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Abstract

Procurement of an innovation often requires substantial effort by potential suppliers.
Motivating effort may be difficult if the level of effort and quality of the resulting innovation
are unverifiable, if innovators cannot benefit directly by marketing their innovations, and if
the buyer cannot extract up-front payments from suppliers. We study the use of contests to
procure an innovation in such an environment. An auction in which two suppliers are invited
to innovate and then bid their prizes is optimal in a large class of contests. If contestants
are asymmetric, it is optimal to handicap the most efficient one. (JEL C70, D44, D89, L12,
032)



In 1714, the British Parliament offered a prize of £20,000 for a method of determining lon-
gitude at sea to within one-half of a degree. The offer was made following a series of maritime
disasters, which included the loss of four warships and nearly 2,000 lives in a single incident.
It was already known how to determine latitude at sea, but a simple method for determining
longitude remained elusive. A clockmaker named John Harrison solved the problem by develop-
ing an accurate portable timepiece.! Harrison received an initial payment of £10,000 from the
Longitude Board, which oversaw the contest. He received £8,750 more, following an Act of Par-
liament, 11 years after the first successful trial. The delay resulted in part from skepticism as to
whether the successful trial was reproducible.? Nonetheless, this contest led to the development
of a new generation of portable timepieces (see Dava Sobel, 1995).

Over the years, contests have played a major role in the procurement of many other inno-
vations. In 1829, the Liverpool and Manchester Railway offered a prize of £500 for the best
design for an engine to provide passenger service between the two cities (see Curtis Taylor, 1995;
and Richard Fullerton and R. Preston McAfee, 1999). The winning design ushered in the era
of steam locomotion. More recently, the U.S. Federal Communications Commission sponsored
a contest to develop the technology for high-definition television.® A prize incentive has been
proposed for developing new vaccines (see Michael Kremer, 2001) and even for developing the
technology for a manned flight to Mars (see Robert Zubrin, 1996). The U.S. Department of
Defense (DoD) awards billions of dollars annually to the winners of R&D contests (see Fuller-
ton, Bruce Linster, Michael McKee and Stephen Slate, 2002), and a substantial fraction of the
basic research done in the U.S. is funded through grant competitions sponsored by the federal
government.

Contests are used to procure goods and services that embody new technologies as well.
When a new weapons system is procured, two or more suppliers may perform basic R&D to
build a prototype, with only one being selected to produce. The recent procurement of the Joint
Strike Fighter by the DoD involved a fly-off competition between prototypes built by the two
finalists, with Lockheed-Martin prevailing over Boeing (see Robert Wall and David Fulghum,
2001). Elements of research contests are seen in the procurement of a multitude of other goods
and services: The construction of new buildings, the publication of books, the development of
advertising campaigns, the procurement of realty services, the commissioning of art projects,
the procurement of consulting services, and the search for expert witnesses often involve the
solicitation of bids from multiple potential suppliers, along with a pilot project or proposal.*

In this paper, we study the use of contests to procure an innovation. The procurer might



be a private firm requiring a new product or process technology, or a government wishing to
encourage basic research or to foster the development of defense technologies, for instance.
We focus on a class of contests in which the procurer invites a number of firms to undertake
innovative activity and to choose a prize from a (possibly infinite) menu of prizes; the procurer
then chooses the innovation that gives the best “value.” This class encompasses a wide range
of observed contests, as well as bilateral contracts, but it omits some obvious alternatives. For
instance, a contest could specify the precise nature of the required innovation (as in the longitude
contest). Moreover, for certain innovations, the patent system provides sufficient incentives to
generate the desired innovation; the procurer could then license the patented technology. These
alternatives may not work well for other innovations, however.

The first reason that the alternatives might not work well is that the quality of the innovation
and the effort provided by the innovators may be “unverifiable.” Third parties may be unable
to observe quality or discern effort through an audit, for instance. This verifiability problem
renders unenforceable contracts that are contingent on these variables. Moreover, as the lengthy
adjudication process in the longitude contest shows, it may be difficult to enforce a contest (or
contract) that specifies the exact nature of the innovation. The problem is especially acute when
procuring new technologies, which may be difficult to describe or measure objectively.

Second, the benefits from the innovation may accrue primarily to the procurer rather than
the innovator. That is, the investment in R&D may be “cooperative” in the sense of Yeon-Koo
Che and Donald Hausch (1999). This happens when a government procures basic research or
a new defense technology with no immediate commercial value. The innovators may lack the
expertise to commercialize or license their innovations as well. The patent system would not
help then since the innovator would benefit little from an exclusive property right.>

Third, the buyer may be unable to charge substantial entry fees to induce a “buy-in” by
potential suppliers.® The infeasibility of entry fees may result from suppliers’ liquidity constraints
or from opportunism. In particular, the buyer could collect entry fees but then award the prize
to a confederate, or not take delivery at all.

In the face of these problems, contests may perform better than the alternatives because a
buyer has an ex post incentive to choose the supplier who offered her the greatest net surplus.
This tends to reward the supplier who made the largest investment, which mitigates the verifi-
ability and cooperativeness problems. We study the optimal design of contests, focusing on two
issues: (1) how the buyer should design the prize structure, and (2) how she should select the

set of participants.



One simple method for determining the winner’s prize is to specify it up front. There are
many examples of fixed-prize tournaments besides the longitude and steam engine contests.”
Another possibility is to hold an auction and let the suppliers bid (i.e., demand their prizes).
Auctions are used in many procurement settings where ex ante investments are important. For
example, defense contractors often make R&D investments to produce prototypes and then bid
prices for the production contract.® Procurement of a high-speed train system in Korea featured
a contest in which firms proposed alternative designs (including the French TGV and German
ICE) and then bid prices for their systems. Industry publications have touted the benefits of
using auctions to make a “‘best value’ award decision based on both price and non-price factors”
(Richard Rector, 2000).

In between auctions and fixed-prize tournaments are numerous other methods for deter-
mining the winner’s prize. For instance, the buyer may offer a finite menu of prizes. (Grant
competitions sponsored by the National Science Foundation do this, giving applicants options
for the duration of the award, travel expenditures, and equipment purchases.) The buyer may
also discriminate across firms. We consider a class of mechanisms that includes all of these
alternatives.

We show that holding an auction with two firms and no restriction on the set of allowable
prizes is optimal for the buyer when the firms have the same investment technology. Fach
firm’s technology is deterministic here, so firms randomize when choosing the quality of their
respective innovations, resulting in heterogeneous quality. Nonetheless, a firm with a low-quality
innovation can still compete effectively against a firm with a high-quality innovation by asking
for a smaller prize. This feature favors auctions relative to contests that limit firms’ choice of
prizes.

Limiting the number of participants is beneficial because investments are sunk. With large-
scale participation, each firm will have a relatively small chance of winning, so the winner’s
investment (and quality) will tend to be low. This finding is consistent with numerous examples
of buyers selecting a small number of finalists (see Taylor, 1995; and Fullerton and McAfee,
1999). When firms have different technologies, an auction involving the two most efficient firms
is again optimal, with handicapping of the more efficient one through imposition of a maximum
allowable prize.

The literature on the design of research contests remains small, but there have been some
notable contributions. The aforementioned papers by Taylor (1995) and Fullerton and McAfee

(1999) focus on design issues involving the number of participants and the method of restricting



entry.” Both papers assumed that fixed-prize tournaments are used. Fixed-prize tournaments
are simple and effective for a buyer with limited information.'? First-price auctions outperform
fixed-prize tournaments in the current setting, however, and they may require even less infor-
mation: With ex ante symmetric firms, the buyer does not need any information about costs or
investments to design an optimal contest.

Fullerton et al (2002) have independently studied prize structures in contests. Specifically,
they compared two methods for determining the winner’s prize: first-price auctions and fixed
prizes. They found auctions to be superior to a range of fixed prizes when identical innovators
follow symmetric strategies. They also presented experimental evidence supporting the desirabil-
ity of auctions. The current paper considers a much larger class of contests and design options,
including auctions and any possible fixed prize, with no restriction on equilibrium strategies. We
also consider asymmetric firms. At the same time, our model considers deterministic innovation
technologies whereas Fullerton et al considered a stochastic technology, which is more realistic.
The stochastic technology also introduces an additional benefit from using contests: There may
be more experimentation (i.e., multiple innovation “draws”), leading to superior innovations.
Thus, the two papers complement each other.

The remainder of the paper is laid out as follows. Section 2 discusses the model and provides a
partial characterization of the equilibria of general contests. We provide a full characterization
of two-firm auctions in Section 3. In Section 4, we identify the optimal contest. Section 5

concludes.
I. Model and Preliminary Results

A buyer wishes to procure an innovation from N > 2 risk-neutral firms. The innovation
requires a sunk investment by the firms. Firm ¢ receives an innovation of quality =z > 0 if

t.11 The functions

it invests 1;(x). The investment could be a monetary or non-monetary cos
{;(-)}X, are common knowledge for the firms and the buyer. The firms are unable to realize
the value of the innovation directly or through licensing to a third party, so the only way to
capitalize on it is to sell to the buyer. The buyer realizes a surplus of z — p from an innovation

of quality z, if she pays p. The buyer wishes to procure an innovation from at most one firm.

e Technology: The investment cost, ;(z), is strictly increasing and absolutely continuous for
x > 0, and 1;(0) = 0 (i.e., zero quality requires no effort). Also, there exists a threshold quality,
# > 0, such that a higher quality is socially unattractive; i.e., 1;(x) > z for all z > &. These



assumptions are mild, allowing the function to be non-differentiable and non-convex. They also
allow for fixed costs, since 1;(x) may jump at x = 0.

Throughout, we assume that any two firms are uniformly ranked in terms of efficiency:
pi(x) < j(xr)ifi < j. Let 27 € argmax,>o{z —;(x)} denote the efficient quality level for firm

*

i, and let s} := z7 — 1);(z}) be the associated net surplus. Clearly, s;

; is the maximum surplus

firm 4 can profitably deliver to the buyer.!? The uniform rankability of cost functions implies
57 > s;‘- if 1 < j. Consequently, it would be socially optimal for firm 1 to produce an innovation
of quality z7 (and for no other firm to invest). For the buyer to benefit from holding a contest,

at least two firms must be able to deliver positive surplus. Hence, we assume s5 > 0.

e Information: The quality of firm ¢’s innovation, z;, is common knowledge between the firm
and the buyer after it has been chosen, but it is unobservable to other firms. This assumption
is sensible when the nature of innovative activity is idiosyncratic, in which case a firm cannot
discern the R & D strategies of the other firms or how highly the buyer would value their
innovations. As will be seen, if firms randomize in their quality decisions, this moral hazard
problem entails adverse selection since the firms’ quality choices become their “types.”'® The
quality is also unobservable to the courts. Since the innovative effort and quality are unverifiable,
one cannot enforce a contract that is contingent on those variables. The identity of the winning

firm and its choice of prize are observable and enforceable, however.

e Contest Mechanism: The contest mechanism specifies N' C {1,..., N}, the set of partici-
pants. If the buyer selects n < N firms to participate, we index the firms so that N' = {1,...,n},
with the order again being in terms of efficiency. The mechanism also specifies a menu of prizes,
P; C Ry, for each i € N. Firm i chooses a prize, p; € P;, which it will receive if it wins. Let
P :={P1,Ps,...,Pn}. There are no entry fees, and losing firms receive no payments. This means
firm 4 receives a net payoff of p; — 1;(x;) if it wins with an offer of (z;,p;); it receives —;(z;) if
it loses with that same offer.

The mechanism also specifies how the winning firm is selected. A rule for selecting the
winner is a vector, Q, of probability assignment functions, Q; : R x [[;cnr Pi — [0, 1], such that
Yien Qi(x,p) < 1 for all (x,p). The functions map a profile of chosen qualities and prizes,
(x,p), into a vector of winning probabilities. Given the unverifiable nature of the innovation,
the buyer’s only credible choice is the firm that offered her the highest net surplus. Any rule
that specified a different choice would not be self-enforcing, and a court could not enforce

such a choice since it could not verify whether a breach had occurred.'® Thus, the probability



assignment functions satisfy the selection rule,
(R) Qi(x,p) =1ifx; —p; > jerilfa\}fi}xj —pj, and z; —p; > 0.
Note that (R) does not pin down a unique allocation since it leaves unspecified what happens
when the highest surplus offer is negative and when firms tie at the highest offer. Thus, (R)
allows the buyer not to take delivery (if that is beneficial ex post) or to commit herself to take
delivery, and it permits an arbitrary tie-breaking rule when the buyer is indifferent among offers.
We say that a contest C' := (N, P, Q) is feasible if Q satisfies the selection rule (R), given N’
and P. The set of feasible contests, C, includes a range of contests that are commonly used, as
well as bilateral contracts such as fixed-price and buyer-option contracts.'® It includes first-price
auctions (P; = R4 for all i € N),'6 and fixed-prize tournaments (P; is a singleton). It includes
contests in which firms are treated asymmetrically, and ones in which some firms are restricted
to a finite menu of prizes. In fact, C encompasses all mechanisms for which only the winner

receives a prize and the prize depends only on the winner’s message (e.g., its reported quality).

e Timeline: At date 0, the buyer announces a contest, C = (N, P, Q). At date 1, each firm
i € N invests, receives an innovation, and selects a prize from P;. At date 2, the buyer observes
(x,p) and takes delivery from at most one firm. The winning firm delivers its innovation and
collects the prize it selected at date 2. Our model is formally identical to one in which each
firm chooses its quality first and then its prize, or vice versa, as long as other firms’ first-round

actions are unobservable when the second action is taken.'”

Given a contest C € C, a (pure) strategy for firm 7 € N consists of the choice of a quality,
z; > 0, and a prize, p; € P;. If the firms in N choose (x,p) € R} x [[,cpr s, firm i receives
an expected payoff u; := p;Q;(x,p) — ¥i(z;). We will focus on Nash equilibria in the mixed
extension of the strategies.

Consider an equilibrium of an arbitrary contest. It will be convenient to focus directly on
the net surplus that firm i € N offers in equilibrium, s; := z; — p;. Let G; : ® — [0,1] denote
the cumulative distribution function (cdf) of firm i’s net surplus offer in that equilibrium. Let
S; denote the support of s;. Formally, s; € S; if Gi(s; +€) — Gi(s; —€) > 0 for any € > 0.
Denote the supremum and infimum of S; by 5; and s;, respectively.'® The aggregate support is
S:=U e Sj» with ' and s denoting its supremum and infimum, respectively.

We now provide a partial characterization of equilibrium for a given contest C' € C. The first

result shows that the procurer does not benefit from inviting a single firm to participate (i.e.,



using a bilateral contract).

Lemma 1 In any equilibrium of C € C with |[N'| = 1, the buyer receives non-positive net surplus

with probability one.

Proof: Suppose, to the contrary, that there exists an equilibrium with SNR, . # 0. Fix any
s € SN K44 and an associated choice, (z,p) € R4 x Py, with s = 2z —p > 0. If the firm offers
(z',p) instead, with p < 2’ < z, the buyer will still take delivery. Since the firm receives the

same prize, but lowers its investment, the expected payoff rises, which yields a contradiction.™

Remark 1 This lemma, like the rest of the paper, assumes away any renegotiation possibility.
In practice, if the buyer retains the right to refuse delivery, she may exercise that right so as to
trigger renegotiation if the lone firm would capture any surplus if the buyer accepted delivery.
Such a renegotiation possibility does not alter the conclusion of Lemma 1, however. Che and
Hausch (1999) show that the firm will be severely held up when the buyer has all the bargaining

power (as is the case here), leaving the firm with no incentive for investment.

Suppose, henceforth, that A" contains at least two firms. We now present a series of lemmas

that are useful for characterizing equilibria of general contests.

Lemma 2 SNR, has no mass points.

Lemma 3 Suppose 3 > 0. Then, SNR; = [s,3] N R4.

Lemma 4 For every open interval I C SN R4, at least two firms have Pr{s; € I} > 0.
Lemma 5 FEach firm ¢ has an infimum surplus s; <0, and a supremum 5; < s5.

Lemma 2 shows that no strictly positive value of surplus is offered with positive probability.
Hence, any equilibrium the buyer would wish to implement is in mixed strategies.?’ Moreover,
G;(s) must be continuous for s > 0. Next, Lemma 3 shows that there cannot be a gap in
the set of positive realizations of S. Lemma 4 says that at least two firms offer surplus in any
non-negative interval in S. Finally, Lemma 5 shows that the infimum surplus offered by any
firm cannot be strictly positive, and the supremum cannot exceed the maximum surplus firm 2
could profitably offer.

Since investments are sunk, it is natural that these properties mirror those found in the

equilibria of all-pay auctions (see Michael Baye, Dan Kovenock, and Casper De Vries, 1996).2!



At the same time, the model here differs since the cost function is non-linear and the value of
the prize is endogenous. The structure of the proofs is essentially the same, however, so the
proofs are omitted (they are available upon request).

We next present a result that is critical for characterizing equilibria of a given contest and
for comparing equilibria from different contests. A firm will offer any equilibrium surplus in the
most efficient way. That is, firm ¢ will choose (z;,p;) € Ry x P; to maximize its expected payoff

from offering s. This implies

(1) u; = sup < p H Gj(s) —i(x): st.x—p=s,p,
TEOPER L jen\(i}
for any s € ;N Ryy. (Given Lemma 2, firm ¢ wins with probability J];cn ;3 Gj(s) when

offering s.) This condition is equivalently characterized by its dual:

(2) [1 Gi(s)= _int {M:S.hw—p:s}.

>0,peP;
JEN (i)} r=he p

We now give the result.

Lemma 6 For (almost) every s € S;NR41, G;(s) must satisfy (2) for all j # i. If the infimum

is attainable, firm i chooses a minimizer of (2) when offering such an s.

Equation (2) simplifies the process of finding an equilibrium in an arbitrary contest. Once
we identify the equilibrium payoffs and the support of the net surplus offered in equilibrium, (2)
helps uncover the equilibrium distribution function, G;. In particular, it pins down G; exactly

if || = 2. We now turn our attention to auction contests with two firms.
I1. Equilibrium of Auctions with Two Firms

In this section, we present a complete characterization of equilibrium for first-price auctions
with two firms.?? Auctions merit special attention because of their frequent use and because
of their prominence in the theoretical literature. First-price auctions in particular are used in
many procurement settings. Moreover, we will subsequently show that the optimal contest is a
two-firm auction.

Let N' = {i,j}, and let Py = [0,p;] for k = 4, j, where D}, represents firm k’s maximum
allowable prize. With just two firms participating, Lemmas 3, 4, and 5 imply that each firm



must offer surplus everywhere in (0, 3] in equilibrium. Lemma 6 then pins down the cdf of each
firm’s surplus offering for s € (0,3], once 5 and uy are known. To characterize the latter, let

sp(Pr) = max {z—p: st p>ihy(z)}
rER 4 ,p€(0,py]

denote the highest surplus firm k can profitably offer, £ = ¢,j. We restrict attention to values
of Py, such that s} (py) > 0 for k£ =i, j; otherwise, no firm would offer a strictly positive surplus
in equilibrium.

Suppose s7(p;) > s7(p;). (There is no presumption that i < j here, so firm ¢ need not be
more efficient.) If firm 7 were to offer surplus s (P;), it would win with probability one and earn
ui (p;) == max p —i(p + s5(p;)),

pe[0,p;]
since firm j cannot profitably offer more than s} (p;), and it never puts mass at s = s; (p;) > 0.
Clearly, firm 4 will earn at least this much in any equilibrium. We establish below that firm i
actually receives this payoff in equilibrium, while firm j earns a payoff of zero.
For ease of presentation, suppose the buyer commits to take delivery even when the higher

surplus offer is negative, and she favors firm ¢ when the two firms tie at zero surplus:
(R) Qk(x,p) =1if 2, —px > 2 —py for k,l =i, 5; and Q;i(x,p) =1 if z; —p; = x; —p; = 0.

This selection rule satisfies (R), but it imposes additional structure. The tie-breaking rule is
needed only to ensure existence of an equilibrium (just as in a Bertrand game with homogeneous
products but heterogeneous unit costs). It will become clear that the restriction to (R') entails
no loss to the buyer, and any subsequent reference to a two-firm auction will implicitly invoke
(R').2

The following proposition characterizes equilibrium for two-firm auctions, and it demon-

strates existence.

Proposition 1 Consider an auction with N' = {1,2} in which firms 1 and 2 face mazimum
allowable prizes of Py and Py, respectively. Suppose s} (p;) > 3;?(1_9]-) > 0 fori,5 € N,i # j.
Given (R'), an equilibrium exists. In any equilibrium, S; = [0, s3(P;)], SjNR4 =[0,57(p;)], and
firms i and j receive expected payoffs of uf(p;) and 0, respectively. Firms i and j offer surplus
in (0,s7(p;)] according to the cdfs

Yi(p + s)

Gi(s) = min 2T H
)= 08



and o

respectively.

The selection rule (R') ensures that firm i never offers negative surplus (i.e., s; = 0). Hence,
the surplus accruing to the buyer cannot be negative. Since the equilibrium characterization is
the same for s > 0 for any selection rule satisfying (R), the buyer can never be worse off using
( R/) ‘24

An important case arises when the firms face no maximum prize restriction (i.e., p; = Py =
o0). We focus on this case for the remainder of this section. The equilibrium characterization

for this case is obtained as a simple application of Proposition 1.

Corollary 1 Assume N' = {1,2} and P; = Ry fori=1,2. In any equilibrium, Sy = [0, s3] and
SoNRy =10,s5]. Firms 1 and 2 earn expected payoffs of si — s5 and 0, respectively. The firms

offer surplus over (0, s3] according to the cdfs:

®) Gi(s) = uin 202
and
(4) Ga(s) = min SL2H Y1)

pERY p

Proof: Proposition 1 applies since a sufficiently high maximum allowable prize has no effect
on behavior. The characterization and existence follow by noting that sj(co0) = s} and uj(c0) =

*_

*
81 32-

To get some intuition for the equilibrium expected payoffs here, note that firm 1 could choose
the socially optimal quality, #], and offer a surplus of s5 by bidding ] — s5. Winning would
give the firm a payoff of z7 — s5 — 1 (2]) = s7 — s3. Firm 2 cannot beat an offer of s}, so its best
response would be to offer zero surplus. But firm 1 would then have an incentive to lower its
surplus offer. Tt follows that the equilibrium must be in mixed strategies (as shown in Lemma
2), and firm 1 must receive at least s} — s3. Firm 2 must receive at least zero. In fact, these
lower bounds are both attained.

This corollary does not describe firms’ equilibrium quality and prize choices, but they can

easily be derived from the surplus offer strategies. Invoking duality, Lemma 6 shows that, when
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offering a net surplus s € (0, s3], firm i = 1,2 chooses quality

a .
T€Ry T — S

where u§ = s] — s5 and u§ = 0. The distribution of firm 4’s quality choice (or “type”) can then

be derived from G¢:

(6) Fi () = Prizj(s) < 2} = Gi(sup{s : z{(s) < z}),

)

where the second equality holds since z¢(-) is non-decreasing.?®

The remainder of this section characterizes the equilibrium of a two-firm auction further.
(Readers interested in optimal contest design may skip this part and go directly to the next
section.) Of particular interest is how the cost structure affects the endogenous distribution
of quality. It is commonly assumed in the auction literature that each bidder’s type has an
atomless distribution over an interval. The next proposition identifies sufficient conditions for
the equilibrium distributions to display this property. It refers to the following differentiability

condition:

Condition D: For each i € N, 9;(z) is differentiable and ;(0) =0

Proposition 2 (i) Given Condition D, each firm’s equilibrium quality choice, x, follows an

atomless distribution for x > 0, and firm 1 bids the prize

s — s5+ 1 (x)

bi(z) := @) for z € X{ :={z:2%(s) = z for some s € (0,s5]},
while firm 2 bids the prize
ba(z) := zzgg for z € X§ :={z:25(s) = z for some s € (0, s5]}.

(ii) If ;(-) is strictly convex for i = 1,2, the support of each firm’s quality choice forms an

interval.

The proposition also shows that, once a firm has chosen its quality according to an atomless
distribution, it chooses a prize deterministically, which is consistent with the equilibrium of
standard auctions.?6 The following example illustrates how quadratic cost functions generate a

particularly simple case — a uniform distribution over an interval.
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Example 1 (A quadratic cost function) Suppose the buyer selects two firms, each of which
has the cost function 1(z) = %xQ. In the unique equilibrium of the first-price auction, the two
firms choose quality uniformly over [0,1]. That is, a quadratic cost function generates uniformly
distributed types. Fach firm asks for a prize equal to one-half of its chosen quality, so it offers

net surplus distributed uniformly over |0, %]

If Condition D does not hold, the set of equilibrium types could be discrete. Lemma, 2 then
implies that firms must randomize over prizes, after choosing their respective qualities. The

following example illustrates this possibility.

Example 2 (A non-differentiable cost function) Suppose the buyer selects two firms to

participate, each of which has the cost function

1
ST orx € 0,1
sy = b raci
20 — 5 forxz>1.
The cost function is not differentiable at © = 1, and 7 = x5 = 1 as a consequence. In

equilibrium, each firm randomizes between x = 0 and x = 1 with equal probability. FEach firm

bids a zero prize if x =0, and bids randomly in [%, 1] according to
2b—1 1
= orbe|5,1),
K(b) := o (3:1)
1 forb>1,
if = 1. Thus, each firm puts probability mass of% at s =0 and offers s € (0, %] according to

the cdf G%(s) = min{2(l—£s), 1}.

Next, we explore how the contract is allocated, given the firms’ quality choices. Part of the

result invokes the following increasing differences condition on costs:
Condition ID: For z' >z, 1 (2') — 1(z) < pa(x’) — h2(x).

Given differentiability, this condition reduces to the more efficient firm having a lower

marginal cost than the less efficient one does.

Proposition 3 i) If 11 (-) = 12(+), the firm that chooses the higher x wins with probability one
in equilibrium. (ii) Given Condition ID, the more efficient firm asks for a (weakly) higher prize
than the less efficient one would, given the same strictly positive quality. If Condition D also
holds, the more efficient firm asks for a strictly higher prize than the less efficient one would,

given the same strictly positive quality.
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The proposition says that symmetry yields an efficient allocation in equilibrium, given the
quality choices. Ex post efficiency is not guaranteed with asymmetric firms, however. A less
efficient firm may win, despite offering lower quality, because a more efficient firm will demand a
larger prize, all else equal. A similar distortion arises in an asymmetric auction with exogenous
distributions (see Eric Maskin and John Riley (2000)).

While Proposition 3 describes how a firm bids, conditional on its quality, it does not char-
acterize overall net surplus offerings. To that end, a thought experiment is useful. Consider
two firms with v (z) < 1o(x) for all z > 0. Now suppose we replace one of the firms with
another that is exactly as efficient as the remaining firm. We can then compare the outcome of
an auction in which firm ¢ has the cost function v;, ¢« = 1,2, with an auction in which both firms
have 1, or both have 5. Let G’f denote the cdf for surplus in a first-price auction when both
firms have ;, i = 1,2. G¢(-) again denotes the cdf in the original asymmetric auction contest

for i = 1,2, as given in (3) and (4).
Proposition 4 Given Condition ID,
Gi(s) < Gi(s) = G3(s) < G3(s),

for s € (0,s3). If Condition D also holds, the last inequality holds strictly.

This result reveals several interesting features of asymmetric auctions. First, G§(s) < G5(s)
means the more efficient firm tends to offer higher net surplus than the less efficient one does.
That is, although the more efficient firm demands a larger prize when offering a given quality (see
Proposition 3-(ii)), it tends to offer higher quality, which more than compensates for the larger
prize. Hence, in terms of surplus offerings, the more efficient firm competes more aggressively
(i.e., offers higher surplus, on average) than the less efficient firm does. Second, G%(s) > G%(s)
means that a firm competes less aggressively when facing a less efficient firm than when facing an
equally efficient firm. At the same time, G%(s) > G%(s) means that a firm competes less aggres-
sively when facing a more efficient firm than an equally efficient firm. When the firms become
asymmetric, the less efficient firm becomes pessimistic about its chances, so it competes less
aggressively. Roughly speaking, this allows the more efficient firm to compete less aggressively
as well. Such a preemption effect also arises in all-pay auctions (see Baye, Kovenock and De
Vries, 1993, for example), but not necessarily in a standard first-price auction with independent

private values.?’

14



The preemption effect has one further implication: If the buyer selects two firms for an
auction contest, she may not select the most efficient ones. Instead, she may invite firms that
are less efficient but more evenly matched. For instance, suppose there are three potential
suppliers, with ¥1(-) < 12(-) = 13(-). Proposition 4 implies that if two firms are selected to
participate, G§{(s)G5(s) > G5(s)G4(s). This inequality means that the winning surplus when
firms 2 and 3 participate stochastically dominates the winning surplus when firms 1 and 2 do.
Since the buyer obtains the higher surplus offered by the two firms, more surplus accrues to
the buyer (in the sense of stochastic dominance) when firms 2 and 3 participate rather than
firms 1 and 2. The difference in efficiency reduces competition, causing both firms to offer lower
surplus, on average, than if firm 1 were replaced by another firm with the same technology as
firm 2. This result will hold even when the two less efficient firms have different technologies,

as long as they are sufficiently similar.

Example 3 (Asymmetric auction contest) Suppose the buyer selects two firms with costs
P1(z) = 12% and o (z) = S22, These firms offer surplus in [0, 3] according to cdfs,

s+vV2 + 52

Gi(s) = 2s and G5(s) = 5

As is shown in Figure 1, G3(s) > G4(s) for s < 5. Since G4(-) = G4(-), firm 2 would tend to
offer greater surplus when facing another firm with ¥y than when facing firm 1. This means the

buyer would benefit from selecting two firms with s rather than firms 1 and 2.

[Insert Figure 1 about here.]
ITI. Optimal Contest Design

We have so far provided a set of necessary conditions for contest equilibria, and we have
characterized equilibria for first-price auctions with two firms. We now search for an optimal
contest. The analysis is complicated by the endogeneity of investments and the resulting use of

mixed strategies.?® The duality property developed earlier plays a crucial role here.
A. Symmetric Firms

Consider the case in which the two most efficient firms are equally efficient. We now show

that the optimal contest is a first-price auction with only firms 1 and 2 as participants.
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Proposition 5 Suppose 1(-) = 1a(-) =: (-) < () fori > 3. A first-price auction satisfying
(R') in which only firms 1 and 2 participate yields the buyer a (weakly) higher expected surplus

than does any other contest in C.

Proof: Consider a first-price auction involving firms 1 and 2. Since the firms are equally
efficient, Corollary 1 implies that both earn an expected payoff of zero. Corollary 1 also implies

that firm 1’s equilibrium support is S¢ = [0, s3], and the firms adopt a common cdf,

7) G°(s) = min L)

for any s € (0, s3].

We now show that the surplus accruing to the buyer in an arbitrary contest is (weakly)
dominated by that in a first-price auction involving firms 1 and 2. To that end, fix an arbitrary
contest, C' = (N,P, Q) in C, and an associated equilibrium. Let S be the support of the
equilibrium surplus, let G; : S — [0, 1] be the cdf of the surplus offered by firm 7 € N, and let
u; > 0 be firm i’s equilibrium expected payoff. By Lemma 5, S "R, C [0, s3].

Fix any s € SN R, .2 Lemmas 2, 4, and 5 imply that G;(s) > 0, G;(s) is continuous at s
for all 7 € M/, and at least two firms have positive density in an open interval I that contains s,

given s € (0,3). Suppose firms k and [ have positive density in I. Then,

(8) H Gj(s) = inf uk + (5 + Pr) > min 7¢(8+pi) = G"(s),
JEA\(k) PrEP Pk piERL Pi

where the first equality follows from Lemma 6, the inequality holds since u; > 0 and P; C R,

and the last equality follows from (7). By the same argument,

(9) I Gits) > G0s).

JEN\{1}

Multiplying (8) and (9) on both sides, we get

11 i) [T Gis)] =692

JEN JEN\{k,1}

Since G(s) € (0, 1], it follows that

[T Gits) > G(s)*

JEN
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The left-hand side is the cdf of the first order statistic of surplus in the arbitrary contest; the
right-hand side gives the corresponding expression for a first-price auction involving firms 1 and
2. Since the latter is smaller for any s € SN, 1, and since the buyer collects the highest surplus
offered in a given contest, the auction generates greater surplus for the buyer in the sense of

first-order stochastic dominance.

Remark 2 The surplus ranking is strict if the inequality in (8) or (9) is strict. This holds if u; >
0 for some firm j, if P; is binding (see Example 4 below), or if more than two firms are active in
an interval of s (see Ezample 5 below). Each of these conditions implies T];cnn oy Gi(s) <1

for some s.

Auctions dominate all other contests in the class, be they symmetric or asymmetric, for a
large class of cost functions that includes non-differentiable and non-convex ones.?? An auction
is desirable because it gives firms two means of competing. In a fixed-prize tournament, a firm
with a low-quality innovation poses no threat to a firm with a high-quality innovation. In an
auction, by contrast, the former firm can still compete effectively by asking for a smaller prize.
This added competition causes firms to offer higher surplus, on average, in an auction than in

other contests. The next example highlights this point.

Example 4 (Auctions vs. tournaments) Consider a tournament with two firms, each of
which has ¥(x) = %xQ. In a tournament with a fized prize, P, a firm with quality z receives an
expected payoff of the form PF'(x) —1(z), where F! denotes the cdf for quality. Since the firms
receive zero expected payoff in equilibrium, they each choose quality randomly from the interval
[0,V2P] according to F'(z) = (x)/P = x?/2P. The optimal prize in the tournament is then
P = % and the buyer’s expected net surplus is 28—5. The corresponding auction equilibrium s
given in Ezample 1. Since both firms offer surplus uniformly over [0, %], the buyer’s expected net

surplus in the auction is % > %.

This example also illustrates why revenue equivalence breaks down. Auctions and tourna-
ments both select the firm offering the highest quality, but they induce different investment
decisions, so the amount of surplus created differs.?!

The optimality of first-price auctions here is reminiscent of the results in Roger Myerson
(1981) and John Riley and William Samuelson (1981) that demonstrate the optimality of stan-

dard auctions (with a reserve price). An important difference is that our result arises with
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ex ante investment decisions, meaning that bidders’ types are endogenous. This difference has
important consequences for the precise form of the optimal mechanism: there is not a binding
reserve here, and only two firms are invited to participate. The following example illustrates

this latter point.

Example 5 (The effect of increasing the number of firms) Suppose the buyer invites
n > 2 firms with (z) = %xQ to participate in an auction. In the symmetric equilibrium, the
surplus accruing to the buyer (i.e., the first order statistic of the surplus offers) is distributed
over [0,3] according to the cdf G%(s;n)" = min{(QS)ﬁ,l}. It is immediate that G®(-;n)"
stochastically dominates G®(-;m)™ for n < m, so it does not pay to increase the number of

participants.

In the symmetric, independent-private-values case, increasing the number of bidders is always
desirable since it can only increase competition. That conclusion does not follow when types are
endogenously distributed. As more firms participate, each firm becomes increasingly reluctant
to make a sunk investment since it becomes more pessimistic about its chances of winning.
While competition is necessary to motivate investment, too much competition is harmful since
the losing firms’ investments are wasted. For this reason, the buyer does not benefit from having
more than two firms participate.?? An asymmetric contest that induces one firm to win with a
very high probability is undesirable as well. Such an asymmetric contest would make the favored

firm too passive (by demanding too much or investing too little).
B. Asymmetric Firms

We have shown the optimality of auctions when firms are ex ante symmetric. Since firms
may differ in their ability to perform R&D, we now consider asymmetric cost functions. In
particular, we consider the possibility that 11 (z) < 12(z) for an open interval in [0, z}]. The
duality argument above would still favor simple first-price auctions if not for the rents that
accrue to the most efficient firm. This latter feature can favor other contests that yield lower
rents. In particular, an auction that handicaps the most efficient firm may now be desirable.

Consider a two-firm auction in which firm 1 faces a maximum allowable prize of p; = p,
while firm 2 faces no restriction (i.e., py = 00). Proposition 1 shows that, if s7(p) > s5(00) = s3,
firm 1 receives an expected payoff of

ui(p) = max p —p1(p + s5)
p€[0,p]
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in equilibrium (and firm 2 receives zero). Note that u](-) is continuous and non-decreasing. In
particular, it attains a maximum of s] — s at p = z] — s3, and it remains constant as p rises
thereafter.

Let p* be the smallest value of p such that »}(p) = 0. If firm 1’s maximum allowable prize is
p*, neither firm earns any rents. By Proposition 1, firms 1 and 2 then offer surplus over (0, s3]

according to the cdfs

—a . Pa(p+s)
10 G = re\F 2
(10) 1(s) fnin —
and ( )

—a . 1/)1 P+ S
11 G = e
) o= i, 2

respectively, in equilibrium. Comparing (10) and (11) with (3) and (4) reveals that, while the
maximum prize restriction does not affect firm 1’s surplus offering, it does raise firm 2’s surplus
offering in the sense of stochastic dominance. Intuitively, the restriction attenuates firm 1’s
efficiency advantage, which makes firm 2 compete more aggressively. This intuition is confirmed

in the next proposition, which invokes the following two conditions:

Condition R1: For anyp > p’' and s > s/,

hilp+s) i +s) _dhilp+s) (P +5)
P Y T p p

This condition means that firm 1’s equilibrium prize bid is non-decreasing in its investment
in an auction without a binding maximum prize. Technically, it requires that t¢; not be too
convex. It is satisfied by cost functions of the form ) (z) = az?, with 0 < e and 0 < v < 2, for

example.

Condition R2: FEither

. Pi(z) _ ala) '
(i S S ST
. P1(z) _ a(a’) ! ) is convet
(i) g g STt |

This condition requires that the growth rates of the firms’ costs be uniformly ranked (the

rate of increase of firm 1’s cost is uniformly higher or lower than firm 2’s). Condition R2-(i)
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is satisfied by cost functions of the form 1 (z) = az” and q(z) = Sz, with 0 < a <  and
v > 0, for example. Condition R2-(ii) simply requires that firm 1’s costs be convex and have a

lower growth rate along with the lower level.

Proposition 6 Given Conditions R1 and R2, it is optimal for the buyer to invite firms 1 and

2 to participate in a first-price auction, and to set a maxzimum allowable prize of p* for firm 1.

The optimal contest for a buyer facing asymmetric firms is again an auction. She will invite
the two most efficient firms to participate, and she will handicap the more efficient one so that it
receives no rents. The handicapping causes the less efficient firm to compete more aggressively,
offering even greater surplus than the more efficient one does, on average. This is illustrated by

the next example.

Example 6 (Optimal auction with handicapping) Revisit Ezample 3 with ¢ (x) = ixQ

and o(z) = %wQ. The optimal auction imposes a mazimum allowable prize of p* = % —V2o0

S

firm 1. The firms then offer surplus in [0, %] according to the cdfs

— — . € 07_* )

G1(s) = 2s and Gy(s) = § Cv2 ifs €10.77]

(s+p7)° if s € [p*, 4]

1p~ p 3l
which are graphed in Figure 2. Absent handicapping, firm 1 adopts G§(-) = G () while firm 2
uses G§(-) (the dotted curve in Figure 2). The handicapping of firm 1 shifts firm 2’s cdf down

to 63(-), which is below @T() In other words, the handicapping makes firm 2 compete more

aggressively (i.e., offer higher surplus) than firm 1.

[Insert Figure 2 about here.]
IV. Conclusion

This paper has studied an important set of policy variables associated with the design of
contests to procure an innovation. In particular, we have compared various methods for selecting
the winning contestant and determining the prize, including first-price auctions and fixed-prize
tournaments. Our results show that letting the two most efficient innovators participate and
bid for their prizes is optimal. Handicapping the more efficient one through imposition of a

maximum allowable prize is optimal when contestants are asymmetric.
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Our analysis has useful implications beyond research contest design. First, our model has
clear connections to the optimal auction design problem (see Paul Klemperer, 2000; McAfee and
John McMillan, 1987; and Milgrom, 1985; for comprehensive surveys). The auction literature
studies the allocation of resources based on bidding, much as in our model. The novel element
here is that agents’ types are determined endogenously through their investment decisions.
This feature made the revenue equivalence theorem inapplicable, and it yielded a non-trivial
comparison among mechanisms with (ex post) efficient allocations. While the desirability of
using auctions and of handicapping parallels findings in the auction literature, there are also
significant differences. These include the optimality of choosing only two firms and the lack of a
binding reserve in the symmetric case. Bidders in many real-world auctions have opportunities to
make investments that will influence the value of auctions, making this line of inquiry particularly
important.33

Our findings also shed light on how to deal with the holdup problem that arises in contracting
relationships. The key source of the holdup problem is the lack of verifiability of contractors’
efforts, which makes them susceptible to expropriation by their contract partners. That bilateral
contracts are often inadequate for protecting specific investments has led many authors to explore
organizational remedies such as vertical integration (Klein et al., 1978; Oliver Williamson, 1979),
shifting property rights (Sanford Grossman and Oliver Hart, 1986; Hart and John Moore, 1990),
and allocating financial and nonfinancial decision rights (Philippe Aghion and Patrick Bolton,
1992; Aghion and Jean Tirole, 1997). Our results imply that introducing competition among
potential contract partners can provide incentives for effort that may be difficult to motivate
through bilateral contracts. While this “incentivizing” effect of competition has been noted
recently,?* a novel implication of the current study is that auctions may be particularly good at
harnessing this effect.

The current paper has focused on a deterministic environment in which each firm has com-
plete control over the quality of its innovation. In practice, the outcome of innovative activity
is likely to be uncertain, but this need not detract from the desirability of contests. If the
uncertainty is not too great, the suppliers will still randomize over quality, and auctions are
likely to remain desirable. Indeed, Fullerton et al (2002) have shown that the desirability of auc-
tions is robust to stochastic innovation technologies. A general analysis involving uncertainty
seems non-trivial, however, since our duality arguments do not readily generalize to the case of

uncertain outcomes.
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Appendix

Proof of Lemma 6: When a firm offers s > 0, it must choose a positive quality, which can
only be profitable if the firm asks for a prize satisfying p > 0. Also, by Lemma 2, firm ¢ wins
with probability [];cxn ;3 Gj(s) since ties occur with probability zero when s > 0. These facts
imply that, for any s € S; "R, 4,

ui=sup<p [[ Gils)—vi(s+p)
PEPL | jen\{i}

S VEG! g

. u; + (s +
— H G](S): inf {L(p)}’
p
which is equivalent to (2). Clearly, the infimum is attainable if and only if the supremum of (1)
is attainable, in which case the set of minimizers coincides with the set of maximizers of (1). To
prove the last statement, suppose firm i chooses (z,p) that does not minimize (2). By duality,

(1) will fail to hold, contradicting the assertion that firm 7 earns u; and s € S;.
Proof of Proposition 1: (Characterization) This part of the proof has several steps.

Step 1: In equilibrium, at most one firm receives a strictly positive expected payoff.

Proof: Suppose, to the contrary, that both firms receive a strictly positive expected payoff.
The firms must have a common infimum surplus; if not, the firm with the lower infimum would
get a non-positive expected payoff when offering surplus between the two infima since such an
offering cannot win. Moreover, the firms must place mass on the common infimum, and the
corresponding prize bid must be strictly positive. (If fewer than two put mass there, at least
one firm would get an expected payoff arbitrarily close to zero when offering surplus arbitrarily
close to the infimum.) Each of these firms would then have an incentive to deviate by lowering
its prize bid infinitesimally while holding its quality fixed. Such a deviation is profitable since
the probability of winning would then jump up. Hence, at most one firm can receive a strictly

positive expected payoff.

Step 2: In equilibrium, 5, = s;f(}_oj) fork=1,j.

Proof: By Lemma 4, it suffices to show that the overall supremum satisfies 5 = s;(ﬁj).
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Suppose, first, that 5 > s7(p;). Since s}(p;) is the most that firm j can offer in any equilibrium,
only firm ¢ must be offering s € (s} (p;),s]. This last point contradicts Lemma 4, so 5 < s7(p;)-
Now suppose s < s (p;)- For each k = i,j, there exists a feasible (Zy,px) such that ) — py €
(3,57(P;)] and pr — k() > 0. (This holds for k = j by definition of s}(p;) and for k = i since
s;(p;) > s3(p;) and v;(z) is continuous for z > 0.) By offering a quality slightly below Z; and
asking for py, firm k can still offer s € (5, s7(p;)]. With that offer, firm & wins with probability
one and earns a strictly positive expected payoff since ¢ (z) < ¥(Zx) < pr. This argument

holds for k = 4, j, so we have a contradiction to Step 1.

Step 3: In equilibrium, firm j earns an expected payoff of zero and firm i earns u; (p;).

Proof: Firm i could offer a net surplus of s7(p;) and earn u; (p;), so u; > u;(p;). For firm 7 to
earn more than uj(p;) requires 5 < s7(p;). But this would contradict Step 2, so firm i receives
u; (p;). If uj(p;) = 0, which means s7(p;) = s7(p;), the symmetric argument proves that firm j

receives an expected payoff of zero. If u}(p;) > 0, the same conclusion is reached via Step 1.

Step 4: In equilibrium, s, = 0.
Proof: Suppose not. Then, by Lemma 5, s; < 0. If firm j were to choose zero quality and a
prize p; € (0,—s;), it would win with positive probability under (R'), since —p; > s;. It would

then earn a strictly positive expected payoff, which contradicts Step 3.

Step 5: In equilibrium, S; = [0,3;(@)], S;NRy = [0, s;f(z_?j)], and firm k offers surplus
s € (0, s; (p;)] according to Gy(s) described in the statement of the proposition, for k =1, j.

Proof: By Lemmas 4 and 5, and by Step 2 above, Sy "R, = [0, s7(p;)]. Step 4 then implies
S; = 10,5 (p;)]. Furthermore, by Step 3, u; = u;(p;) and u; = 0. Therefore, by Lemma 6, the
cdf of firm k’s surplus offer must equal G (s), as described in the statement of the proposition,
for almost every s € (0,s}(p;)]. Since the cdf is non-decreasing and the minimized value,

G (s), is continuous (by the Theorem of the Maximum), the former equals the latter for every
s € (0,8;(}3])]

(Ezxistence) We now establish existence of an equilibrium. Consider the following strategy

profile:
1 for s > s;f(pj)’
Gils) i= mian[O,ﬁj] W for s € (0, s;‘- (pj)]’
infpe(o,p,1 %T(m for s =0,
0 for s < 0.
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and

1 for s > s%(p;),
: ui (Py)+¢i(p+s) x(m
Gi(s) = ming,eo 5.1 *’7 > for s € (0, s} (p;)],
! inf,c05,] w for s =0,
0 for s < 0.

These cdfs coincide with G;(-) and Gj(-), as stated in the proposition, for s € (0,s}(p;)]. The
corresponding quality-prize pair is given by the minimizer (z{(s),p}(s)), which is well defined
for each s € (0,5} (p;)]. The pair is also well defined for s = 0 if & =4 and u](p;) > 0. For the
remaining case with s = 0, the corresponding strategy is z{(s) = p{(s) = 0. Under (R’), firms i
and j will earn v} (p;) and 0, respectively, by playing these strategies.

We now show that any unilateral deviation is unprofitable. Suppose that firm k& deviates
to (z,p), with p € [0,p,]. If x < p, (z,p) will win with zero probability, so such a deviation
is unprofitable. Conversely, if z —p > s} (p;), the pair is strictly dominated by (z — ¢,p), for
small € > 0. Likewise, a deviation is unprofitable if p = 0. We can therefore restrict attention
to deviations (z,p) with z —p € [0, s7(p;)] and p > 0. Letting uy = 0 if k = j and uj, = u}(p;)

if k =4, such a deviation implies

ug +r(x —p+p) _ up + i)

/ — )

p

Pr{firm k£ wins with (z,p)} < G_g(r —p) = inf
p’€(07ﬁk] p

where the first inequality holds since the other firm may put mass at s = 0,3° the equality
follows from the definition of G_;,3¢ and the last inequality follows since the infimum need not

be attained at p’ = p. The above string of inequalities implies
g
pPr{firm k£ wins with (z,p)} — ¢ (z) < ug,

so it does not pay firm k = 7,7 to deviate.

Proof of Proposition 2: We first prove (i). Let S¢ denote the support of the surplus offer
from firm 7 € A in that equilibrium. We first show that z%(s) < z%(s’) for surpluses s and
s> sin S NR,. Suppose, to the contrary, that z7(s) > z¢(s"). Since s’ > 0, we must have
z?(s") > 0, implying z7(s) > 0 as well. Hence, z¢(s) solves (2) for P; = R;. Then, footnote 25
implies zf(s) < z%(s"). Therefore, z¢(s) = z¢(s') = z, for some = > 0. In light of Condition D
(differentiability of 1;), x must satisfy the first-order conditions:

Yi(@)[z — 8] —uilo0) —pi(e) _ o Yil@)le — '] — ui(oo) — hi(z)

(z — )2 (z — 82

=0.
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Since z > max{s, s'}, the two equalities imply

hi(@)[z — s] = ui(00) + i (z) = Pi(z)[z — 5],

which cannot hold for any > 0. We conclude that ¢ (s) is strictly increasing for all s € SfNR,.

We now prove that no firm selects any particular quality with positive probability. Suppose,
to the contrary, that firm ¢ puts positive mass on a particular quality, z € X*\{0}. Since z?(-)
is strictly increasing, there exists a unique s > 0 such that z = z%(s).>” By Lemma 2, a firm
cannot put mass on z = z¢(s) for some s > 0, so it must be that z = z?(0). (That is, if the
firm puts mass on z, it must be offering zero surplus.) This can only be profitable if firm j # i
offers s < 0 with positive probability. It follows that both firms must offer s < 0 with positive
probability, but this cannot happen in equilibrium either. Since (0) = 0 (by Condition D),
each firm could choose z = € > 0 and offer p = ¢/2, which will win with positive probability and
yield a strictly positive expected payoff, for sufficiently small e. Hence, both must earn a strictly
positive expected payoff, but this contradicts Corollary 1. We conclude that X{\{0} contains
no mass points.

The equilibrium bidding strategies are derived from the first-order condition,

pi(@)[x — ] — ui(00) — hi(x)

(z =)

=0,

and the strict monotonicity of z¢(-):
0™ () = Ui(OO)IJF @bi(m').
i ()

We next prove (ii). If 4);(-) is strictly convex, the minimizer of (5), z%(s), is unique for
s € (0,s3], so z¢(-) is continuous, by Berge’s Theorem of the Maximum. Since S} N R is
an interval (by Lemma 3), X = {2 | z = z{(s) for some s € (0, s3]} is then an interval. It
now suffices to show that z¢(s) is continuous at s = 0 whenever z¢(0) is in the support of i’s
quality choice. If z¢(0) > 0, then z?(0) is a minimizer of (5), so continuity follows from the
above argument. Hence, let 2¢(0) = 0 and suppose, to the contrary, that z_ := limgg ¢ (s) > 0.
For z¢(0) to be part of firm ¢’s support, the firm must put mass on that quality. Moreover,
we must have u{ = 0. This last assertion follows from Proposition 1 if 1 = 2. If ¢ = 1, it
follows since the firm never offers negative surplus (again by Proposition 1), so it must choose

a
i

must have ) (z7(s))[z7(s) + s] < ¢i(xz¢(s)), where 9} is a left derivative. As s — 0, we have

Pi(z_)z_ <pi(z_). But this last fact contradicts strict convexity of 1;(-).

z¢(0) + 0 = 0 with positive probability. Since z?(s) is a minimizer of (5) for all s > 0, we
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Proof of Proposition 3: To prove statement (i), let

>0 x — S

XO(s) = {m . 5 € arg min 2% } .

As is argued in footnote 25, every selection of X%(s) is non-decreasing in s. Hence, X%(s) is
a singleton for almost every s. Moreover, by Lemma 2, there are no mass points in surplus
offerings for s > 0. Given the monotonicity of X%(s), the firm that chooses the higher 2 > 0
wins the contest with probability one when the firms are symmetric.

We now prove statement (ii). Fix an equilibrium, and let S{ be the support of firm 1’s net

surplus offering. Invoking the argument above, we can restrict attention to s € S{ such that
5183 +¥1(2)

2 and dff? have unique minimizers, z{(s) and z%(s), respectively.

For s S Si" N %++, let

p(ZE,Z) — —ZS){ — S; +1/)1(,’L‘) i (1 _Z)@bQ(fL‘)
r— S r— S

Clearly, z5_, € argmaxy>o p(z,2) and x§_, > s, for z = 0,1. Now observe that p(z, z) satisfies
the strict single-crossing property in (z,z) for any z > s. By Theorem 4’ of Milgrom and
Shannon (1994), we then have z{(s) > z§(s) for any s € S¢ "R ;. This inequality implies that
firm 1 asks for a weakly higher prize, given the same x, which proves the first statement of (ii).
The second statement of (ii) is proven by showing that the first-order conditions cannot both

hold at a given z > 0, much as in the proof of Proposition 2.

Proof of Proposition 4: By Corollary 1, we have
Aa . hi(z) Pa(z) s — 85+ i (x)

_ a _ A o a o
Gl(s)_r;lzlgla:_saGl(s)_G2(3)_r£1212$_87 and Gz(S)—rgZH; U

for s € (0,s%). Hence, it suffices to show that

* *
min _¢1 (z) < min _1/)2(:17) < min izt (z)
r>s T — S x>s T — S8 ] Tr— S

The first inequality follows since 11 () < 12(+). To see the second inequality, suppose G§(s) <
GY(s). Since G§(s5) = GY(s3) = 1, we can use the Mean Value Theorem (applied to G§(-) —
G%(-)) to show that there exists s’ € (s,s3) such that G4(s') < G4(s') and G%'(s") > GY'(s').

Meanwhile, the Envelope Theorem implies

a( ! a( ol
Gg,l(sl) o G(fl(sl) _ G2 (S ) _ Gl (3 ) < 0’

z{(s") —s"  xz5(s") — s
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where the inequality holds since G§(s') < G{(s') and z§(s") > z5(s’), by Proposition 3. (It
shows that z, = zo implies p; > py. Since z{(s) is non-decreasing, we have z{(s) > 25(s).) We
thus have a contradiction. If Condition D also holds, then x{(s’) > z4%(s’) (recall the proof of

Proposition 3-(ii)), so the same argument proves that G§(s) > G{(s).

Proof of Proposition 6: The proof requires the following two lemmas.

Lemma 7 Let Py and uy be firm 1’s menu of prizes and its equilibrium expected payoff, respec-

tively, in an arbitrary contest. Given Condition R1, for any s € [0, s5] we have

@a(s) < inf PPt s) ¥i(p+5)
2 T pePy p '

Proof: Recall first that uj(p) := max,cozp — ¥1(p + s3). Now let p be the smallest value
of p € [p*,z7 — s3] that satisfies

(A1) ui (p) = max{sup p — ¢1(p + s3),0}.
pEP1

The proof involves several steps.

Step 1: u; > ui(p).
Proof: Let 5 be the supremum surplus in the equilibrium. By Lemma 5, 5 < s3. Since firm
1 can win with probability one by offering 5 (it can choose quality p + S and bid p, for some

p € P1), its equilibrium expected payoff satisfies

up > sup p—t1(p+73) > sup p— b1 (p+ s5).
pPEPL pEPL

The result follows from (A1) and the requirement that u; > 0 in equilibrium.

uy (P)+1(p+s) ui (P)+¢1(p+s)
> .

Z min.pe [Uaﬁ} p

Proof: Given Condition R1, %@H) is submodular in (p,s) for any u. Hence, for any

Step 2: inf,cp,

p’ € P1\[0,p] and s < s}, we have

uiP)+ i +s) wi) +hi@ +s) _ wi(d) + i +s3)  ui(d) + il + s5)

/ — / <0
p p p p

—= ’

where the last inequality follows since u}(p) > p' — 11 (p' + s3) for any p' € P1\[0,p] (otherwise,

we have a contradiction to the definition of p). The above inequality then implies the result.
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Step 3: For any p > p*, we have

ui@) +ilp+s) min Y1(p + s) .
PE[0,P] p ~ pel0,p%] p

Proof: Let

Since uj(-) is non-decreasing, the negative of the minimand (the objective function) satisfies
increasing differences in (p;p), so Theorem 4 of Milgrom and Shannon (1994) implies that we
can select a minimizer, z(p, s), that is non-decreasing in p. For the proof, it suffices to show

h(P',s) > h(p*,s) for p > p*, given s € (0, s3]. To that end, note first that

) 1 = [Ty o [FUCEDED e ) i)

where the equalities hold by the Envelope Theorem since () is absolutely continuous for
xz >0 (see Theorems 1 and 2 of Milgrom and Ilya Segal (2002)) and the inequality follows from
Condition R1 since z(p',t) > 2z(p*,t). The result then follows since h(p', s5) = h(p*, s3) =1 (by
the definition of u}(+)), given p’ > p*.

Step 4: For any s € [0, s3],

@a(s) < inf it Pt s) Yulp +9)
2 T pePy p '

Proof: The result holds since

o Wil trs) o ui) il ts) i) T (e ts)

pEPy P ~ peP; P ~ pel0,p] p ~ pel0,p%] P

n ¢1(p+3) :E;(S)

where the inequalities follow from Steps 1, 2 and 3, respectively, and the equality follows from

the definition.

Lemma 8 Given Condition R2, we have Go(s) < G1(s) for any s € [0, s3].

Proof: The proof again comprises several steps. Let p3(s) € argminy>g W(Z +9) and let

p*(s) € arg ming,e(o 5+ W.

Step 1: If@;(s) > 6‘11(3), then p*(s) < p5(s).

28



Proof: Suppose p§(s) < p*(s) for some s € (0, s3]. For such a surplus offering, we have

Te) = min PP Hs) i) +5) _da(ph(s) +5) _ e
GZ(S)_pGW] > < 805) < 505) G (s),

where the first inequality holds since p%(s) < p*(s) < p*. Since pS(s) < p*(s) implies Gg(s) <

G (s), the contrapositive also holds.

Step 2: Given Condition R2-(i), Gy(s) < Gy(s) for all s € [0, s3].

Proof: Suppose, to the contrary, that Gy(s) > G7(s) for some s € [0,s3). Both cdfs are
continuous (by the Theorem of the Maximum) and they satisfy Go(s3) = Gy(s5) = 1.3% The
Mean Value Theorem implies that there exists s' € [s, s3] such that Gy(s') > G (s') and Gy (s) <
G (s'). Meanwhile, Step 1 implies that p*(s') < p5(s"). Hence,

6101 = gy o) O < [Ty o200 =22
where the equalities follow from the Envelope Theorem and the inequality follows from 6‘;(3' ) >
G (s') and p*(s') < p%(s'), and from Condition R2-(i). Since the inequality yields a contradic-
tion, we conclude that Gy (s) < Gy (s) for all s € [0, s3].

Step 3: Given Condition R2-(ii), Go(s) < GY(s) for all s € [0, s3].

Since 11 (+) is convex and 11 (0) = 0, it follows that i) g non-decreasing for all p > 0. This

P
means the maximum bid of 7* > 0 is not binding when s = 0. Hence, G4(0) = min,e o5+ wlT(m <
minyen ¢2T(m = G1(0). Now suppose, contrary to the claim, that Go(s) > Gj(s) for some
s € (0,s5). Then, there must exist s' € [0, s) such that Go(s') < Gy(s') and Gy (s) > G ().

An argument analogous to that in Step 2 then produces a contradiction, given Condition R2-(ii).

We now prove the proposition. Consider an arbitrary contest with |A| > 2, and fix an
equilibrium. Suppose firm 7 € N faces a menu of prizes given by P;, offers surplus according to
some cdf G;, and receives an expected payoff u; > 0 in that equilibrium. Consider any s € (0, s3].
By Lemma 4, at least two firms are active at that surplus level. Suppose firms 7,5 € N are
active, ¢ < 7. It follows from Lemma 6 that

of pj (p+s)

(A2) H G(s) = inf W > in > min
KeN\ (7} pEP; p PEP; p p>0 p

¢2(p+ 3) — a‘f(s)

where the last inequality holds since 7 > 2. Similarly,

[ Gils) = inf Lttilets)

P;
KeA\{i} pe p
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> min{inf u + 91 (p + 5) 2/)2(;0—)—3)}
pEP p p>0 p
> min Ya(p + )
p€(0,p*] p
(A3) = Gy(s),

where the first inequality is immediate for the cases of ©+ = 1 and ¢ > 2 both, and the second

inequality follows from Lemmas 7 and 8.

By (A2) and (A3), we then have
(M) ( T e ) s@eme
keN keN\{i,j}
Since Gi(s) € (0,1], it follows that

T[T Gi(s) > Gi(s)T(s).
keN

Since s was arbitrary, the net surplus accruing to the buyer under the auction stochastically

dominates the surplus from the arbitrary contest. This proves the proposition.
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IThe position of the sun was used to determine local time, and the timepiece gave the time
in Greenwich, say.

’In a voyage across the Atlantic, the metals and lubricating oils inside a timepiece could
expand or contract as humidity and temperature changed. This meant that, in principle, a
successful trial on a single route might be an aberration.

3The prize was a license to operate in the market, so the value differed across firms. Our
model encompasses tournaments with different prizes.

* Advertising agencies typically develop a pilot commercial before signing a contract. Simi-
larly, many homebuyers request showings by multiple brokers before signing exclusive contracts.

5The patent system also creates a monopoly distortion, which is likely to be especially
harmful when the innovation has a strong “public good” element. See Gallini and Scotchmer
(2002) for an excellent survey comparing alternative incentive systems for innovation.

6Research contests rarely require substantial entry fees. To the contrary, procurers frequently
provide substantial subsidies to the firms selected to participate in research contests. The DoD
often expresses concern over the financial stability of suppliers because of a desire to maintain
competition.

"See Patrick Windham (1999) for a comprehensive list.

8Fred Thompson and L.R. Jones (1994) describe the process in detail. They stress the
Packard Commission recommendation to hold competitions between working prototypes instead
of “paper competitions” (p. 145). They also note the sharp decrease in the number of “cost-plus”

contracts entered into by the DoD, and the corresponding increase in the number of fixed-price
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contracts (p. 192).

9 Also related is Benny Moldovanu and Aner Sela (2001), which studies the use of a contest
with multiple fixed prizes to maximize contestants’ aggregate effort.

10Gee Fullerton and McAfee (1999), p. 575.

UFirms sink investments even though they may lose the contest. This feature does not
violate the “liquidity constraint” explanation for the infeasibility of entry fees if investments
take the form of non-monetary effort or opportunity costs. Investment costs that are monetary
costs are consistent with this explanation when the constraint results from legal restrictions or
from opportunism.

2That is, s; is the maximum value z — p can take, given that firm ¢ will be paid its cost,
meaning p = ¥;(z).

BFaruk Gul (2001) also studies the feature that an agent who randomizes over investments
generates an adverse selection problem, in an infinite horizon bargaining model.

14 A selection rule that is completely independent of (x, p), such as random selection or always
selecting a particular firm, is feasible. These rules generate no surplus for the buyer, however,
so we ignore these possibilities. One can imagine a more sophisticated rule under which the
buyer commits to a set of probabilities of awarding the prize based on her preferences over the
firms’ quality and prize choices. Committing to a complex random selection rule may be difficult
from a practical standpoint. The analysis required for this general model also departs from the
method used here. We thank a referee for raising this possibility.

15This set does not include mechanisms that require the buyer and winning firm to report the
latter’s quality choice, for example. Since the quality is common knowledge between the two par-
ties, one can induce truthful reporting for free, so the first-best is attainable. Such mechanisms
are unobserved in practice, possibly because such messages are susceptible to manipulation.

16 At first glance, our selection rule may appear different from the conventional first-price
auction since the firm offering the highest surplus is selected here, rather than the one offering
the lowest price. The selection rule is natural in the procurement setting in which firms offer
different quality levels. In particular, it coincides with the standard rule in which the lowest
bidder wins, when the offered qualities are the same.

1"We have assumed that quality is private information at the time firms bid their prizes.
Suppose the buyer could credibly reveal the quality choices before the firms bid. Revealing the
quality choices always admits a bad equilibrium (for the buyer) in which the most efficient firm

successfully preempts the other firms and offers zero surplus.
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18 As will be seen, the supremum is always attained, and the infimum is attained in all cases of
practical interest. Hence, there is little loss in interpreting them as the maximum and minimum,
respectively.

19While this argument appears obvious, the result requires all three conditions of the model.
If the level of investment or the innovation quality were verifiable, an enforceable contract could
be written that specified the first-best level of investment. With entry fees, the buyer could set
Py = {z}}, with no commitment to take delivery (so Q1(z’,p') =0 for 2’ — p' < 0), and charge
an entry fee equal to s7. This would induce the firm to choose quality z] and receive a payoff of

*
331—

s7 —1(zF) = 0, giving the buyer a net surplus of s]. Likewise, if the investment were not
cooperative (e.g., it just reduced the firm’s cost of production), the first-best outcome could be
attained by a simple fixed-price contract.

20T see why a pure-strategy equilibrium cannot arise when n > 2, suppose that firm 4 offers
s > 0 with probability one. Doing so requires a sunk investment, so the firm must win with
positive probability. Also, no other firm must be offering a surplus equal to s, or slightly lower,
since that would be dominated by offering slightly more than s (which would yield a discrete
jump in the probability of winning, with only a slightly higher investment cost). In that case,
firm ¢ would be strictly better off lowering its surplus offer.

21Gimilar features are also found in oligopoly models with price dispersion (see McAfee, 1994;
or Hal Varian, 1980; for example).

22 Auctions with two firms have unique equilibrium payoffs here. A full characterization of
equilibria with |N| > 3 is cumbersome due to the multiplicity of equilibria. It is also unneces-
sary since the optimal design analysis only requires the partial characterization reported in the
previous section.

23The equilibrium outcome for the buyer will be precisely the same if she retains the option
to reject delivery and exercises it whenever the highest offer is strictly negative. See Che and
Gale (2000).

241f the buyer retains the option not to take delivery, the equilibrium characterization is the
same except that both firms may offer negative surplus. Such offers will be rejected, however.
The cdfs for positive surplus are the same for any rule satisfying (R), so the surplus accruing to
the buyer will be the same as with (R’).

25To see this, consider ¢(z;s) := S(I) for some uf > 0, which is the reciprocal of

-
the function that is minimized in (3) and (4). Hence, z%(s) coincides with some selection

(2
of argmax,>, ¢(x;s). Now observe that, for > s, ¢(x;s) satisfies the strict single-crossing
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property in (z;s), as defined by Paul Milgrom and Chris Shannon (1994). Their Monotone
Selection Theorem (Theorem 4') then implies that z¢(s) is non-decreasing.

26The one difference is that firms may put positive mass at zero surplus here. Interpreting
(z,p) = (0,0) as non-participation, the auction with Condition D coincides with a standard
auction with random participation.

2Tn an asymmetric first-price auction, an efficient (i.e., high value) bidder competes less ag-
gressively when it faces a less efficient bidder, but an inefficient (i.e., low value) bidder competes
more aggressively when it faces a more efficient bidder. See Maskin and Riley (2000).

28For instance, the equilibrium allocation rule does not directly pin down the buyer’s welfare
(as would be the case if revenue equivalence held), since xz; is endogenous.

29We focus exclusively on s > 0 since the buyer gets s > 0 in equilibrium in an auction, and
s < 0 can only make her worse off, ex post, in an arbitrary contest.

30We have assumed that entry fees are infeasible, but the above result casts doubt on the
value of entry fees when the buyer commits to take delivery. Entry fees seem most viable when
the buyer must take delivery since the option not to take delivery can be used opportunistically
to collect entry fees but not award a prize. If the buyer commits to take delivery in the two-firm
auction, however, firms’ rents are completely dissipated, even without entry fees. Charging entry
fees can only cause non-participation by a firm, which will result in a zero (or possibly negative)
surplus for the buyer.

310ur class of contests does not include second-price auctions. Suppose the firm that offers
the highest net surplus wins and is required to match the second-highest net surplus, as in Che
(1993). Such a format does not work here since quality is unverifiable. Now consider a variant of
the second-price auction in which the firm bidding the lowest prize wins and receives the second
lowest prize (and let the buyer break ties any way she likes). Such a format does not work well
either since firms have a weakly dominant strategy of bidding a zero prize, which would give
them no incentive to invest in equilibrium. With a minimum allowable prize of P, say, all active
firms bid P, so the second-price auction is then isomorphic to a tournament with a prize of P
(since the buyer will prefer the firm with the highest quality). Finally, the variant in which the
winning firm receives the highest losing prize bid performs (weakly) worse than the first-price
auction.

32 A similar result and insight can be found in auctions with entry (Dan Levin and James
Smith, 1994, for example) and for research tournaments (Taylor, 1995; and Fullerton and

McAfee, 1999). The result that two is the optimal number of contestants depends somewhat on
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the deterministic technology in our model. If firms’ innovation qualities are uncertain, there are
social gains from having additional firms making innovation “draws,” especially when individual
firms are constrained in how many draws they can take.

33Several authors have studied auctions with pre-bidding investment (see Kenneth French
and Robert McCormick, 1984; Tan King, McAfee, and Linda Welling, 1992; Kevin Lang and
Robert Rosenthal, 1991; Guofu Tan, 1992; Levin and Smith, 1994; Parimal Bag, 1995; Nicola
Persico, 2000; and Dirk Bergemann and Juuso Véliméki, 2000). Except for the last paper, which
searches for a welfare-maximizing mechanism when investments take the form of information
acquisition, this literature simply assumes the use of auctions. Moreover, none of these papers
considers cooperative investments, a feature of much R&D procurement.

34See W. Bentley MacLeod and James M. Malcomson (1993), Che and Hausch (1999), Harold
Cole, George Mailath and Andrew Postlewaite (1998), and Leonardo Felli and Kevin Roberts
(2001). These papers focus on perfect-information settings (i.e., all parties can observe the levels
of investment), and they do not explore mechanism design.

35The first inequality holds with equality for firm 4, and it holds with equality for firm j for
s € (0,s7(p;)]-

36The definition is precise if z —p = 0. For £ — p > 0, the infimum is attained at some

p’ € P;\{0}, so infpe(0,5,] UHwk%prrpl) = minycjoz,] UHwk(pI,;erp,).
3TA firm will choose z > 0 in equilibrium only if it will win with positive probability. By
Corollary 1, no firm wins with positive probability when offering s < 0.

3Note that Gy(s3) = 1, by the definition of 5*, and GY(s3) = 1, by the definition of 3.
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