigned in any reasonable mech-

anism, including the ones we consider. Hence, the realized total value can be equivalently

represented by the realized average per-unit value. The first-best allocation can be repre-

sented in this way. Let v∗ > 0 denote the critical valuation such that 1− F (v∗) = S. When

all S individuals with valuations above v∗ consume the good, total value is maximized. The

average per-unit value realized in the first-best allocation is therefore given by

V ∗ :=

∫ 1

0

∫ 1

v∗
vdF (v)dG(w)

S
=

∫ 1

v∗
vdF (v)

1− F (v∗)
= φ(v∗),

where

φ(z) :=

∫ 1

z
vdF (v)

1− F (z)

is the expectation of an agent’s valuation, conditional on its exceeding z. (Note that φ(·) is

strictly increasing, a fact we will use later.) The typical allocation in our model, including

that of the competitive market, will not attain V ∗.

We now study the performance of three assignment methods: (1) Competitive market

(CM); (2) random assignment without resale (RwoR); and (3) random assignment

with resale (RwR). A competitive market operates according to the standard textbook

description, and can be implemented by (a continuous version of) a uniform-price multi-

unit auction. At each price, each agent indicates whether she demands a unit, and the

price adjusts to clear the market. The competitive market outcome can also be replicated

when lobbyists offer non-refundable bids (“burn resources”) to a government official who

makes inferences about their merits (based on the bids) and then assigns the good.8 Under

random assignment, the planner offers the good at a below-market price, and excess demand

is rationed uniform randomly. The recipients of the good are allowed to resell it in (3), but

not in (2).

These three methods do not require the planner to observe the agents’ types, so they are

incentive compatible, and they do not require the planner to infuse money into the system.

7Vickrey reprised this argument in Vickrey (1960) where he described a potential immigrant, unsure of
her standing, deciding between two communities. Harsanyi (1953, 1955) had a similar thought experiment,
but he allowed for heterogeneous preferences. In Harsanyi’s Impartial Observer Theorem, an observer forms
a social ranking of alternatives by imagining that she has an equal chance of being any individual in society.
For further discussion see Mongin (2001)

8See the discussion of Esteban and Ray (2006) in Section 6.
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Most of all, these methods are simple to implement. Not surprisingly, they are observed

widely in the markets for a variety of goods and services. Some prominent examples follow:

• Fugitive Property, Entitlements, and Government Resources: Fugitive prop-

erty — a good or resource whose ownership is not yet established — can be assigned

to the individual who claims it first (the rule of first possession). This method cor-

responds to RwR. The Korean housing market gives another example of this method.

New construction in Korea is subject to below-market price caps, with excess demand

rationed randomly. And the recipients are allowed to resell (Kim, 2002). Many coun-

tries assign transferable fishing rights at nominal fees (Shotton, 2001). At the same

time, many government entitlements are not transferable. Immigration visas are often

assigned by lottery, and they are not transferable. Radio spectrum was once assigned

by lottery, but resale was allowed. A shift to auctions marked a change in regime from

RwR to CM in many countries. The market is also used for other resources such as

the rights to harvest timber and to drill for oil.

• Education: In many locales, school-age children are assigned to public schools in

the vicinity of their residence. Although public schooling involves little or no tuition,

the demand for schools is reflected in housing prices, so the housing prices in good

school districts are higher than those in bad school districts, all else equal.9 This

case corresponds to the market regime; the housing market assigns both schooling and

housing. Seats in certain public schools are assigned by lottery, and admission is not

transferable. This corresponds to random assignment without resale. The final regime

would arise if a lottery were used to award transferable vouchers that confer attendance

rights.

• Military Recruitment: An all-volunteer army corresponds to the competitive market

as tax-financed salaries and benefits are used to attract the enlistees. A draft lottery is

effectively an RwoR scheme. A draft lottery with tradable deferments represents RwR.

This is essentially what occurred during the U.S. Civil War when conscripts avoided

service in the Union Army by paying non-draftees to take their places.

We now study each of the three mechanisms in the remainder of this section.

9See Black (1999) for the effect that parental valuation of public education has on housing prices.
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2.2 A Competitive Market (CM)

We study the equilibrium price at which the market clears. Formally, the equilibrium price is

the value of p at which demand equals supply (or it equals zero and supply exceeds demand).

In our model the planner makes the entire supply, S, available for sale at any non-negative

price. The demand at price p ≥ 0 is given by the measure of agents willing and able to pay

p:

D(p) := [1−G(p)][1− F (p)].

Note that the demand is continuous and strictly decreasing in p for any p ∈ (0, 1), and

satisfies D(0) = 1 > S and D(1) = 0 < S. Hence, there is a unique market-clearing price

pe > 0 such that

D(pe) = [1−G(pe)][1− F (pe)] = S. (1)

Since 1 − F (v∗) = S, we have [1 − G(v∗)][1 − F (v∗)] < S, so pe < v∗. This means that the

equilibrium allocation does not maximize welfare.10

v∗

pe

pe w

v

C

A B

Figure 1: Benchmark Allocations

In Figure 1, the welfare-maximizing allocation would give the good to all agents in region

A + B whereas the market assigns it to those in B + C. In that sense, the market favors

high-wealth low-valuation agents (region C) over low-wealth high-valuation agents (region

A).

10If no agents were wealth-constrained (i.e., w ≥ v for all agents), the competitive market equilibrium
would maximize welfare.
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The competitive market yields an average per-unit value of

VCM :=

∫ 1

pe

∫ 1

pe
vdF (v)dG(w)

S
=

[1−G(pe)]
∫ 1

pe
vdF (v)

[1−G(pe)][1− F (pe)]
= φ(pe) < φ(v∗) = V ∗.

The second equality holds since [1−G(pe)][1− F (pe)] = S, by (1), and the inequality holds

since pe < v∗ and φ is a strictly increasing function.

Two points are worth making. First, the inefficiency of the competitive market is at-

tributable to the wealth constraints. If the agents were not wealth-constrained, the first-best

outcome would arise. Second, the inefficiency will not be mitigated by opening another mar-

ket. Suppose that a resale market opens. If the agents do not anticipate that it will open,

the resale market will not trigger further sales since no mutually beneficial trades remain.

(Individuals who purchased the good have v ≥ pe so they would only sell at prices exceeding

pe, but there would be no additional demand at such prices.) Now suppose that agents

do anticipate that a resale market will open, and suppose further that the resale market is

active. Then, the prices would need to be equal in the two markets; otherwise, individuals

would have an incentive to switch from one market to the other. Either way, the ultimate

allocation is the same as above.

2.3 Random Assignment without Resale (RwoR)

We now analyze the simplest non-market assignment scheme: The planner offers the good at

p ∈ [0, pe) and those who demand the good at p have an equal probability of receiving it. This

scheme is particularly easy to implement in that no knowledge of individuals’ preferences

or wealth is required. We assume that each agent can participate in the assignment scheme

only once, and resale is not permitted. Agents can be kept from participating multiple times

by requiring that all participants register.11

Since resale is not permitted, only agents whose wealth and valuations both exceed p

will participate and attempt to acquire the good. Given uniform random rationing, each

participant receives the good with probability

S

[1− F (p)][1−G(p)]
.

Then, the average per-unit value realized equals φ(p). Since p < pe, we have φ(p) < φ(pe),

11This issue is particularly important when resale is possible, in which case it pays to purchase multiple
units to resell. The impact of that is similar to the impact of adding pure speculators, which we study later.
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meaning that the allocation is inferior to the competitive market allocation.

A shift from CM to RwoR alters the set of recipients in two ways. First, it allows some

agents with (w, v) ∈ [p, pe) × [pe, 1] to receive the good. Redistribution to agents with low

wealth is welfare-neutral, all else equal, because of the independence of wealth and valuations.

Second, the shift to uniform assignment allows those with valuations v ∈ [p, pe) to receive

the good with positive probability. This latter effect lowers welfare. As the price cap is

lowered, RwoR performs even worse since more low-valuation buyers get the good.

2.4 Random Assignment with Resale (RwR)

We now assume the good is assigned at the below-market price p < pe and those who

participate are rationed uniform randomly (receiving at most one unit per participant).

Unlike RwoR, recipients of the good are permitted to resell the good. The resale market

operates in the same way as the competitive market discussed earlier. In particular, the

equilibrium resale price is the value of r at which demand equals supply (or else it is zero

and there must be excess supply).

We begin our analysis with the observation that the equilibrium resale price, rp, exceeds

the cap p. This is because any agent with a budget w ≥ rp and valuation v > rp must obtain

the good with probability one in equilibrium, and the measure of these agents exceeds S if

rp ≤ p since p < pe. Given this, any agent who receives the good can pocket rp − p > 0 by

reselling. Hence, anyone who is able to pay p will participate. Since a measure 1−G(p) of

agents will participate in the assignment, each participant receives the good with probability:

σ(p) :=
S

1−G(p)
.

We now study the determination of the equilibrium resale price. To this end, fix any

resale price r > p. Resale demand at that price comprises the agents who did not receive

the good initially but who are willing and able to pay r:

RD(r) := [1− F (r)][1−G(r)](1− σ(p)). (2)

Now consider resale supply. If a recipient of the good keeps it, she will receive utility

v + w − p, whereas reselling gives her r + w − p. It is thus optimal to resell if and only if

v < r. It follows that the resale supply at r equals the quantity initially assigned to agents

with v < r. Since the probability of being in the latter group is simply F (r), the resale
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supply at r is given by

RS(r) := SF (r). (3)

Equating resale demand and supply yields:

[1− F (r)][1−G(r)](1− σ(p)) = SF (r). (4)

The left-hand side of (4) is continuous and strictly decreasing in r, for r ≥ p, and its right-

hand side is continuous and strictly increasing in r. At r = p, the left-hand side exceeds the

right-hand side,12 and vice versa at r = 1. Hence, there exists a unique rp > p that satisfies

(4).

The final allocation of RwR thus has two different groups of agents receiving the good.

The agents with w ≥ rp and v > rp (in region B′ in Figure 2) obtain the good with probability

one, since they purchase the good on the resale market if they are not assigned the good

initially. Those agents with w ∈ [p, rp) and v > rp (in region A′ of Figure 2) obtain the good

with probability σ(p).

pe

pe

p rp

rp

w

v

A′ B′

Figure 2: Random Assignment with Transferability

12The left-hand side of (4) simplifies to [1− F (p)][1−G(p)]− [1− F (p)]S, which exceeds the right-hand
side, since [1− F (p)][1−G(p)] = D(p) > D(pe) = S.
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RwR yields an average per-unit value of

VRR(p) :=
σ(p)

∫ rp
p

∫ 1

rp
vf(v)dvg(w)dw +

∫ 1

rp

∫ 1

rp
vf(v)dvg(w)dw

S

=

(
σ(p)[G(rp)−G(p)][1− F (rp)] + [1−G(rp)][1− F (rp)]

S

)(∫ 1

rp
vf(v)dv

1− F (rp)

)
= φ(rp),

where the last equality follows from the fact that the numerator of the first term in the

second line is the measure of those who end up with the good, which equals S.

Since a competitive market produces an average per-unit value of φ(pe), to show that

RwR outperforms CM it suffices to show that rp > pe. Suppose, to the contrary, that the

resale price were r ≤ pe. By (1), D(r) ≥ S, so the agents who are willing and able to pay

r (region B′) would exhaust S by themselves. In addition, some agents in region A′ would

receive the good and would not resell it. Since there will be excess demand on the resale

market when r ≤ pe, the equilibrium resale price must exceed pe. A consequence is that

VRR(p) = φ(rp) > φ(pe) = VCM , and we conclude that random assignment with resale yields

strictly higher welfare than either random assignment without resale or the competitive

market.13

Random assignment allows the poor to receive the good with positive probability. Since

the poor lack the ability to buy the good on the market, shifting the assignment toward them

enhances welfare if resale is possible. The high-valuation poor will keep the good whereas

low-valuation agents will resell to high-valuation agents.14

A similar logic applies to reductions in the price cap. As p falls, more of the good accrues

to the poor. The ultimate allocation improves since rp rises as p falls. The results are now

summarized.

Proposition 1. Random assignment with resale yields higher welfare than the competitive

market, and welfare rises as the price cap falls. Random assignment without resale yields

lower welfare than the competitive market, and welfare falls as the price cap, p, falls.

13High-valuation agents with w < p do not get the good so rp < v∗, which means that welfare is not
maximized.

14Note that both regimes entail competitive markets in the end. Essentially, RwR pre-endows the good to
the agents before the opening of a competitive market. Hence, when the realized values are not transferable,
the first welfare theorem suggests that the outcomes of both regimes are Pareto efficient; one simply attains
a higher Utilitarian welfare than the other. If the values of the good are transferable, however, then neither
outcome is Pareto efficient, since there is a Pareto-improving redistribution of values. This result is not
inconsistent with the first welfare theorem; it is explained by a missing capital market.
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Remark 1. Although independence of wealth and valuations simplified the comparison, it is

not crucial. The results are robust to either positive or negative correlation between the two.

The first statement of Proposition 1 holds as long as there is a positive measure of agents

with wealth just below the competitive price and sufficiently high valuations. The second

statement of Proposition 1 holds as long as there are enough agents with high wealth and low

valuations.

Given the intuition behind the proposition, it is also not difficult to see the effects of

changing wealth inequality. There exists a kind of increasing inequality that worsens the

outcome of CM and improves that of RwR with p = 0.

Corollary 1. Let G be the initial wealth distribution and fix p = 0. Now let pe denote the

equilibrium price under CM, let rp denote the equilibrium resale price under RwR, and fix

ŵ ∈ (pe, rp). If the distribution of wealth shifts to Ĝ, where Ĝ(w) < G(w) for w ∈ (ŵ, 1) and

Ĝ(w) > G(w) for w ∈ (0, ŵ), then the equilibrium prices under CM and RwR, respectively,

are p̂e and r̂p that satisfy p̂e < pe and r̂p > rp. Consequently, the shift lowers welfare under

CM and raises it under RwR.

Proof. We have [1 − F (pe)][1 − Ĝ(pe)] < [1 − F (pe)][1 − G(pe)] = S, which implies that

p̂e < pe, by the single-crossing property of net demand. Likewise, we have

[1− F (rp)][1− Ĝ(rp)](1− S) > [1− F (rp)][1−G(rp)](1− S) = SF (rp),

where the strict inequality follows from rp ∈ (ŵ, 1) and pe < ŵ, and the equality follows

from rp being the equilibrium price in CM under G. The inequalities, along with the single-

crossing property of net (resale) demand, mean that r̂p > rp. The last statement then follows

from the monotonicity of φ.

3 Optimal Mechanism

The previous section studied the implications of agents’ wealth constraints for three common

allocation mechanisms. A natural question is: What mechanism is optimal in this environ-

ment? RwR involves in-kind subsidies (the good is offered initially at a below-market price).

An immediate question is whether one can do just as well using cash subsidies instead of

in-kind subsidies, along with the competitive market. RwR also attracts pure speculators

— low-valuation agents who participate solely to profit from resale —and their participation

undermines efficiency by reducing the probability that the good accrues to the low-wealth

14



high-valuation agents. Another question, then, is whether participation by low-valuation

agents can be more effectively controlled.

To investigate these issues, we study an optimal mechanism in the class of mechanisms

that are individually rational, incentive compatible and budget balanced. Our analysis of

an optimal mechanism shows that it retains the central features of RwR as it provides an

in-kind subsidy to high-valuation cash-poor agents and a cash incentive to low-valuation

agents.

3.1 Formulation of the Problem and Partial Characterization

We first formulate the mechanism-design problem in a general setting that includes our

original model as well as the 2× 2 type model that is the focus of Section 3.2. Let W and V

be the supports of budgets and valuations, respectively. By the revelation principle, we can

restrict attention to a direct mechanism, Γ = (x, t) : W×V → [0, 1]×R, which maps from an

agent’s reported type, (w′, v′) ∈ W ×V , into the probability, x(w′, v′), that the agent obtains

the good; and the expected payment, t(w′, v′), that the agent must make. Note that this

payment can be negative; i.e., the mechanism may involve a transfer from the planner. We

impose several conditions on feasible mechanisms, some of which are standard. For instance,

we require that the amount of the good assigned cannot exceed the supply:

(S) E[x(w, v)] ≤ S,

and that each agent must be willing to participate:

(IR) vx(w, v)− t(w, v) ≥ 0, ∀w, v.

While we seek to consider a general mechanism, the primary aim is to yield insights that

have some relevance for real-world institutions. This motivates the following restrictions.

First, we assume that the agent has limited ability to sustain a loss; in particular, the agent

cannot be forced to make a positive payment when she does not receive the good. This

means that t(w, v) ≤ 0 whenever x(w, v) = 0. We are effectively assuming that an agent

makes a conditional payment p(w, v) := t(w, v)/x(w, v) if x(w, v) > 0. In particular, the

budget constraint for a type-(w, v) agent takes the form:

(BC) t(w, v) ≤ wx(w, v), ∀w, v.
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This rules out lotteries with positive entry fees. (While such mechanisms are of intellectual

interest, we are not aware of any examples with substantial entry fees.15) The assumption

is justified if the agents are sufficiently loss-averse at a zero payoff. Based on Che and Gale

(2000) (which allows for charging entry fees for lotteries), though, we conjecture that the

optimal mechanism involves qualitatively similar features as the one we find. The crucial

difference is that our framework has realistic implications, as will be shown by the imple-

mentation results.

Second, even though it is conceivable that the planner could force agents to demonstrate

their “wealth” (e.g., by requiring a bond) to mitigate incentive compatibility, such a mecha-

nism is unrealistic in practice since one’s wealth may not be easily verifiable.16 This means

that an agent may choose any contract that requires a conditional payment less than her

wealth. Incentive compatibility therefore means:

(IC) vx(w, v)− t(w, v) ≥ vx(w′, v′)− t(w′, v′), ∀(w′, v′) such that t(w′, v′) ≤ x(w′, v′)w.

Third, the planner should not incur a deficit:

(BB) E[t(w, v)] ≥ 0.

If the planner can subsidize without limit, the first-best can be attained easily. But, the

result will not be very useful since there is a social cost of raising public funds. Some mech-

anisms may yield a strictly positive budget surplus; the surplus can be then redistributed

(say equally) without violating incentive compatibility (since agents are atomless). For this

reason, we shall continue to focus on Utilitarian efficiency; i.e., maximizing the aggregate

value of the good realized.

Summarizing, the planner solves

[P ] max
x,t

E[vx(w, v)]

15Lotteries with upfront fees are susceptible to manipulation; the sponsor may convey the prize to a
confederate. Further, they are illegal in the US. Actual lotteries may be disguised as in essay contests, for
instance, but these practices are not common.

16We believe that this assumption is also without loss since any such mechanism can only discriminate
against agents with lower wealth, and this discrimination tends not to be optimal given independence of
wealth and valuations. In fact, we prove it for the 2 × 2 model by showing (in the proof of Proposition
3) that the optimal mechanism involves no such discrimination when (IC) is relaxed to allow for such
discrimination. See also Che and Gale (2000) for an argument making the same point for the general model,
albeit in a slightly different context.
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subject to

(S), (IR), (BC), (IC), and (BB).

Let us first consider our original model with W = V = [0, 1], and absolutely continuous

distributions G and F for these variables, with densities that are bounded. We provide the

following (partial) characterization of the optimal mechanism.

Proposition 2. The optimal mechanism for the general model involves cash transfers to a

positive measure of agents and provides random assignment to a positive measure of agents;

i.e., it induces a positive measure to obtain the good with interior probabilities (strictly be-

tween zero and one).

The proposition shows that the optimal mechanism contains the two main features of

RwR discussed earlier: a cash subsidy and random assignment. (Recall that RwR confers a

cash subsidy on low-valuation agents in the form of resale profit.) These two features will

emerge explicitly, and the intuition behind them will be made clear, in the next section.

3.2 Optimal Mechanism in the 2× 2 Type Model

The multidimensional types and the budget constraints make complete characterization dif-

ficult for our model with continuous types. We therefore solve a “2×2” version of the model

in which an agent’s wealth and valuation each take one of two values. Specifically, we assume

that each agent draws a wealth from W := {wL, wH} and a valuation from V := {vL, vH},
where 0 ≤ wL < wH and 0 ≤ vL < vH . In order for the problem to be interesting, we also

assume that wH ≥ vH > wL. Then, the high-wealth type is never constrained whereas the

low-wealth type may be. We assume that a mass g(w)f(v) > 0 of agents has wealth w ∈ W
and valuation v ∈ V , where g(wL) + g(wH) = 1 and f(vL) + f(vH) = 1. As before, we

assume that the supply of the good is limited to S < 1. While simpler, this model captures

the salient features of the general model.

In this environment, the first-best allocation is defined as an assignment x(·, ·) such that

(S) is binding and, whenever x(w, vL) > 0 for some w ∈ W , we must have x(w′, vH) = 1

for all w′ ∈ W . For ease of exposition, let gi := g(wi), fj := f(vj), xij := x(wi, vj), and

tij := t(wi, vj) for i, j ∈ {L,H}. Then, Γ = {(xij, tij)}i,j∈{L,H} denotes a mechanism. We

now give a characterization of the optimal mechanism.
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Proposition 3. The optimal solution to [P ] attains the first-best17 if and only if either

S ≤ gHfH or wL ≥ min

{
(1− S)vL, fLvL − gHfHvH

(
fH − S
S − gHfH

)}
. (5)

When (5) fails, the optimal (second-best) mechanism involves a menu of three contracts,

{(xL, tL), (xLH , tLH), (1, tHH)}, where xL = S−fH(gH+gLxLH)
fL

, xLH = gHfH(vH−vL)+SvL
gHfH(vH−vL)+vL−wL

, tL =

vLxL − (vLxLH − tLH), tLH = xLHwL, and tHH = vH − (vHxLH − tLH).

This proposition indicates that if agents’ budget constraints are sufficiently severe, then

the optimal mechanism involves a menu of three contracts. The first contract involves sale

of the good at the “full price,” ((x, t) = (1, tHH)), and the remaining contracts involve two

types of subsidies: (xLH , tLH) offers the good with an interior probability at a discount per-

unit price (tLH/xLH < tHH), and is chosen by low-wealth high-valuation agents; and (xL, tL)

offers the good with an even lower probability, possibly zero, at a negative price (i.e., a cash

subsidy), and is chosen only by low-valuation agents.

Further intuition can be gained from Figure 3, which graphs the optimal mechanism as

a nonlinear tariff in (x, t) space, when the first-best is infeasible.

17When (5) holds, the first-best outcome is implemented as follows:

• If S ≤ gHfH or wL ≥ vL, then an optimal (first-best) mechanism involves a menu, {(0, 0), (1, t∗)},
where t∗ ∈ (wL, vH ] if S ≤ gHfH , t∗ = wL if S ∈ (gHfH , fH ], and t∗ = vL if S ∈ [fH , 1).

• If S ≥ fH and wL < vL, then an optimal (first-best) mechanism involves a menu, {(xL, tL), (1, tH)},
where xL = S−fH

fL
, tH = wL, and tL = xLvL − (vL − tH).

• If S ∈ (gHfH , fH) and wL < vL, then an optimal (first-best) mechanism involves a menu,
{(0, tL), (xLH , tLH), (1, tHH)}, where xLH = S−gHfH

gLfH
, tLH = xLHwL, tL = vLxL − (vLxLH − tLH),

and tHH = vH − (vHxLH − tLH).
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Figure 3: The Second-Best Menu

The three bold-faced points represent the contracts offered in the optimal mechanism.

Their linear envelope forms a nonlinear tariff, which implements the optimal outcome. The

figure illustrates how the agents’ constraints affect the nature of the socially optimal mech-

anism. When no agents are wealth-constrained, the socially optimal tariff is linear, with a

slope equal to the (per-unit) value of the marginal consumer (i.e., the market-clearing price).

Such a mechanism selects agents based solely on their valuations: those above the marginal

valuation consume the good with probability one and those below consume nothing. No

agents are induced to consume a random amount.

Budget constraints introduce three new features into the optimal mechanism. First, low-

wealth high-valuation agents are induced to consume a random amount. Second, a cash

subsidy is given to the low-valuation agents. Third, the tariff is convex.

These features can be explained via Figure 3. Note first that the conditional payment

associated with a given point (i.e., contract) is represented by the slope (t/x) of the ray

from the origin to that point. Hence, a low-wealth agent cannot afford a contract above

the shaded area (whose boundary is the dashed ray with slope equal to wL).18 For a low-

wealth high-valuation agent to get the good with positive probability, the implicit price

must be sufficiently low. This strains incentive compatibility as the low-valuation agents

may find the contract for the low-wealth high-valuation agents attractive. Since vL > wL,

18If charging entry fees for lotteries were allowed (i.e., if (BD) were relaxed so that (t(v, w) ≤ w), then the
feasible set for a type (w, v) would be the area below the horizontal line t = w. We note that the qualitative
features of the optimal menu remain the same given a sufficiently binding constraint.

19



the former cannot be dissuaded from consuming the good unless they are offered a cash

subsidy, which explains the second feature. This is depicted by their contract being below

the horizontal axis. To balance the budget, the cash subsidy is financed by charging the

high-wealth high-valuation agents more than wL. But, for them to pay more than the low-

wealth high-valuation agents do, the latter agents’ consumption must be distorted downward,

which explains their less-than-certain consumption of the good — the first feature. Finally,

the incentive constraints for the high-wealth high-valuation agents and for the low-valuation

agents must be binding with respect to the contract for the low-wealth high-valuation agents

(this is depicted by the two arrows pointing to the middle contract).19 This means that the

latter’s contract must be on their indifference curves, with slopes vH and vL, respectively.

This explains the third feature: convexity of the nonlinear tariff.

3.3 Implementation via Regulated Resale and Cash Subsidy

Here we discuss how the optimal mechanisms identified in Proposition 3 can be implemented

via common assignment schemes. Those schemes include two that we already considered:

competitive market (CM) and random assignment with resale (RwR). There are cases, how-

ever, in which these schemes are not sufficient, so they need to be modified to implement

the optimal mechanism. For that purpose, we introduce two new schemes:

• Competitive Market with Cash Subsidy (CMC): The planner offers a cash

subsidy C to every agent who participates and assigns the good via a competitive

market (e.g., standard multi-unit auction).20

• Random Assignment with Regulated Resale and Cash Subsidy (RwRRC):

The planner initially assigns the good randomly (with uniform probability) at a below-

market price p, awarding at most one unit to each participant, and offers a cash subsidy

C to those who do not participate in the assignment. The resale market opens next,

but it is regulated, with a per-unit sales tax of τ .

19This pattern of binding incentive constraints is indicative of the difficulty encountered when doing
mechanism design analysis in the current setting. In the standard one-dimensional problem, often the single-
crossing property means that the constraints are binding adjacently in a monotone fashion. In the current
setting (with two-dimensional types and budget constraints), the direction of binding incentive constraints
(arrows in the figure) does not have an obvious order.

20We note that any allocation that can be achieved under CMC can also be achieved using RwR with a
cash subsidy. To be concrete, let p be the equilibrium price under CMC. The following scheme achieves the
same allocation as under CMC: randomly assign the good at a price equal to p−C, and give a cash subsidy
equal to C to those who were not assigned the good. Then, the high-valuation agents who were not assigned
the good buy it on the resale market (with the cash subsidy). The ultimate assignment is the same as under
CMC, and the budget balances for the same reason as under CMC.
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The results are as follows.

Proposition 4. (i) If S ≤ gHfH or wL ≥ vL, CM implements the first-best outcome.

(ii) If S ∈ (gHfH , gHfH/(1− gLfH)], then the optimal mechanism (the first-best) is imple-

mented by RwR with initial price p ≤ wL.

(iii) If S ≥ fH and wL ∈ [(1− S)vL, vL], then the optimal mechanism (the first-best) is

implemented by CMC with a cash subsidy C = vL − wL.

(iv) In the remaining cases, including the case in which (5) fails (so the first-best is not

implementable), the optimal mechanism is implemented by RwRRC with C = vLxL−tL,

p = tLH = wL and τ = vH − vL.

The first three cases are relatively easy to explain. The first case (i) is indeed obvious. To

explain (ii), suppose that RwR is employed with p ≤ wL. Then, all agents will participate

and each gets the good with probability S, so a fraction S of high-valuation agents obtain

the good and consume it. A measure (1− S)gHfH of high-valuation high-wealth agents are

not initially assigned, so they demand the good on the resale market. A measure SfL of

low-valuation agents are assigned and attempt to resell. Given the condition, the former is

no less than the latter, meaning that only high-valuation agents will end up with the good.

Hence, RwR implements the first-best.

To understand (iii), suppose that the planner offers a cash subsidy of C = vL − wL, and

assigns the good via a competitive market. Then, every agent, including the low-wealth

types, is willing and able to spend at least vL for the good. At the price pe = vL, all of the

high-valuation agents and a measure S − fH of low-valuation agents will demand the good,

clearing the market.21 The total subsidy required, vL − wL, can then be financed from the

sales proceeds, peS = vLS, given the condition.

Case (iv) is most interesting since it deals with the situation where the agents’ budget

constraints are severe enough to preclude the first-best. The proof for this case is provided

in the appendix. Here we simply explain the idea of how RwRRC can improve the outcome.

The primary challenge now is to maximize the consumption of those with a high valuation

but low wealth. This is difficult because of the incentive problem; the low-valuation agents

are tempted to mimic the target group. The problem is addressed in RwR solely by allowing

resale of the assigned good. Resale profit induces the successful low-valuation agents to give

21In fact, this is the only market-clearing price. If p < vL, then there will be excess demand. If p > vL,
then only high-valuation and high-wealth agents will demand; since S ≥ fH > gHfH , we will have excess
supply.
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up the good. The optimal mechanism here employs two additional instruments to address the

incentive problem. First, it offers a direct cash incentive to discourage low-valuation agents

from participating in the initial assignment, which increases the probability that the high-

valuation low-wealth agents obtain the good. The bigger the cash subsidy is, the stronger

is their incentive not to participate, so the higher is the probability that the low-wealth

high-valuation agents obtain the good. And the cash subsidy can be financed in particular

by those high-wealth high-valuation agents. The sales tax is used as a means to collect extra

revenue from this group. These two instruments enable the current optimal mechanism to

improve upon the RwR mechanism.

As mentioned in the introduction, the fact that the optimal mechanism contains both in-

kind and cash subsidies is interesting. This has a useful implication for the optimal method

of subsidizing the poor. An in-kind subsidy may be an important aspect of subsidy design

when the subsidy-worthiness of an agent is not observable to the policy maker. Cash subsides

may also be employed, but they may play a role different from the one envisioned by the

conventional wisdom. In particular, the cash subsidy may be offered not to benefit the target

subsidy group but to keep the subsidy-unworthy from claiming the scarce benefits.

4 Need-Based Assignment

The preceding analysis has assumed that each agent’s wealth and valuation are unobserv-

able to the planner. In reality, however, information about agents’ characteristics is often

available and used in the assignment of resources. For instance, the awarding of need-based

scholarships provides an example of assignment based on wealth.22 It is obvious that schemes

based on signals of valuations would be desirable from a welfare standpoint. In this section,

we show the less-obvious property that need-based assignment schemes have the same effect

of improving welfare, using the mechanism design framework from the previous section.

We simplify the 2×2 model in Section 3 by assuming that each of four wealth-valuation

types has an equal mass, 1/4. We then introduce a binary signal s ∈ {`, h} that is observable

and verifiable by the mechanism designer. The signal s is assumed to be positively correlated

with the wealth type. Specifically, for ρ ∈ (1/2, 1), the mass of each type (wi, vj) is given by

the following table:

22Likewise, many government transfer programs in the U.S. are means-tested. See Currie and Gahvari
(2008).
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vL vH

wL
1
4
ρ 1

4
ρ

wH
1
4
(1− ρ) 1

4
(1− ρ)

s = `

vL vH

wL
1
4
(1− ρ) 1

4
(1− ρ)

wH
1
4
ρ 1

4
ρ

s = h

Note that the masses of the four agent types sum to 1/2 for each signal, and the low (high)

signal is more likely when the agent has low (high) wealth. We will refer to the agents with

signal s as group s. We will sometimes use nsij to denote the mass of the type (wi, vj) in

group s; e.g., nhHL = ρ
4
.

The mechanism design problem is reformulated in a natural way. The direct mechanism

specifies the assignment and payment rules as functions of an agent’s wealth signal in addition

to her report on her type.23 We let xsij and tsij denote the probability of assignment and

payment for each type (wi, vj) in group s. As before, we let xsL := xsiL when xsHL = xsLL.

It is useful to think of the planner facing two separate subprograms [P s] indexed by

s = `, h. Each subprogram is similar to the problem in Section 3; in particular, constraints

(BC ), (IR), and (IC ) can be required for each subprogram separately.24 The subprograms

cannot be solved in isolation, however, since (BB) need not hold for each group separately, as

one group can cross-subsidize the other, and the amount of the good assigned to each group

is endogenously determined as part of the optimal design. Letting Ss :=
∑

i,j∈{L,H} n
s
ijx

s
ij

denote the amount of the good assigned to group s, the constraint (S ) changes to S`+Sh ≤ S.

Lastly, we rewrite (BB) as

B :=
∑

i,j∈{L,H}
s∈{`,h}

nsijt
s
ij = B` +Bh ≥ 0, (6)

where Bs :=
∑

i,j∈{L,H} n
s
ijt

s
ij is the net payment collected from group s. Cross-subsidization

between the two groups is allowed since it is possible to have Bs > 0 > Bs′ and Bs+Bs′ ≥ 0.

Under these constraints, our task is to find the mechanism that maximizes the sum of

23In the mechanism design literature, Riordan and Sappington (1988) and Faure-Grimaud et al. (2003),
among others, study a similar setup in which an informative signal is available to the principal. There are
a couple of crucial differences, however. First, in the current paper and Faure-Grimaud et al. (2003), the
signal is publicly available at the time the principal offers a contract, whereas in Riordan and Sappington
(1988), the signal is unobserved at the time of contracting, which leads to the full-extraction first-best
result of Cremer and McLean (1988). More important is that the signal pertains only to one component
of the agent’s two-dimensional private information in the current model, whereas it pertains to the agent’s
single-dimensional private information in both Riordan and Sappington (1988) and Faure-Grimaud et al.
(2003).

24For instance, there is no issue of an agent in one group mimicking those in the other.
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surpluses for the two groups. As before, the first-best is always implementable if wL ≥ vL or

S ≤ 1/4,25 so we focus on the remaining cases.

Before proceeding, we demonstrate why need-based assignment is desirable, by consider-

ing a special case in which the agents’ wealth levels are perfectly observable (i.e., ρ = 1). In

this case, the planner can achieve the first-best with RwR that favors the low-wealth group

s = ` in the initial assignment. Specifically, the planner assigns as much of the good as pos-

sible to the low-wealth group at the price p` ≤ wL. If S ≤ 1/2, then the entire supply will

be allocated (uniform-randomly) to the members of this group. If S > 1/2, then every agent

of the low-wealth group gets the good. The remainder is then allocated uniform-randomly

to the members of the high-wealth group s = h at the price ph = vL > wL.

It is easy to see that this need-based RwR implements the first-best. Suppose, first, that

S ≤ 1/2. Then, the resale market clears at the price vH (in the unique equilibrium). Given

r = vH , a low-wealth recipient of the good keeps it if her valuation is vH but otherwise sells it

to a high-valuation agent in the high-wealth group. Since the mass of high-valuation agents

exceeds the supply, the market clears at the price vH . If S > 1/2, the first-best is attained at

the resale price of vL. Given the resale price, each high-valuation agent keeps the good if she

receives it, and demands it on the resale market if she did not receive it initially. Meanwhile,

a low-valuation recipient of the good is indifferent to reselling it. The resale market clears at

the price vL since the supply exceeds the demand from high-valuation agents. Need-based

assignment works in both cases by excluding the high-wealth low-valuation agents who would

otherwise mimic the low-wealth high-valuation agents. The following proposition establishes

the optimality of need-based assignment for the general case.

Proposition 5. Suppose that S ∈ (1/4, 1) and wL < vL. Then,

(i) the first-best outcome is attainable if and only if wL ≥ ŵL(ρ) for some ŵL(ρ) ∈ [0, (1−
S)vL]. Moreover, it is implemented by a mechanism with x`HH = xhHH = 1 and x`LH =

min{1, S−(1/4)
(ρ/4)

} ≥ xhLH .

Suppose, in addition, that wL < ŵL(ρ) (so the first-best is not attainable) and vH ≥
(2−ρ)vL
(1−ρ) −

wL
1−ρ .26 Then,

(ii) the optimal (second-best) mechanism has xsHH = 1,∀s and either 1 = x`LH > xhLH ≥ 0

or 1 > x`LH > xhLH = 0;

25Note that 1/4 is the mass of high-wealth high-valuation types across the two groups.
26The latter inequality is a technical condition that guarantees xsLH ≥ xsHL,∀s = `, h, which facilitates

our analysis.
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(iii) each agent type in group ` is better off than the corresponding type in group h.

Statement (i) suggests that the first-best outcome, if attainable, can be implemented

via need-based assignment: the first-best mechanism favors the low-wealth high-valuation

agents in group ` over the same type of agents in group h. Statement (ii) establishes the

optimality of favoring group ` in the second-best mechanism in terms of both the probability

of assignment and payoff.

This result is explained by the differing incentive costs of favoring cash-poor high val-

uation agents across the two groups. Consider assigning an extra unit to the low-wealth

high-valuation agents in either group. To make this incentive compatible, additional infor-

mation rents must accrue to all other types in that group.27 Since the mass of the latter

types is relatively smaller in group `, smaller information rents are needed to assign the extra

unit to low-wealth high-valuation agents in group ` than to the same types in group h. This

alleviates the budget-balancing constraint (BB) and thus raises total surplus. Naturally,

need-based assignment makes the agents in group ` better off compared to those in group h,

as shown in (iii).

5 Speculation and the Restriction of Resale

The preceding analysis assumes that the planner can control recipients’ ability to resell the

good. This assumption is not without loss of generality. Even though resale can improve

welfare ex post, it could have an adverse effect ex ante. The ability to resell may invite (low-

valuation) agents to participate solely to profit from resale when the good is offered for sale

at a below-market price, as in our model.28 This kind of speculation is harmful for welfare

since it reduces the probability that the good is assigned to those with high valuations but

low wealth, thereby undermining efficiency.

The effect of speculation can be seen most clearly when the mass of potential speculators

is large. Consider our continuous-types model. (The same result holds for our 2× 2 model.)

Suppose that, in addition to the unit mass of agents, there is a mass m of agents with zero

valuation and wealth distributed according to density g. These agents can be interpreted as

27This can be seen from the fact that all other types than (wL, vH) are indifferent between their own
contracts and (xLH , tLH).

28When the FCC used a lottery to assign cellular telephone licenses, it received nearly 400,000 applications.
The application fee was zero until 1987, and only $230 in 1993 (Kwerel and Williams, 1993). The use of
lotteries to assign housing in Korea engendered so much speculation that it was blamed for volatility in
housing prices (Malpezzi and Wachter, 2005).
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“outsiders” who have no intrinsic demand for the good, but can respond to any speculative

opportunity. We envision a potentially large number of these agents. For a given economy

indexed by m, we consider an arbitrary feasible mechanism, (xm, tm), that is in the class

studied in Section 3, except that we now assume that agents who receive the good can resell

it in a (unregulated) competitive market that operates whenever there is a price at which

a positive measure of demand and supply exist. In other words, we assume that the resale

process is beyond the control of the planner.

Proposition 6. With unrestricted resale, in the limit as m → ∞, the optimal mechanism

converges to the one obtained under a competitive market.

This result is reminiscent of the Coase theorem in that the initial assignment does not

matter much; however, the ultimate allocation is not efficient here.29 A significant presence

of pure speculators thwarts any attempt to assign the good to the agents with low wealth and

high valuations (the target group), since a cash incentive large enough to keep them from

participating will entail a budget deficit, whereas allowing the pure speculators to participate

will simply undermine any real attempt to distribute the good to the wealth-constrained

agents with high valuations.

This suggests that restricting resale may be desirable. Regulation could take the form of

a blanket prohibition on resale.30 More generally, recipients of the good may be prevented

from profiting from resale until a certain date.31 Consistent with these practices, we consider

a regulation that prohibits resale for a fixed period of time.

To illustrate why such a restriction may be useful, consider our 2× 2 model with a unit

mass of agents having (w, v) distributed according to g and f . In addition, there is a mass

m > 0 of outsiders whose value is zero and whose wealth is distributed according to g. We

assume that (5) fails so that the first-best cannot be attained. This implies, in particular,

that wL < vL and S > gHfH . Further, to ensure that the competitive market is well-defined,

29Jehiel and Moldovanu (1999) also find that different ownerships result in the same but inefficient alloca-
tion; but the main source of inefficiency in their model is externalities that one’s ownership imposes on the
other agents.

30For instance, in the 3G spectrum auctions in the U.K., resale of licenses was prohibited. See Klemperer
(2004). Although firms can get around the ban via a corporate merger, doing so is often costly.

31Some owners of subsidized housing units face the latter form of constraint. See 42 U.S.C. 12875 for a
discussion of restrictions in the “Housing Opportunities for People Everywhere” (HOPE) program in the
U.S. When a housing unit is sold within six years, the seller may not keep any “undue profit,” meaning that
the seller must disgorge proceeds exceeding the original price, adjusted for inflation. Similarly, if a designated
entity sells a spectrum license during the first five years, it must reimburse the FCC for the entire bidding
credit plus interest. See Federal Communications Commission 47 CFR Part 1 (WT Docket No. 05-211; FCC
06-52).
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we assume that S ≤ gH .32 We suppose that the good generates an instantaneous (flow)

surplus of v to an agent with valuation v ∈ {vL, vH}, for a lifespan normalized to one.33

Since S ∈ (gHfH , gH) and wL < vL, the equilibrium price in a competitive market is vL,

and only the high-wealth agents can buy the good, so the average surplus realized per-unit

becomes

fHvH + (1− fH)vL, (7)

the same as random assignment (without resale). As seen above, in the limit as m→∞, the

optimal mechanism with unrestricted resale generates at most this level of per-unit surplus.

We now show that random rationing with restricted resale can attain a better outcome.

Suppose that the good is assigned randomly at the price p = wL, and recipients are

prohibited from reselling until time z ∈ [0, 1]. If a recipient with valuation v resells it for r

at time z, she gets utility of zv + r + w − p. Holding onto the good for the entire period

yields v+w− p, so it is optimal to resell if and only if r ≥ (1− z)v. Given our assumptions,

the equilibrium resale price is r = (1− z)vL.34

Pure speculators will have no incentive to participate if r ≤ p = wL, which is equivalent

to 1 − z ≤ wL
vL

or z ≥ 1 − wL
vL

=: z∗. In other words, pure speculators can be kept from

participating by prohibiting resale until time z = z∗. Under this policy, the average per-unit

surplus equals

z∗(fHvH + (1− fH)vL) + (1− z∗) (f ∗HvH + (1− f ∗H)vL) , (8)

where f ∗H := min{fH
S
, 1} > fH . The first term accounts for the surplus realized before resale

(i.e., z < z∗) by the initial recipients of the good while the second term accounts for the

surplus realized after resale by those who did not resell and by those who purchased the good

on the resale market.35 The total flow surplus realized after resale (i.e., the term inside the

parentheses) is higher than the flow surplus realized before z∗ since resale improves allocative

efficiency. For this reason, the average surplus in (8) under this mechanism is higher than the

32If S ∈ (gH , 1), a market-clearing price does not exist in a competitive market; for any price p > wL,
demand is at most gH , which falls short of supply, whereas for p ≤ wL, demand is 1, exceeding the supply.

33This assumption is equivalent to the individuals discounting their future payoff exponentially.
34If r > (1 − z)vL, only individuals with v = vH will keep the good or demand it on the resale market.

The fact that (5) fails implies that (1− S)gHfH < SfL, so there will be excess supply on the resale market
(assuming that pure speculators never participate in the initial assignment). If r < (1− z)vL, there will be
excess demand since all agents with vL or vH will demand the good if they did not receive it initially. Thus,
r = (1− z)vL in equilibrium.

35Note that all high-valuation agents obtain the good via the initial assignment or the resale market since
both p̄ and r are no greater than wL.
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corresponding surplus in (7) under the competitive market. Notice also that the surplus (8)

does not depend on m since the pure speculators are deterred from participating. In light of

Proposition 6 (which also applies to our 2× 2 type case), this means that for m sufficiently

large, the simple RwR mechanism, with resale permitted only after z = z∗, dominates any

assignment mechanism with unrestricted resale.

Remark 2. Another way to combat speculation is to impose a sales tax on resale. We previ-

ously saw that a tax on resale, together with a cash subsidy, serves to discourage participation

by low-valuation consumers. But, with an arbitrarily large number of pure speculators, the

tax cannot keep them all from participating unless it is large enough to shut down the re-

sale market completely. Meanwhile, a cash subsidy would result in a budget deficit. Without

cash incentives for non-participation, pure speculators will participate as long as the after-tax

resale price exceeds the initial assignment price.

Our focus has been on the efficiency effects of non-market assignment schemes, but this

example also illustrates why resale may be regulated in social programs motivated by redis-

tributive goals. The option to resell clearly increases the value of the entitlement for those

selected to receive the good. Ex ante, though, allowing resale invites speculation and reduces

a low-wealth agent’s probability of receipt. If the latter effect dominates the former (which

it does in this example), the target group may be better off ex ante with regulation of resale.

6 Related Literature

The current paper follows the well-known theme that wealth constraints may impact alloca-

tive efficiency. Che and Gale (1998, 2006) study standard auctions in which bidders differ

in their valuations and wealth. They showed that standard auctions differ in terms of al-

locative efficiency and the seller’s expected revenue.36 Che and Gale (2000) solved for the

profit-maximizing mechanism for selling to a single buyer with private information about

her valuation and wealth. They found that the optimal mechanism may contain a menu of

lotteries indexed by the probability of sale and the corresponding fee.37 Random assignment

offers a similar benefit in the current paper. Pai and Vohra (2011) derive the revenue-

maximizing mechanism for selling a single unit to multiple buyers. Agents draw budgets

and valuations independently from the same discrete distribution. Pai and Vohra’s optimal

mechanism involves an in-kind subsidy (i.e., random assignment with a price discount) but

36See Kotowski (2010) for a further characterization of first-price auctions in that setting.
37Making the good “divisible” by selling in probability units still does not maximize welfare here.
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no cash subsidy. This is driven by their objective of revenue maximization. A cash subsidy

will likely be part of the optimal mechanism in their setup if the designer maximizes welfare

subject to a revenue target.

Fernandez and Gali (1999) study the assignment of workers to inputs when workers dif-

fer in their ability and wealth, and inputs differ in their productivity. In particular, they

compare a competitive market to a tournament. In the tournament, each worker is as-

signed to an input based on a signal that depends on the worker’s ability and her investment

in the signal. When capital markets are perfect, there is positive assortative matching in

equilibrium in both the competitive market and the tournament. With imperfect capital

markets, borrowing constraints prevent some low-wealth high-ability workers from match-

ing with high-productivity inputs. Then, tournaments outperform the market in terms of

allocative efficiency, although the total surplus ranking could go either way because of the

resource cost of signaling. Although their model involves matching, market assignment in

Fernandez and Gali corresponds to the competitive market in our model. Their tournament

can be interpreted as merit-based assignment since it is based on a signal on v, although the

signal is generated indirectly via agents’ effort.

Esteban and Ray (2006) consider a government that awards licenses to agents who differ

in their productivity and wealth. The government’s objective is to maximize allocative effi-

ciency. Agents are able to signal their productivity via lobbying, and licenses are awarded

based on that lobbying. Wealthier sectors find it less costly to lobby, which jams the produc-

tivity signal. The resulting allocation again corresponds to the market regime here. Esteban

and Ray focus on how allocative efficiency changes with the underlying wealth distribution.

Increasing inequality means that more of the high-productivity agents find themselves finan-

cially constrained when lobbying. Consequently, allocative efficiency and total welfare may

both fall. Similarly, increasing inequality lowers welfare in the competitive market here but,

interestingly, raises welfare under rationing with resale, making it even more attractive.

Our results also yield an interesting implication of their setup: If the government is

unconcerned about welfare, lobbying will not arise, which means that licenses will be assigned

randomly. If resale of licenses is allowed, the latter assignment method will then dominate

the allocation generated by a government that is responsive to productivity signals.

A related literature rationalizes market intervention based on welfare criteria different

from those used here. For instance, Weitzman (1977) took as a benchmark the allocation of

goods that would prevail if all agents had the mean income. He then showed that an equal

allocation of goods may be closer to the benchmark than the market allocation is. Sah (1987)

compared different regimes from the perspective of the members of the poorest group. Our
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paper is also related to the literature on redistribution via in-kind subsidies.38 Unlike our

assignment problem, this literature is primarily concerned with wealth redistribution, with

the goal of shifting from a point on the Pareto frontier (laissez-faire) to another point that is

more favorable to the poor (those with a smaller endowment of the numeraire good). If the

target group is observable, then the solution would simply be to tax the rich and subsidize

the poor (using the numeraire). Difficulty in identifying the target group calls for a more

complex mechanism to induce “self-targeting.” Similar to our in-kind subsidy, this literature

suggests degrading the quality of the subsidized good in order to discourage individuals

outside the target group from claiming it (Besley and Coate, 1991); and combining it with

cash payments/transfers in order to make self-targeting more effective (Ghavari and Mattos,

2007).

Some recent papers deal with mechanism design with financially constrained agents.

Condorelli (2011) considers the problem of assigning a good to a finite number of agents,

each of whom has private information about her valuation (v) and cost of spending a dollar

(1 + r), and he analyzes the problem of maximizing the sum of realized valuations. In his

model, the only payoff-relevant information is v/(1 + r), so the model reduces to a problem

with one-dimensional private information. Despite the similarity, his model does not exhibit

nonlinearity in the payoff function caused by budget constraints,39 so a cash subsidy or resale

would play no role in his analysis. Richter (2011) analyzes a problem similar to ours with

a continuum of agents who differ in their valuations and wealth, but his agents have linear

preferences for unlimited quantities of the good. This difference gives rise to the optimality

of linear pricing with a uniform cash subsidy to all agents.

7 Concluding Remarks

This paper has studied methods of assigning resources to agents who are wealth-constrained,

from a Utilitarian efficiency perspective. We find that simple non-market schemes such

as uniform random assignment may outperform market assignment, if the recipients are

allowed to resell. We have also studied the optimal mechanism and showed that it may

be implemented by a scheme that employs random assignment, regulated resale and cash

subsidies. The results here could apply to the assignment of resources and entitlements

38Contributions include Besley and Coate (1991), Blackorby and Donaldson (1988), Gahvari and Mattos
(2007) and Nichols and Zeckhauser (1982).

39Our model can be seen to involve convexity of the spending function. In our model, when an agent with
budget w spends π, she incurs a cost C(w, π) = π if π ≤ w but C(w, π) =∞ if π > w.
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ranging from rights to exploit natural resources to exemptions from civic duties such as

military service or jury duty.40

Many goods are assigned using non-market assignment schemes. In addition to providing

justification for these schemes, the results here have implications for how existing schemes can

be improved. In particular, the introduction of transferability may offer benefits to programs

that do not currently permit it.41 The U.S. assigns 50,000 permanent resident visas each

year by lottery.42 Becker (1987), Chiswick (1982), and Simon (1989) all discuss the sale

of visas to qualified applicants, stressing the efficiency benefits (e.g., the immigrants who

will pay the most will be the most productive). An alternative to straight sales is to retain

the lottery system but permit the recipients themselves to sell their visas to other qualified

applicants. Our results suggest that this change could yield an improvement relative to the

current system and the straight sales proposal. In one sense, there are sales of visas already.

Canada and the U.S. have allowed entrepreneurs to immigrate if they will start a business

(e.g., the U.S. “immigrant investor program”). Resale of visas is not permitted, however.

A lottery could also be used to assign transferable educational vouchers. With the trans-

fer process regulated to discourage speculation, such a system may select students more

efficiently than would a system of local attendance zones or random assignment of non-

transferable vouchers. In the same vein, one could imagine a military draft with tradable

deferments.43 Other objectives or institutional details may loom large in these cases, but the

results here argue for consideration of non-market assignment schemes and transferability.

40The results also apply to government-led industrialization processes in many developing economies as
well. The Korean industrialization process was marked by licensing policies that targeted industries and
firms for export quotas, trade protection and other privileges (Amsden, 1989). During the period dubbed
the “licence raj,” the Indian government controlled large areas of economic activity through the awarding of
rights and “permissions” (Esteban and Ray, 2006).

41The resale rules can be adapted to control speculation and to accommodate other institutional con-
straints.

42Eligibility for the Diversity Immigrant Visa Program is restricted to individuals from countries with low
rates of immigration to the U.S. See http://www.travel.state.gov/pdf/dv07FinalBulletin.pdf, accessed July
8, 2006.

43Tobin (1970) noted that the same conclusion can be reached on the basis of egalitarian concerns. He
first pointed out that the all-volunteer army was “just a more civilized and less obvious way of ... allocating
military service to those eligible young men who put the least monetary value on their safety and on alter-
native uses of their time.” He added that the difference between the two schemes is who pays — general
taxpayers or the individuals who wish to avoid military service.
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Appendix: Proofs

Proof of Proposition 2. To prove the first statement,44 it suffices to establish that the

budget-balancing constraint is binding in the optimal mechanism. If the constraint is binding,

a positive measure of agents must be receiving monetary transfers, or else (almost) all agents

make a zero payment, in which case the only feasible assignment is random assignment,

which the competitive market obviously dominates. Let (x, t) be the optimal mechanism.

It is useful to invoke the taxation principle and consider the tariff scheme that implements

the optimal mechanism. Let X0 := {x ∈ [0, 1]|∃(w, v) s.t. x(w, v) = x} be the set of x

values chosen in the optimal mechanism and, for x ∈ X0, let τ̄(x) = {t(w, v)|∃(w, v) s.t. x =

x(w, v)} be the associated payment. (Note that τ̄(x) must be a singleton since no two

payments can be charged for the same x.) The optimal mechanism can be represented as

{τ̄(x)}x∈X0 . Also, τ̄(·) must be nondecreasing; otherwise, there exists x < x′ in X0 such that

τ̄(x) > τ̄(x′), in which case x will never be chosen by any type.

Let X be the closure of X0, and let τ : X → R be the continuous extension of τ̄ from X0

to X.45 It can be seen that a mechanism {τ(x)}x∈X implements {τ̄(x)}x∈X0 .
46 Note that τ

is continuous on X.47

We first make a few observations. Let x := minX. We must have τ(x) ≤ 0. If τ(x) > 0,

then infx′∈X
τ(x′)
x′

> 0, and all agents with w < infx′∈X
τ(x′)
x′

must be choosing (0, 0), so

x = 0 = τ(x), a contradiction. Also, τ(x)
x

must be weakly increasing in x since no agent type

would choose any x ∈ X (or any x′ ∈ X close to x) if there is some x̃ ∈ X with x̃ > x and
τ(x̃)
x̃
< τ(x)

x
. Lastly, the constraint (B) must be binding; i.e., E[x(w, v)] = S, since otherwise

the remaining supply could be uniformly distributed among all agent types for free, which

would increase the total surplus.

To prove that the budget-balancing constraint binds at the optimal solution, we suppose

that it does not, and then draw a contradiction by modifying the mechanism so that it

satisfies all of the constraints but generates higher welfare than τ does. Before doing so, we

44The proofs of some technical steps are provided in the Supplementary Appendix, to which we will refer
readers as those steps are needed.

45That is, if x ∈ X0, then τ(x) := τ̄(x); and if x ∈ X \X0, then there exists {xn}∞n=1, xn ∈ X0, converging
to x, such that τ(x) := limn→∞ τ̄(xn). The existence of such a sequence is guaranteed by the fact that τ̄(X)
lies within a compact set [−M, 1] for some M > 0.

46If a positive measure of agents would strictly gain from deviating to some x ∈ X \ X0, then they will
gain strictly from deviating to some x′′ ∈ X0 that is sufficiently close to x.

47If this is not the case, τ must jump up at some point x ∈ X0, but in this case, no point x′ slightly above
x would ever be chosen by any type, x′ can never be an element of X0.
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need to define some notation. First, for any z > 0,

vz := min
x∈X

τ(x)− τ(x) + z

x− x
,

where, by a slight abuse of notation, the value of the objective is taken to be its right-hand

limit at x = x. The minimum is well-defined since the objective function is continuous

and X is a compact set.48 Let xz := arg minx∈X
τ(x)−τ(x)+z

x−x (or any selection from the set

of minimizers). It is straightforward to see that vz is continuously increasing in z and xz

is weakly increasing in z.49 Second, for any σ ∈ (0, ε], define a mechanism τσ as follows:

τσ(x) := τ(x) for all x ∈ X \ {x} and τσ(x) = τ(x) − σ. Clearly, no agent types consume

more under τσ than under τ . There is a positive mass of agents who consume strictly less:

all agent types with w ≥ vσ and v ∈ (v0, vσ) would choose x > x under τ whereas they

switch to x under τσ. Thus, τσ would generate excess supply.

Fix a sufficiently small ε > 0. The argument consists of potentially two steps, depending

on whether a positive mass of agents choose from the interval (x, xε) under τ . If the condition

is satisfied, we say that τ satisfies Property (M).

If τ does not satisfy (M), then we start with Step 1. If τ satisfies (M), then we skip Step

1 and start with Step 2.

Step 1: For s ∈ [vε, 1], modify τ to define τ s as follows: For all x ∈ X with x > xε, τ
s(x) :=

τ(x); for all x ∈ (x, xε), τ
s(x) := min{τ(x), τ(x) − ε + s(x − x)}. Let {xs(w, v)}(w,v)∈[0,1]2

denote the associated incentive compatible choices. Note that this mechanism introduces

some new contracts on a straight line, (x, τ(x) − ε + s(x − x)), if they cost less than the

original contracts, (x, τ(x)). Clearly, if s = 1, then no agent type with v < 1 would choose

the new contracts, except for (x, τ(x) − ε). This means that τ 1(·) will induce the same

consumption behavior as τ ε defined above (with σ = ε), thus generating excess supply; i.e.,

E[x1(w, v)] < S.

In the Supplementary Appendix, we establish the following facts: (i) for any s ∈ [vε, 1],

all agent types with v < (>) s consume weakly less (more) under τ s than under τ , and

xs(w, v) weakly increases as s decreases (Lemma S.1); (ii) if ε is small enough, then no

48X is compact since it is a closed subset of the interval [0, 1].
49To see the latter fact, suppose, to the contrary, that xz′ < xz for some z, z′ with z′ > z. Then, there

arises a contradiction since

τ(xz′)− τ(x) + z′

xz′ − x
=
τ(xz′)− τ(x) + z

xz′ − x
+

z′ − z
xz′ − x

>
τ(xz)− τ(x) + z

xz − x
+
z′ − z
xz − x

=
τ(xz)− τ(x) + z′

xz − x
,

where the inequality follows from the definition of xz and the assumption that xz′ < xz.
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mechanism τ s for any s ∈ [vε, 1] runs a budget deficit (Lemma S.2); (iii) total consumption,

E[xs(w, v)], is continuously increasing as s decreases (Lemma S.3).

Now choose ε sufficiently small that (ii) holds true. We first consider the case where

E[x1(w, v)] < S ≤ E[xvε(w, v)]. Then, by (iii), there exists some ŝ ∈ [vε, 1) such that

E[xŝ(w, v)] = S, which leads to a contradiction since, according to (i), τ ŝ(w, v) generates

higher welfare than τ does. In case E[xvε(w, v)] < S, we move on to Step 2.

Step 2: For each δ ∈ [0, ε], we construct another mechanism, τδ, depending on whether τ

satisfies Property (M). In case it does, let τδ(x) := τ(x)−ε+vε−δ(x−x) for any x ∈ [x, xε−δ)

and τδ(x) := τ(x) − δ for any x ∈ X ∩ [xε−δ, 1]. In case it fails, let τδ(x) := τ(x) − ε and

τδ(x) := τ(x) − δ for any x ∈ X ∩ (x, 1]. In the subsequent proof, we focus on the case in

which Property (M) holds. The argument for the other case is similar and omitted. Let

{xδ(w, v)}(w,v)∈[0,1]2 denote the incentive compatible choices associated with τδ.

First, we prove the following claim:

Claim 1. For any δ ∈ [0, ε], all agents with v < vε−δ consume weakly less, all agents with

v > vε−δ weakly more, and a positive measure of them strictly more under τδ than under τ .

Proof. First, all agents with v < vε−δ choose x under τδ, thus reducing their consumption at

least weakly.

Now consider agents with v > vε−δ. All such agents strictly prefer xε−δ to any x < xε−δ,

and (given the way τδ is constructed) they all prefer a larger x to a smaller x in [x, xε−δ].

Since τδ(·) < τ(·), any agent with v > vε−δ who chose x ∈ [x, xε−δ) under τ will definitely

choose x′ ≥ x under τδ. Now consider any agent v > vε−δ who chose x ≥ xε−δ under τ . Such

an agent can afford x and at least weakly prefers it to any x′′ < x under τδ. This is trivially

the case if x′′ < xε−δ or the agent has w ≥ τ(x′′)/x′′. It is also true even if w < τ(x′′)/x′′

since in that case

vx− τ(x) = x[v − τ(x)

x
] ≥ x′′[v − τ(x)

x
] ≥ x′′[v − w] > vx′′ − τ(x′′).

We have thus shown that all agents with v > vε−δ consume at least weakly more under τδ

than under τ .

To see that a positive mass of agents consumes strictly more, consider the agent types

with v > vε−δ and w ∈ [ τδ(xε−δ)
xε−δ

, τ(xε−δ)
xε−δ

). Under τ , any such agent consumes less than xε−δ

(due to an insufficient budget) but will surely choose some x ≥ xε−δ under τδ, thereby

increasing her consumption.
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Next, in the Supplementary Appendix, we establish the following facts: (iv) if ε > 0 is

small enough, then no mechanism τδ for any δ ∈ [0, ε] runs a budget deficit (Lemma S.4);

(v) E[xδ(w, v)] is continuously increasing with δ (Lemma S.6). Now note that τ0 = τ vε so

τ0 generates excess supply by assumption; i.e. E[x0(w, v)] = E[xvε(w, v)] < S. Also, since

vε−ε = v0, Claim 1 implies that all agents consume weakly more under τ than under τ so

E[xε(w, v)] ≥ S. By (v), one can find some δ̂ ∈ (0, ε] with E[xδ̂(w, v)] = S = E[x(w, v)].

This is a contradiction since then Claim 1 implies that τδ̂ generates greater welfare than τ

does.

To prove the second part of the Proposition, suppose that a measure zero of agents

receives the good with an interior probability. Then, the optimal mechanism effectively

consists of a menu of two contracts {(0, t0), (1, t1)}. Given this, it is obvious that t1 > t0, or

else only the second contract will be chosen, which one can easily show to be suboptimal.

Optimality requires that t1 < 1 and t0 < 0 (this follows from the above result that the

budget-balancing constraint binds). Under this mechanism, agents with v ≥ t1 − t0 and

wealth w ≥ t1 obtain the good (one unit apiece) so the total assignment is

[1− F (t1 − t0)][1−G(t1)] := D̃(t1), (9)

and the revenue it generates is at most

t1D̃(t1) + t0[1− D̃(t1)]. (10)

The average per-unit surplus realized is φ(t1 − t0). We shall argue that an alternative

mechanism assigns the same mass as (9), generates weakly higher revenue than (10) and

yields an average per-unit surplus strictly greater than φ(t1 − t0).

Consider a mechanism that offers a menu of three contracts, {(0, t0), (δ, t0+δ(t−t0), (1, t))},
where δ ∈ (0, 1) and t are chosen so that

D̃(t) + δ[1− F (t− t0)]G(t) = D̃(t1) (11)

and t0 + δ(t − t0) < 0. Note that the left-hand side of (11) represents the total assignment

under the new mechanism; the first term again accounts for those who choose (1, t) and the

second term accounts for those who choose the last contract, (δ, t0 + δ(t− t0)) (these agents

have v ≥ t − t0 so they prefer a higher probability of obtaining the good but cannot afford

the middle contract since w ∈ [0, t)). It follows that the average per-unit surplus under the
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new mechanism is φ(t− t0). This mechanism thus generates a budget surplus of

tD̃(t) + (t0 + δ(t− t0))[1− F (t− t0)]G(t) + t0F (t− t0). (12)

Totally differentiating (11) and evaluating it at (δ, t) = (0, t1), we get

(dδ)[1− F (t1 − t0)]G(t1) + (dt)D̃′(t1) = 0, (13)

where we used the fact that t0 < 0. Equation (13) suggests that dt/dδ is well-defined (by the

implicit function theorem) and is strictly positive since D̃′(t1) < 0. Taking the derivative of

(12) at (δ, t) = (0, t1) along (11) yields:

(t1 − t0)[1− F (t1 − t0)]G(t1) +
dt

dδ

∣∣∣∣
(11)

(
D̃(t1) + (t1 − t0)D̃′(t1)

)
= (t1 − t0)

[
[1− F (t1 − t0)]G(t1) +

dt

dδ

∣∣∣∣
(11)

D̃′(t1)

]
+
dt

dδ

∣∣∣∣
(11)

D̃(t1)

=
dt

dδ

∣∣∣∣
(11)

D̃(t1)

> 0,

where the second equality follows from (13) and the strict inequality holds since dt
dδ
|(11) > 0

and D̃(t1) > 0.

The results so far imply that the alternative mechanism with δ sufficiently small assigns

the same mass of the good and yields higher revenue than the original mechanism. It is easy

to see that the mechanism improves (Utilitarian) efficiency since dt
dδ
|(11)φ′(t1 − t0) > 0. We

have thus proven that the original mechanism could not have been optimal, as was to be

shown.

Proof of Proposition 3. We begin with the following simple observation.

Lemma 1. The first-best outcome is attainable if either S ≤ gHfH or wL ≥ vL.

Proof. If S ≤ gHfH , then selling the good at price p = vH achieves the first-best allocation.

Next, if wL ≥ vL and S ∈ (gHfH , fH ], then the first-best can be achieved by assigning the

good to all high-valuation types with probability S/fH and charging them min{vH , wL} upon

receipt. If wL ≥ vL and S ∈ (fH , 1], then the first-best can be achieved by assigning the good

to high-valuation types with probability 1 and low-valuation types with probability S−fH
1−fH

,

while charging them all vL upon receipt.
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Given Lemma 1, we assume from now on that S > gHfH and vL > wL. We consider

a relaxed program [P ′], which is the same as [P ] except that (IC) is replaced by a weaker

requirement:

(IC ′) vx(w, v)− t(w, v) ≥ vx(w′, v′)− t(w′, v′) for all (w, v) and (w′, v′) such that w′ ≤ w.

The condition (IC ′) is weaker than (IC) since the former only requires that incentive com-

patibility hold with respect to contracts offered to agents with equal or lower wealth. The

set of mechanisms satisfying (IC ′) is closed (unlike those satisfying (IC)). Hence, the set

M of mechanisms satisfying (S), (IR), (BC), (IC ′), and (BB) is also closed. One can easily

see that M is also bounded, so it is compact. Since the objective function of [P ′] is linear

(and thus continuous), the set M∗ ⊂ M of solutions to [P ′] is non-empty. It can also be

easily seen that M∗ is closed. Hence, the following result is obtained.

Lemma 2. M∗ is non-empty and compact.

We next establish a series of lemmas characterizing the properties of an optimal mecha-

nism inM∗. To this end, we often use bij to denote a contract (xij, tij) for the type (wi, vj).

We first show that the total budget is balanced and the entire supply is allocated at any

optimal mechanism whenever it does not implement the first-best.

Lemma 3. Suppose that the solution to [P ′] does not achieve the first-best outcome. Then,

both (BB) and (S) must be binding at any Γ ∈M∗.

Proof. Suppose, to the contrary, that there is an optimal mechanism Γ = {bij}i,j∈{L,H} ∈M∗

at which (BB) does not bind. Now consider a relaxed program in which (BB) is absent.

Its solution, ΓF = {bFij}i,j∈{L,H}, must implement the first-best outcome. (Each agent can be

provided a subsidy of M ≥ vH , and the good can be sold in a competitive market.) Next,

consider an alternative mechanism, Γλ = {bλij}i,j∈{L,H}, where bλij = λbij + (1 − λ)bFij for

λ ∈ [0, 1]. By hypothesis, the optimal mechanism does not implement the first-best, for any

λ ∈ [0, 1), so Γλ must yield a higher aggregate surplus than Γ does. Since M is convex, Γλ

satisfies (S), (IR), (BC), and (IC ′) for any λ ∈ [0, 1]. Further, since (BB) is not binding

at Γ, Γλ satisfies (BB), for λ < 1 sufficiently close to one. In sum, Γλ, with λ < 1 but

sufficiently close to one, is feasible and yields a higher surplus than Γ, which contradicts the

optimality of Γ. That (S) is binding at the optimum can be shown analogously, so we omit

the proof.

By Lemma 3, we assume that (BB) and (S) are binding throughout. We now further
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characterize the optimal mechanism.

Lemma 4. Any optimal mechanism Γ ∈M∗ must have xLH ≥ max{xHL, xLL}.

Proof. By definition, a mechanism implementing the first-best outcome must satisfy the

inequality. Hence, assume that the first-best is not implementable and suppose, contrary to

the premise, that xLH < max{xHL, xLL} at some optimal mechanism Γ ∈M∗. Note that the

usual incentive compatibility argument implies xLH ≥ xLL and xHH ≥ xHL, which means

xLL ≤ xLH < xHL ≤ xHH . We first establish the following claim:

Claim 2. At any Γ ∈ M∗, a type-(wH , vH) agent must strictly prefer bHH to both bLH and

bLL. Also, if xLH > xLL, then tLL < wLxLL and a type-(wL, vH) agent must strictly prefer

bLH to bLL.

Proof. Condition (IC ′) for type (wH , vL) implies that vLxLj − tLj ≤ vLxHL− tHL,∀j. Given

xHL > xLH ≥ xLL, this, together with (IC ′) for type (wH , vH), implies that

vHxLj − tLj < vHxHL − tHL ≤ vHxHH − tHH , ∀j.

Hence, a type-(wH , vH) strictly prefers bHH to both bLH and bLL, which proves the first

statement of the claim.

To prove the second statement, note that (IC ′) for type (wL, vL) implies vLxLL − tLL ≥
vLxLH − tLH . This in turn implies

tLL − wLxLL ≤ tLH − vL(xLH − xLL)− wLxLL ≤ wL(xLH − xLL)− vL(xLH − xLL) < 0,

where the second inequality follows from (BC) and the strict inequality follows from wL < vL.

We have thus proven tLL < wLxLL. To prove the last part, suppose, to the contrary, that

a type-(wL, vH) agent is indifferent between bLH and bLL in Γ. Then, a type-(wL, vL) agent

would strictly prefer bLL to bLH . Hence, we can raise tLL slightly, holding everything else

the same, and still satisfy all of the constraints of [P ′]. This will leave the aggregate surplus

unchanged but increase the total revenue relative to Γ. This contradicts Lemma 3, according

to which any optimal mechanism in M∗ must balance the budget.

Claim 3. If xHL > xLH at Γ ∈M∗, then we must have xLH = xLL.

Proof. Suppose, to the contrary, that xLH > xLL. (This is the only case to check as the

reverse inequality is inconsistent with incentive compatibility.) We then have xLL < xLH <
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xHL ≤ xHH and thus tLL < wLxLL by Claim 2. For a contradiction, we construct another

mechanism, Γ̃ = {b̃ij}i,j∈{L,H}, where b̃LH = bLH :

b̃HH = (xHH , tHH + δ), b̃HL = (xHL − ε, tHL − εvL), and b̃LL = (xLL + ε′, tLL + ε′vL),

where ε, ε′, δ > 0 are chosen to be small enough to satisfy: (i) εgH = ε′gL; (ii) t̃LL < wLx̃LL;

(iii) (wH , vH) prefers b̃HH to both b̃LH and b̃LL; and (iv) (wL, vH) prefers b̃LH to b̃LL. Note

that such ε, ε′, δ > 0 exist by Claim 2.

We first show that Γ̃ satisfies (IC ′). First, (iv) ensures that (wL, vH) does not mimic

(wL, vL). The latter does not mimic the former either since (wL, vL) is indifferent between

b̃LL and bLL and prefers bLL to bLH . Next, a type-(wH , vL) agent does not deviate to b̃LH ,

since she is indifferent between b̃HL and bHL, and weakly prefers bHL to b̃LH = bLH ; she will

also not deviate to b̃HH since b̃HH is worse than bHH (by (i)), and she does not deviate to

b̃LL since she is indifferent between b̃LL and bLL, and she (weakly) prefers b̃LH = bLH to bLL.

Given (iii), it now remains to see that a type-(wH , vH) agent has no incentive to deviate to

b̃HL. Since Γ satisfies (IC ′) for (wH , vH), vHxHH−tHH ≥ vHxHL−tHL > vH x̃HL− t̃HL, where

the strict inequality follows from the fact that vLxiL− tiL = vLx̃iL− t̃iL and x̃HL < xHL. So,

for δ > 0 sufficiently small, a type-(wH , vH) agent prefers b̃HH to b̃HL.

Now observe that Γ̃ generates the same surplus that Γ does, and they assign the same

quantity of the good since
∑

i,j∈{L,H} gifjx̃ij =
∑

i,j∈{L,H} gifjxij. Yet, Γ̃ generates higher

revenue than Γ since
∑

i,j∈{L,H} gifj t̃ij = gHfHδ +
∑

i,j∈{L,H} gifjtij, so we have a contradic-

tion.

We are now ready to prove Lemma 4. It follows from Claim 3 that if Γ ∈M∗ has xHL >

xLH , then xLL = xLH < xHL ≤ xHH . For any such assignment probabilities, we can choose

payments tLL = tLH = 0, tHL = vL(xHL−xLH) > 0, and tHH = tHL+vH(xHH−xHL) > 0 to

satisfy (IC ′).50 This mechanism generates a budget surplus, which contradicts Lemma 3. We

conclude that xLH ≥ xHL, which in turn implies xLH ≥ max{xHL, xLL}, given xHL ≥ xLL

by (IC ′).

LetMm ⊂M∗ be the set of mechanisms that generate the highest total revenue among

optimal mechanisms in M∗. Mm is nonempty since M∗ is compact by Lemma 2. Without

loss of generality, we focus on these maximal-revenue optimal mechanisms.

50Note that with these payments, (wH , vL) is indifferent between bHL and bLH while (wH , vH) is indifferent
between bHH and bHL.
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Lemma 5. Suppose that a mechanism in Mm satisfies xLH ≥ max{xHL, xLL}. Then, there

exists a mechanism in Mm in which bHL = bLL = (xL, tL) and xL ≤ xLH . Any such

mechanism in Mm must satisfy

tLH = wLxLH , tHH = vHxHH − (vHxLH − tLH), tL = vLxL − (vLxLH − tLH). (14)

Proof. Suppose that a mechanism Γ ∈ Mm has bLL 6= bHL. Then, we can construct an

alternative mechanism Γ′ in which bL = (xL, tL) = gLbLL + gHbHL, and all other contracts

remain the same as in Γ. Note that the low-valuation agents are indifferent among bHL,

bLL, and bL. And it is straightforward, and thus omitted, to check (IC ′). Since Γ obviously

yields the same total revenue and same total surplus as Γ, Γ′ must also belong to Mm. By

hypothesis, we have xLH ≥ max{xHL, xLL} ≥ xL.

Fix any Γ ∈ Mm with bHL = bLL = (xL, tL). We prove that Γ must satisfy (14). To

this end, note first that, given xHH ≥ xLH ≥ xL, payments in (14) satisfy (IC ′), (IR) and

(BC).51 To see that Γ must satisfy (14), note first that, given xLH ≥ xL, a type-(wH , vH)

agent would prefer bHH to bL whenever she prefers bHH to bLH . If the latter preference is

strict, though, we can raise tHH slightly, all else equal, so Γ could not be revenue-maximal.

Hence, a type-(wH , vH) agent must be indifferent between bHH and bLH . This leads to the

second equation of (14). By the same logic, a low-valuation agent must be indifferent between

bL and bLH , which yields the third equality in (14). To prove the first equality, observe first

that (BC) requires tLH ≤ wLxLH . Suppose tLH < wLxLH . Then, we can raise tLH slightly

and raise tHH and tL so as to satisfy (14). This maintains (IC ′), (IR) and (BC). Since total

revenue rises in the process, Γ cannot be in Mm. We conclude that tLH = wLxLH .

By Lemma 5, there exists an optimal mechanism Γm = (x, t) ∈ Mm with bHL = bLL =

(xL, tL).

Lemma 6. Suppose S ≥ gHfH . Then, Γm has xHH = 1.

Proof. Suppose, to the contrary, that xHH < 1 in Γm. By Lemma 4, xLH ≥ xHL. Hence,

Lemma 5 applies, so the payments are given by (14). We can then use (14) and xHH =

51To see the latter, observe tLH = wLxLH and tL = vLxL−(vLxLH−tLH) = vLxL−(vL−wL)xLH ≤ wLxL,
where the inequality follows from (vL − wL)xL ≤ (vL − wL)xLH and our assumption vL > wL.
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S−gLfHxLH−fLxL
gHfH

to show that the total revenue must equal

B =
∑

i,j∈{L,H}

gifjtij

= −xLH
[
(1 + gLfH)(vH − wL) + fL(vL − wL)

]
− xL

[
vH − fLvL

]
+ vHS. (15)

Note that the expressions within both pairs of square brackets are positive. Given xHH < 1,

either xLH or xL must be strictly positive, or else we will have a contradiction to the fact that

S ≥ gHfH . We can then increase the revenue by lowering either xLH or xL, and increasing

xHH at the same time (while the payments are adjusted to satisfy (14)). Since this change

keeps total surplus the same as in Γm, it contradicts the assertion that Γm ∈Mm.

We are now ready to characterize an optimal mechanism; i.e., verify the statements of

Proposition 3. In light of Lemma 1, we again focus on the case of S > gHfH and vL > wL.

We begin by showing that (5) is necessary and sufficient for implementing the first-best.

By definition, the first-best assignment means that xLH ≥ max{xHL, xLL}. Hence, Lemma

5 applies.

Suppose that S ≥ fH . Then, the first-best assignment has xHH = xLH = 1 and xL =
S−fH
fL
≥ 0. The corresponding payments (14) then entail a budget surplus (i.e., B ≥ 0) if

and only if wL ≥ (1− S)vL. This latter condition coincides with (5) if S ≥ fH .52

Now suppose that S ∈ (gHfH , fH). Then, by Lemma 5, the first-best, if implementable,

must be implemented by a mechanism that has xHH = 1 and xLH = S−gHfH
gLfH

. The correspond-

ing payments (14) then entail a budget surplus if and only if wL ≥ fLvL−gHfHvH
(

fH−S
S−gHfH

)
,

which is equivalent to (5) if S ≤ fH .

In sum, we conclude that (5) is necessary and sufficient for implementing the first-best.

Suppose (5) fails. Then, since S ≥ gHfH has been assumed, Lemma 6 implies that xHH = 1.

By Lemma 4, we also have xLH ≥ max{xHL, xLL}, and this in turn implies, via Lemma 5,

that xHL = xLL = xL (without loss), and the corresponding payments are given by (14).

Invoking the fact that the entire supply S is allocated at the optimum (see Lemma 3), we

52It can be checked that

(1− S)vL ≤ (≥)fLvL − gHfHvH
(

fH − S
S − gHfH

)
if S ≥ (≤)fH .
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obtain

1 = xHH =
S − gLfHxLH − fLxL

gHfH
. (16)

Finally, since B = 0 at the optimum (by Lemma 3), (15) yields

0 = −xLH
[
(1 + gLfH)(vH − wL) + fL(vL − wL)

]
− xL

[
vH − fLvL

]
+ vHS. (17)

Solving (16) and (17) simultaneously (together with (14)) provides the characterization

stated in Proposition 3. The mechanism described in Proposition 3 also satisfies (IC).

Hence, the mechanism solves [P ] as well.

Proof of Proposition 4. We first argue that in equilibrium all high-valuation agents must

participate in the program. If a positive mass of low-valuation agents participate, the fact

that low-valuation agents find it optimal to participate means that the high-valuation agents

find it strictly optimal to participate. Now suppose that no low-valuation agents participate.

Then, high-valuation agents must obtain the good with probability min{ S
fH
, 1} > xLH .53

Now recall that the low-valuation agents’ incentive compatibility constraint is binding:

vLxL − tL = vLxLH − tLH , (18)

which implies that

vH

(
min{ S

fH
, 1}
)
− tLH > vHxLH − tLH > vLxLH − tLH = vLxL − tL = C,

proving that all high-valuation agents must strictly prefer to participate in the initial assign-

ment.

We next argue that a mass of exactly Ẑ = S
xLH
− fH of low-valuation agents must

participate in equilibrium. To see this, suppose that a mass Z < Ẑ participate. Then, a

low-valuation agent who participates will obtain the good with probability S/(fH + Z) >

S/(fH + Ẑ) = xLH . Hence, (18) implies that

vL
S

fH + Z
− tLH > vLxLH − tLH = vLxL − tL = C,

53This follows from the fact that (S) is binding in the optimal mechanism, which means that gHfH +
gLfHxLH = S, or gH + gLxLH = S

fH
. The inequality then follows since gH + gL = 1 and xLH < 1.
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so all low-valuation agents must participate, contradicting Z < Ẑ ≤ 1.

Next, suppose that a mass Z > Ẑ of low-valuation agents participate. Given the tax rate

τ = vH − vL, no agent can earn more than vL by selling the good on the resale market, so

any participating agent must earn at most

vL
S

fH + Z
− tLH < vLxLH − tLH = vLxL − tL = C,

so no low-valuation agents participate, contradicting Z > Ẑ ≥ 0. These arguments also prove

that it is an equilibrium for a mass Ẑ of low-valuation agents to participate in the initial

assignment.

In any such equilibrium, a mass ẐxLH of the good is held by low-valuation agents. At

the same time, a mass gHfH(1− xLH) of high-valuation agents are not assigned the good in

the initial assignment. Note that the former (weakly) exceeds the latter since

ẐxLH = S − fHxLH = gHfH + gLfHxLH + fLxL − fHxLH = gHfH(1− xLH) + fLxL, (19)

where the second equality follows from the fact that (S) is binding in the optimal mechanism

(i.e., S = gHfH + gLfHxLH + fLxL). The low-valuation agents who received the good are

indifferent to selling it at the price vH , which will yield after-tax revenue of vL. Likewise, the

high-valuation agents who have not received the good are indifferent to buying at the price

vH , and they are able to do so if they have high wealth. Hence, there exists an equilibrium in

the resale market in which a mass gHfH(1− xLH) of the good held by low-valuation agents

is sold to high-valuation agents who did not receive the good in the initial assignment.

In the chosen equilibrium, the same assignment is implemented as in the optimal mech-

anism; namely, the high-wealth high-valuation agents receive the good with probability one,

and the low-wealth high-valuation agents receive the good with probability xLH . The two

types enjoy the same payoff, just as in the optimal mechanism where the high-wealth high-

valuation agents’ incentive constraint is binding. Next, the low-valuation agents end up,

collectively, with a mass

ẐxLH − gHfH(1− xLH) = fLxL.

of the good, by (19), and they each enjoy the payoff C = vLxL − tL, just as in the optimal

mechanism.

Remark 3. Note that the implementation described above is not unique since any trading

volume less than or equal to gHfH(1− xLH) can be supported in the resale market. Yet, the
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second-best can be virtually uniquely implemented in the following sense. Suppose that the

planner imposes a tax τ(ε) = τ − ε. For sufficiently small ε > 0, there exists a mechanism

with cash subsidy C(ε) = vL(xLH(ε)) − tLH that implements uniquely the outcome in which

a mass Ẑ(ε) = S
xLH(ε)

− fH of low-valuation agents participate in the program and sell at the

price vL + τ(ε) (since they are the long side of the market). One can show that there exists

xLH(ε) = xLH − O(ε) such that the mechanism is budget-balanced in equilibrium. Clearly,

the implemented outcome converges to the optimal one as ε→ 0.

Proof of Proposition 5: Following the proof of Proposition 3, we consider the relaxed

problem with (IC) replaced by (IC ′). Let M∗ denote the set of optimal mechanisms.

Analogously to Lemma 2, this set is well-defined. Lemma 3 extends similarly: (BB) and

(S) bind at any Γ ∈M∗. We shall prove that as with Proposition 3, our optimal mechanism

satisfies xsHH ≥ xsLH ≥ xsHL = xsLL for each s = `, h with the payments given by (14). Such

a mechanism satisfies (IC) and thus solves the original problem as well.

As in the proof of Proposition 3, we focus on the set Mm ⊂ M∗ of mechanisms that

generate the highest total revenue among optimal mechanisms, M∗, which is well-defined.

Given a mechanism Γ, let Γs = {(xsij, tsij)}i,j∈{L,H} for each group s = `, h.

Lemma 7. Any mechanism Γ ∈Mm must satisfy Ss ≥ hsHH and xsHH = 1 for all s = `, h.

Proof. Suppose, to the contrary, that Sh < hhHH = ρ
4
. (The argument for group ` is exactly

the same.) Clearly, the revenue and surplus for group h are maximized by assigning the entire

amount Sh to the type (wH , vH) and charging them vH per unit. Since S` = S−Sh > 1−ρ
4

=

h`HH , some low-wealth or low-valuation agents in group ` must be receiving the good. Now

reassign some of the good away from those types in group ` toward the type-(wH , vH) agents

in group h, and charge the latter types vH per additional unit. This requires some payments

in Γ`m to be reduced so as to maintain (IC ′), but the reduction in each payment is strictly

less than vH , so revenue and total surplus both increase as a result of the reassignment. We

therefore have a contradiction.

We next show that xsHH = 1 for each s = `, h. To this end, fix s = `, h and consider two

cases: xsLH ≥ xsHL and xsLH < xsHL. In the former case, the same argument as in Lemma 6

proves that xsHH = 1. Now consider xsLH < xsHL and suppose, to the contrary, that xsHH < 1.

To obtain a contradiction, we construct an alternative mechanism, Γ̃, which has the same

contracts as Γ except that

b̃sHH = (xsHH + ε, tsHH + εvH) and b̃sHL = (xsHL −
nHHε

nHL
, tsHL −

nHHε

nHL
vL),
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where ε > 0 is sufficiently small. It is straightforward to check (so we omit the details) that

Γ̃ satisfies (IC ′). Now observe that Γ̃ satisfies
∑

s,i,j n
s
ijx̃

s
ij =

∑
s,i,j n

s
ijx

s
ij and

∑
s,i,j n

s
ij t̃

s
ij =∑

s,i,j n
s
ijt

s
ij + εnHH(vH − vL) >

∑
s,i,j n

s
ijt

s
ij but generates a higher total surplus than Γ. We

now have the desired contradiction.

We now show that the first-best is attained if and only if

wL ≥ ŵL(ρ) :=


vL
2
− (1−4S+4ρS)

2(4S−1) if S ∈ (1
4
, 1+ρ

4
)

vL
2
− ρ(1−2S)

2(2S−ρ) if S ∈ [1+ρ
4
, 1
2
)

(1− S)vL if S ∈ [1
2
, 1)

.

To this end, suppose that Γ ∈ Mm attains the first-best, and let Γs, s = `, h, be the

associated submechanism for group s. By definition, Γ satisfies xsLH ≥ max{xsHL, xsLL}.
Hence, Lemma 5 and 7 apply for Γs for each s = `, h. Hence, there exists a mechanism

Γ ∈ Mm where bsHL = bsLL = (xsL, t
s
L) with xsL ≤ xsLH and the payments are given by (14)

with xsHH = 1, for each s = `, h.

Suppose, first, that S ≥ 1/2. Then, all high-valuation types must receive the good with

probability 1 at the first-best, which requires Ss ≥ 1/4 for each s. Thus, for each s, we can

substitute into (14)

xsHH = xsHL = 1 and xsL =
Ss − nsHH − nsLH

nsHL + nsLL
. (20)

Given our type distribution, rearrangement of terms yields Bs = 1
2
(wL− (1−2Ss)vL). Using

S = S` + Sh, the total net budget surplus then equals B = B` +Bh = wL− (1− S)vL. This

last expression is nonnegative if wL ≥ (1− S)vL = ŵL(ρ), as desired.

We next consider the case of S < 1/2. In this case, only high-valuation types must

receive the good in the first-best, which requires Ss ≤ 1/4 for each s. Thus, for each s, we

can substitute into (14)

xsHH = 1, xsLH =
Ss − nsHH
nsLH

, and xsL = 0, (21)
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and calculate B` and Bh to obtain

B` =
(1− ρ)(1− 4S`)

4ρ
vH + (wL −

1

2
vL)

(4S` − (1− ρ))

2ρ
(22)

Bh =
ρ(1− 4Sh)

4(1− ρ)
vH + (wL −

1

2
vL)

(4Sh − ρ)

2(1− ρ)
. (23)

Next, substitute S` = S − Sh into (22), differentiate B = B` + Bh with respect to Sh, and

rearrange terms to obtain

dB

dSh
=

2ρ− 1

ρ(1− ρ)
(2wL − vL − vH) < 0

since vH > vL > wL and ρ > 1/2. The negative derivative implies that the total revenue

is maximized by making Sh (S`) as small (large) as possible. Thus, if S ∈ (1
4
, 1+ρ

4
), then

Sh = nhHH = ρ
4

and S` = S − Sh, and if S ∈ [1+ρ
4
, 1
2
), then S` = n`HH + n`LH = 1

4
and

Sh = S − S`. Substituting these into (23) and (22) and requiring B = B` + Bh ≥ 0 yields

wL ≥ ŵL(ρ). Also, one can substitute these values of Sh and S` into (20) and (21) to obtain

the first-best assignment of the good for each type. This completes the proof of (i).

We now turn to (ii) and (iii). We first establish the following lemma, the proof of which

is provided in the Supplementary Appendix.

Lemma 8. Suppose that wL < ŵL(ρ) and vH ≥ (2−ρ)vL
(1−ρ) −

wL
1−ρ . Then, any Γ ∈ Mm must

satisfy xsLH ≥ max{xsHL, xsLL},∀s = `, h.

Thanks to this lemma, we can apply Lemmas 5 and 7 to obtain a mechanism, Γ ∈Mm,

where bsHL = bsLL = (xsL, t
s
L), with xsL ≤ xsLH , and the payments are given by (14), with

xsHH = 1.

Substituting (14) and rearranging terms gives the total revenue from Γ:

B` =
(1− ρ)

4
vH(1− x`LH) +

1

4
vL(x`L − x`LH) +

1

2
wLx

`
LH (24)

Bh =
ρ

4
vH(1− xhLH) +

1

4
vL(xhL − xhLH) +

1

2
wLx

h
LH . (25)

Using this and substituting 1
4
(xhL + x`L) = S − 1

4
− (1−ρ)

4
xhLH −

ρ
4
x`LH , one can calculate

B = B` +Bh =
1

4
vH + (S − 1

4
)vL −

1

4
C`x`LH −

1

4
ChxhLH ,

where C` := (1− ρ)vH + (ρ + 1)vL − 2wL and Ch := ρvH + (2− ρ)vL − 2wL. This leads us
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to write the binding (BB) as

C`x`LH + ChxhLH = vH + (4S − 1)vL. (26)

Note that Ch − C` = (2ρ − 1)(vH − vL) > 0 and C` > (1 − ρ)vL + (ρ + 1)vL − 2wL =

2(vL − wL) > 0.

Now the total surplus can be written as∑
i,s

vHn
s
iHx

s
iH +

∑
i,s

vLn
s
iLx

s
iL

=vH

[1

4
+

(1− ρ)

4
xhLH +

ρ

4
x`LH

]
+ vL

[
Sa −

1

4
− (1− ρ)

4
xhLH −

ρ

4
x`LH

]
=

1

4
vH + (S − 1

4
)vL +

1

4
(vH − vL)

[
(1− ρ)xhLH + ρx`LH

]
. (27)

Thus, given Ch > C` and ρ > (1 − ρ), it is clear that (27) is maximized by making x`LH as

large as possible and then choosing xhLH to satisfy (26). Since x`LH = xhLH = 1 is impossible

when the first-best is unimplementable, we must have ether 1 = x`LH > xhLH ≥ 0 or 1 >

x`LH > xhLH = 0, proving (ii).

To prove (iii), recall that all agent types in group s are indifferent between their own

contract and the type (wL, vH)’s contract, (xsLH , x
s
LHwL). Thus, we can write the payoff to

a type (wi, vj) as (vj − wL)xsLH . Since x`LH > xhLH (from (ii)) and vL > wL, statement (iii)

follows; i.e., each type in group ` is better off than the corresponding type in group h.

Proof of Proposition 6. We argue that the total surplus from an optimal mechanism

approaches the level that is realized under the competitive market. We demonstrate this by

showing that as m→∞, any feasible assignment xm(w, v) prior to resale must converge to 0

for almost every (w, v) such that w < pe, where pe is the equilibrium price in the competitive

market (defined in Section 2). Suppose that this is not the case. Then, there exists a positive-

measure set, A = {(w, v)|w < pe}, of agents such that lim supm→∞ inf(w,v)∈A x(w, v) = ε for

some ε > 0. Take a sequence of m→∞ such that the limit of εm := inf(w,v)∈A xm(w, v) is ε.

As m→∞ along that sequence, there is a positive measure of agents in (w, v) ∈ [pe, 1]2 who

do not obtain the good in the initial assignment. These agents demand the good in the resale

market at any price pe or less. Hence, the equilibrium resale price r∞ cannot be strictly less

than pe, or else all agents with (w, v) > (r, r) will obtain the good for sure (either through

initial assignment or from a resale purchase) and the measure of these agents exceeds the

supply, S. It follows that rm → r∞ ∈ [pe, 1). But then all agents with zero valuation and
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wealth no less than pe earn surplus of at least rεm. Since the measure of these agents is

m(1 − G(pe)), the total surplus that these agents earn must be at least rεmm(1 − G(pe))

which converges to∞ as m increases along the sequence. As argued above, this is not feasible

since budget-balancing and individual rationality mean that the aggregate surplus that these

agents can enjoy is bounded above by φ(v∗)S. This contradiction means that, in the limit,

almost no agent with w < pe can receive the good in any feasible mechanism. The highest

welfare that can be realized subject to this constraint is φ(pe)S, and this welfare level is

implementable by the planner when the good is initially sold via a competitive market.
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