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Introduction
This paper presents a new numerical method for solving dynamic stochastic general equilibrium (DSGE)

models with dynamic portfolio choice over many financial assets. The method can be applied to models where

there are heterogeneous agents, time-varying investment opportunity sets, and incomplete asset markets. As

such, our method can be used to solve models that analyze an array of important issues in international

macroeconomics and finance. For example, questions concerning the role of revaluation effects in the process

of external adjustment cannot be fully addressed without a model that incorporates the dynamic portfolio

choices of home and foreign agents across multiple financial assets. Similarly, any theoretical assessment of

the implications of greater international financial integration requires a model in which improved access to an

array of financial markets has real effects; through capital deepening and/or improved risk sharing (because

markets are incomplete). Indeed, there is an emerging consensus among researchers that the class of DSGE

models in current use needs to be extended to include dynamic portfolio choice and incomplete markets (see,

for example, Obstfeld 2004, and Gourinchas 2006). This paper shows how an accurate approximation to the

equilibrium in such models can be derived.

We illustrate the use of our solution method by solving two versions of a canonical two-country DSGE

model. The full version of the model includes production, traded and nontraded goods, and an array of

equity and bond markets. Households choose between multiple assets as part of their optimal consumption

and saving decisions, but only have access to a subset of the world’s financial markets. As a result, there is

both dynamic portfolio choice and incomplete risk-sharing in the equilibrium. We also study the equilibrium

in a simplified version of the model without nontraded goods. Here households still face a dynamic portfolio

choice problem but the available array of financial assets is sufficient for complete risk-sharing. We use the

two versions of our model to illustrate how well our solution method works in complete and incomplete

market settings. In particular, we present several tests to show that our approximations to both sets of

equilibrium dynamics are very accurate.

The presence of portfolio choice and incomplete markets in a DSGE model gives rise to a number of

problems that must be addressed by any solution method. First, and foremost, the method must address

the complex interactions between the real and financial sides of the economy. One the one hand, portfolio

decisions affect the degree of risk-sharing which in turn affects equilibrium real allocations. On the other,

real allocations affect the behavior of returns via their implications for market-clearing prices, which in turn

affect portfolio choices. Second, we need to track the distribution of households’ financial wealth in order to

account for the wealth effects that arise when risk-sharing is incomplete. This adds to the number of state

variables needed to characterize the equilibrium dynamics of the economy and hence increases the complexity

of finding the equilibrium. Third, it is well-known that transitory shocks can have very persistent effects on

the distribution of financial wealth when markets are incomplete. The presence of such persistence should

not impair the accuracy of the proposed approximation to the model’s equilibrium. Our solution method

addresses all these problems.

The method we propose combines a perturbation technique commonly used in solving macro models

with continuous-time approximations common in solving finance models of portfolio choice. In so doing, we
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contribute to the literature along several dimensions. First, relative to the finance literature, our method

delivers optimal portfolios in a discrete-time general equilibrium setting in which returns are endogenously

determined. It also enables us to characterize the dynamics of returns and the stochastic investment oppor-

tunity set as functions of macroeconomic state variables.2 Second, relative to the macroeconomics literature,

portfolio decisions are derived without assuming complete asset markets or constant returns to scale in

production.3

Recent papers by Devereux and Sutherland (2006a,b) and Tille and van Wincoop (2006) have proposed

an alternative method for solving DSGE models with portfolio choice and incomplete markets.4 Two key

features differentiate their approach from the one we propose. First, their method requires at least third-order

approximations to some of the model’s equilibrium conditions in order to identify variations in the portfolio

holdings. By contrast, we are able to accurately characterize optimal portfolio holdings from second-order

approximations of the equilibrium conditions. This difference is important when it comes to solving models

with a large state space (i.e. a large number of state variables). We have applied our method to models with

8 state variables and 10 decision variables (see Evans and Hnatkovska 2006). Second, we characterize the

consumption and portfolio problem facing households using the approximations developed by John Campbell

and his co-authors over the past decade. These approximations differ from those commonly used in solving

DSGE models without portfolio choice, but they have proved very useful in characterizing intertemporal

financial decision-making (see, for example, Campbell and Viceira, 2002). In particular, they provide simple

closed-form expressions for portfolio holdings that are useful in identifying the role of different economic

factors. In this sense, our approach can be viewed as an extension of the existing literature on dynamic

portfolio choice to a general equilibrium setting.

The paper is structured as follows. Section 1 presents the model we use to illustrate our solution method.

Section 2 describes the solution method in detail. Section 3 provides a step-by-step description of how the

method is applied to our illustrative model. We present results on the accuracy of the solutions to both

versions of our model in Section 4. Section 5 concludes.

1 The Model

This section describes the discrete-time DSGE model we employ to illustrate our solution method. Our

starting point is a standard international asset pricing model with production, which we extend to incorporate

dynamic portfolio choice over equities and an international bond. A frictionless production world economy in

2A number of approximate solution methods have been developed in partial equilibrium frameworks. Kogan and Uppal
(2000) approximate portfolio and consumption allocations around the solution for a log-investor. Barberis (2000), Brennan,
Schwartz, and Lagnado (1997) use discrete-state approximations. Brandt, Goyal, and Santa-Clara (2001) solve for portfolio
policies by applying dynamic programming to an approximated simulated model. Brandt and Santa-Clara (2004) expand the
asset space to include asset portfolios and then solve for the optimal portfolio choice in the resulting static model.

3Solutions to portfolio problems with complete markets are developed in Heathcote and Perri (2004), Serrat (2001), Kollmann
(2005), Baxter, Jermann and King (1998), Uppal (1993), Engel and Matsumoto (2004). Pesenti and van Wincoop (1996) analyze
equilibrium portfolios in a partial equilibrium setting with incomplete markets.

4Ghironi, Lee and Rebucci (2007) also develop and analyze a model with portfolio choice and incomplete asset markets. To
compute the steady state asset allocations they introduce financial transaction fees. In our frictionless model portfolio holdings
are derived endogenously using the conditional distributions of asset returns.
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this model consists of two symmetric countries, called Home (h) and Foreign (f). Each country is populated

by a continuum of identical households who consume and invest in different assets, and a continuum of

firms that are split between the traded and nontraded goods’ sectors. Firms are infinitely-lived, perfectly

competitive, and issue equity claims to their dividend streams.

1.1 Firms

We shall refer to firms in the traded and nontraded sectors as “traded” and “nontraded”. A representative

traded firm in country h starts period t with a stock of firm-specific capital Kt. Period-t production is

Yt = Z
t
tK

θ
t with θ > 0, and Ztt denotes the current state of productivity. The output produced by traded

firms in country f, Ŷt, is given by an identical production function using firm-specific foreign capital, K̂t,

and productivity, Ẑtt . (Hereafter we use “
ˆ” to denote foreign variables.) The goods produced by h and f

traded firms are identical and can be costlessly transported between countries. Under these conditions, the

law of one price prevails in the traded sector to eliminate arbitrage opportunities.

At the beginning of period t, each traded firm observes the productivity realization, produces output,

and uses the proceeds to finance investment and to pay dividends to its shareholders. We assume that

firms allocate output to maximize the value of the firm to its domestic shareholders every period. If the

total number of outstanding shares is normalized to unity, the optimization problem facing a traded firm in

country h can be summarized as

max
It
Et
∞X
i=0

Mt+i,t D
t
t+i, (1)

subject to
Kt+1 = (1− δ)Kt + It, (2)

Dt
t = ZttK

θ
t − It, (3)

where Dt
t is the dividend per share paid at t, It is real investment and δ > 0 is the depreciation rate on

physical capital. Et denotes expectations conditioned on information at the start of period t. Mt+i,t is the

intertemporal marginal rate of substitution (IMRS) between consumption of tradables in period t and period

t+ i of domestic households, and Mt,t = 1.
5 The representative traded firm in country f solves an analogous

problem: It chooses investment, Ît, to maximize the present discounted value of foreign dividends per share,

D̂t
t , using M̂t+i,t, the IMRS of f households.

The output of nontraded firms in countries h and f is given by Y nt = ηZnt and Ŷ
n
t = ηẐnt respectively,

where η > 0 is a constant. Nontraded firms have no investment decisions to make; they simply pass on sales

revenue as dividends to their shareholders. Znt and Ẑ
n
t denote the period-t state of nontradable productivity

in countries h and f, respectively.

5Although our specification in (1) is straightforward, we note that it can potentially induce home bias in households’ traded
equity holdings when markets are incomplete. If the array of assets available to households is insufficient for complete risk-
sharing (as will be the case in one of the equilibria we study), the IMRS for h and f households will differ. Under these
circumstances, households will prefer the dividend stream chosen by domestic traded firms.
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Let zt ≡ [lnZtt , ln Ẑ
t
t , lnZ

n
t , ln Ẑ

n
t ]
0 denote the state of productivity in period t. We assume that the

productivity vector, zt, follows an AR(1) process:

zt = azt−1 + S
1/2

e et, (4)

where a is a 4× 4 matrix and et is a 4× 1 vector of i.i.d. mean zero, unit variance shocks. S1/2e is a 4× 4
matrix of scaling parameters.

1.2 Households

Each country is populated by a continuum of households who have identical preferences over the consumption

of traded and nontraded goods. The preferences of a representative household in country h are given by

Et
∞X
i=0

βiU(Ctt+i, C
n
t+i), (5)

where 0 < β < 1 is the discount factor, and U(.) is a concave sub-utility function defined over the consumption

of traded and nontraded goods, Ctt and C
n
t :

U(Ct, Cn) =
1

φ
ln
h
λ1−φt (Ct)

φ
+ λ1−φn (Cn)

φ
i
,

with φ < 1. λt and λn are the weights that the household assigns to traded and nontraded consumption,

respectively. The elasticity of substitution between the two goods is (1−φ)−1 > 0. Preferences for households
in country f are identically defined in terms of foreign traded and nontraded consumption, Ĉtt and Ĉ

n
t . Notice

that preferences are not separable across the two goods.

Households can save by holding domestic equities (i.e., traded and nontraded), an international bond, and

the equity issued by foreign traded firms. They cannot hold equity issued by foreign nontraded firms. This

restriction makes markets incomplete. Let Ct ≡ Ctt + QntCnt denote total consumption expenditure, where
Qnt is the relative price of h nontraded in terms of traded goods (our numeraire). The budget constraint of

the representative h household can now be written as

Wt+1 = R
w
t+1(Wt − Ct), (6)

where Wt is financial wealth and R
w
t+1 is the (gross) return on wealth between period t and t + 1. This

return depends on how the household allocates wealth across the available array of financial assets, and on

the realized returns on those assets. In particular,

Rwt+1 ≡ Rt + αht (R
h
t+1 −Rt) + αft (R

f
t+1 −Rt) + αnt (R

n
t+1 −Rt), (7)

where αit and αnt respectively denote the shares of wealth allocated in period t by h households into equity

issued by i = {h, f} traded firms and h nontraded firms. Rt is the risk-free return on bonds, Rht+1 and Rft+1
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are the returns on equity issued by the h and f traded firms, and Rnt+1 is the return on equity issued by h

nontraded firms. These returns are defined as

Rht+1 ≡ (P tt+1 +D
t
t+1)/P

t
t , Rft+1 ≡ (P̂ tt+1 + D̂t

t+1)/P̂
t
t , (8a)

Rnt+1 ≡ {(P nt+1 +Dn
t+1)/P

n
t }{Qnt+1/Qnt }, (8b)

where P tt and P
n
t are period-t prices of equity issued by traded and nontraded firms in country h and D

n
t is

the period-t flow of dividends from h nontraded firms. P nt and D
n
t are measured in terms of nontradables.

The three portfolio shares {αht ,αft ,αnt } are related to the corresponding portfolio holdings {Aht , Aft , Ant } by
the identities: P tt A

h
t ≡ αht (Wt − Ct), P̂ tt Aft ≡ αft(Wt − Ct) and QntP nt Ant ≡ αnt (Wt − Ct).

The budget constraint for f households is similarly defined as

Ŵt+1 = R̂
w
t+1(Ŵt − Ĉt),

with Ĉt ≡ Ĉtt + Q̂nt Ĉnt and

R̂wt+1 = Rt + α̂ht (R
h
t+1 −Rt) + α̂ft (R

f
t+1 −Rt) + α̂nt (R̂

n
t+1 −Rt),

where α̂ht , α̂
f
t and α̂nt denote the shares of wealth allocated by f households into h and f country traded

equities, and f nontraded equity, respectively.

Households in country h choose how much to consume of traded and nontraded goods, and how to

allocate their portfolio between equities and the international bond to maximize expected utility (5) subject

to (6) and (7), given current equity and goods prices, and the return on bonds. The optimization problem

facing f households is analogous.

1.3 Equilibrium

We now summarize the conditions that characterize the equilibrium in our model. The first-order conditions

for the representative h household’s problem are

Qnt =
∂U/∂Cnt
∂U/∂Ctt

, (9a)

1 = Et [Mt+1Rt] , (9b)

1 = Et
£
Mt+1R

h
t+1

¤
, (9c)

1 = Et
£
Mt+1R

f
t+1

¤
, (9d)

1 = Et
£
Mt+1R

n
t+1

¤
, (9e)
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where Mt+1 ≡ Mt+1,t = β
¡
∂U/∂Ctt+1

¢
/ (∂U/∂Ctt ) is the IMRS between traded consumption in period t

and period t+ 1. The first-order condition associated with the h traded firm’s optimization problem is

1 = Et
£
Mt+1R

k
t+1

¤
, (10)

where Rkt+1 ≡ θZtt+1 (Kt+1)
θ−1 + (1 − δ) is the return on capital. This condition determines the optimal

investment of h traded firms and thus implicitly identifies the level of traded dividends in period t, Dt
t ,

via equation (3). The first-order conditions for households and traded firms in country f take an analogous

form.

Solving for the equilibrium in this economy requires finding equity prices {P tt , P̂ tt , P nt , P̂ nt }, the risk-free
return Rt, and goods prices {Qnt , Q̂nt }, such that markets clear when households follow optimal consumption,
savings and portfolio strategies, and firms make optimal investment decisions. Under the assumption that

bonds are in zero net supply, market clearing in the bond market requires

0 = Bt + B̂t. (11)

The traded goods market clears globally. In particular, since h and f traded firms produce a single good

that can be costlessly transported between countries, the traded goods market clearing condition is

Ctt + Ĉ
t
t = Y

t
t − It + Ŷ tt − Ît = Dt

t + D̂
t
t . (12)

Market clearing in the nontraded sector of each country requires that

Cnt = Y
n
t = D

n
t and Ĉnt = Ŷ

n
t = D̂

n
t . (13)

Since the equity liabilities of all firms are normalized to unity, the market clearing conditions in the h and

f traded equity markets are

1 = Aht + Â
h
t and 1 = Aft + Â

f
t . (14)

Recall that nontraded equity can only be held by domestic households. Market clearing in these equity

markets therefore requires that

1 = Ant and 1 = Ânt . (15)

2 The Solution Method

In this section we discuss the solution to the nonlinear system of stochastic difference equations characterizing

the equilibrium of our DSGE model. First, we outline why standard approximation methods (e.g., projections

or perturbations) are inapplicable for solving DSGE models with incomplete markets and portfolio choice.
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We then provide an overview of our solution method and discuss how it relates to other methods in the

literature.

2.1 Market Incompleteness and Portfolio Choice

The model in Section 1 is hard to solve because it combines dynamic portfolio choice with market incom-

pleteness. In our model, markets are incomplete because households do not have access to the complete

array of financial assets in the world economy. In particular, households cannot hold the equities issued

by foreign nontraded firms. If we lifted this restriction, households would be able to completely share risks

internationally (i.e., the h and f IMRS would be equal). In this special case, the problem of finding the

equilibrium could be split into two sub-problems: First, we could use the risk-sharing conditions to find the

real allocations as the solution to a social planning problem. Second, we could solve for the equilibrium

prices and portfolio choices that support these allocations in a decentralized market setting. Examples of

this approach include Obstfeld and Rogoff (1996, p. 302), Baxter, Jerman and King (1998), Engel and

Matsumoto (2004), and Kollmann (2006).

When markets are incomplete there are complex interactions between the real and financial sides of the

economy; interactions that cannot be accommodated by existing solution methods if there are many financial

assets. On the one hand, household portfolio decisions determine the degree of international risk-sharing,

which in turn affects equilibrium real allocations. On the other, market-clearing prices affect the behavior of

equilibrium returns, which in turn influence portfolio choices. We account for this interaction between the real

and financial sides of the economy in our solution method by tracking the behavior of financial wealth across

all households. More specifically, we track how shocks to the world economy affect the distribution of wealth

given optimal portfolio choices (because risk-sharing is incomplete), and how changes in the distribution of

wealth affect market-clearing prices. We also track how these distributional effects on prices affect returns

and hence the portfolio choices of households.

In order to track the behavior of the world’s wealth distribution, we must include the wealth of each

household in the state vector; the vector of variables needed to described the complete state of the economy

at a point in time. This leads to two technical problems. First, the numerical complexity in solving for

an equilibrium in any model increases sharply with the number of variables in the state vector. The state

vector for the simple model in Section 1 has 8 variables, but this is too many to apply a solution method

based on a discretization of the state space (see, for example, chapter 12 of Judd 1998). We must therefore

use projection and/or perturbation methods to solve the model. The second problem relates to the long-run

distribution of wealth. In our model, and many others with incomplete markets (see, for example, Obstfeld

and Rogoff 1995, Baxter and Crucini 1995, Correia, Neves, and Rebelo 1995), shocks that have no long run

effect on real variables have very persistent effects on the wealth of individual households. Our solution

method aims to characterize the equilibrium behavior of the economy in a neighborhood around a particular

initial wealth distribution. The advantage of this approach is that it does not require an assumption about

how the international distribution of wealth is affected by such shocks in the long run. The disadvantage is

that our characterization of the equilibrium dynamics will only be accurate while wealth remains close to
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the initial distribution. This does not appear to be an important limitation in practice. In Section 4 we

show that our solution remains very accurate in simulations of 75 years of quarterly data.

The presence of portfolio choice also introduces technical problems. Perturbation solution methods use

n’th-order Taylor approximations to the optimality and market-clearing conditions around the unique non-

stochastic steady state of the economy. This approach is inapplicable to the household’s portfolio choice

problem because there is no unique steady state portfolio allocation: There is no risk in the non-stochastic

steady state, so all assets have exactly the same (riskless) return. To address this problem, we use a projection

method of approximation that does not require the existence of a unique portfolio allocation in the non-

stochastic steady state, but instead solves for it endogenously. Our method only requires us to pin down the

initial net foreign asset positions. This is derived from our assumption about the initial wealth distribution.

The main methodological innovation in our solution method relates to the behavior of financial returns.

Optimal portfolio choices in each period are determined by the conditional distribution of returns. In a partial

equilibrium model the distribution of returns is exogenous, but in our general equilibrium setting we must

derive the conditional distribution from the properties of the equilibrium asset prices and dividends. Our

method does just this. We track how the conditional distribution of equilibrium returns changes with the state

of the economy. This aspect of our method highlights an important implication of market incompleteness for

portfolio choice. When risk-sharing is incomplete, the distributional effects of shocks on equilibrium asset

prices can induce variations in the conditional distribution of returns even when the underlying shocks come

from an i.i.d. distribution. Thus, our solution method allows us to examine how time-variation in portfolio

choices and risk premia can arise endogenously when markets are incomplete.

2.2 An Overview

Let us provide an overview of our solution method. The set of equations characterizing the equilibrium of a

DSGE model with portfolio choice and incomplete markets can conveniently be written in a general form as

0 = Etf
³
Yt+1, Yt,Xt+1,Xt,S1/2

(Xt) εt+1

´
, (16)

Xt+1 = H
³
Xt,S1/2

(Xt) εt+1

´
,

where f(.) is a known function. Xt is a vector of state variables and Yt is a vector of non-predetermined

variables. In our model, Xt contains the state of productivity, the capital stocks and households’ wealth,

while Yt includes consumption, dividends, asset allocations, prices and the risk-free rate. The function H (., .)
determines how past states affect the current state. εt is a vector of i.i.d. mean zero, unit variance shocks.

In our model, εt contains the four productivity shocks. S1/2

(Xt) is a state-dependent scaling matrix. The

vector of shocks driving the equilibrium dynamics of the model is Ut+1 ≡ S1/2

(Xt) εt+1. This vector includes

exogenous shocks, like the productivity shocks, and innovations to endogenous variables, like the shocks to

households’ wealth. These shocks have a conditional mean of zero and a conditional covariance equal to
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S (Xt) , a function of the current state vector Xt:

E (Ut+1|Xt) = 0, (17)

E
¡
Ut+1U

0
t+1|Xt

¢
= S1/2

(Xt)S1/2

(Xt)
0 = S (Xt) .

An important aspect of our formulation is that it explicitly allows for the possibility that shocks driving

the equilibrium dynamics are conditionally heteroskedastic. By contrast, standard perturbation methods

assume that Ut+1 follows an i.i.d. process, in which case S (Xt) would be a constant matrix.
Given our formulation in (16) and (17), a solution to the model is characterized by a decision rule for

the non-predetermined variables

Yt = G (Xt,S (Xt)) , (18)

that satisfies the equilibrium conditions in (16):

0 = Etf
³
G
³
H
³
Xt,S1/2

(Xt) εt+1

´
,S
³
H
³
Xt,S1/2

(Xt) εt+1

´´´
,

G (Xt,S (Xt)) ,H
³
Xt,S1/2

(Xt) εt+1

´
,Xt,S1/2

(Xt) εt+1

´
.

Or, in a more compact notation,

0 = F(Xt).

The first step in our method follows the perturbation procedure by approximating the policy functions

as

bG =X
i
ψiϕi (Xt) , bH =

X
i
δiϕi (Xt) , and, bS =X

i
siϕi (Xt) ,

for some unknown coefficient sequences {ψi}, {δi}, and {si}. ϕi (Xt) are ordinary polynomials in Xt. Next
we approximate the function f(.), as bf(.). The equations associated with the real side of the economy are
approximated using Taylor series expansions, while those pertinent to the portfolio side are approximated

using the continuous-time expansions of Campbell, Chan and Viceira (2003). We denote the derivatives in

these expansions as {ςi}.
Substituting bG, bH, and bS into bf and taking expectations gives us an approximation for F :

bF ³Xt; bG, bH, bS, ς,ψ, δ, s´ =X
i
ζiϕi (Xt) ,

where {ζi} are functions of {ςi}, {ψi}, {δi}, and {si}. bF is our residual function. To solve the model, we

find the coefficient vectors ς,ψ, δ, and s that set the residual function equal to zero.6

6This step is reminiscent of the projection method introduced in Economics by Judd (1992). In its general formulation, the
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The main feature of our method that distinguishes it from a standard perturbation approach is the

introduction of the function S (Xt) , which identifies the covariance matrix of the shocks driving the state
vector. We need to accommodate conditional heteroskedasticity here because it can arise in models that

incorporate portfolio choice with incomplete markets. This is true even when the exogenous shocks to the

economy are homoskedastic. As we noted above, we need to track the distribution of wealth when markets

are incomplete, so Xt must include the wealth of individual households. Now if the conditional distribution

of equilibrium returns is time-varying, optimally chosen portfolio shares will also be time-varying as Xt

changes. This means that the susceptibility of wealth to period-(t + 1) shocks will generally vary with Xt

as households change the composition of their period-t portfolios. In sum, the S (Xt) function is necessary
to accommodate the general equilibrium implications of time-varying portfolio choice when markets are

incomplete. The S (Xt) function also allows us to identify the conditional second moments of all the variables
in the economy for each value of the state vector Xt. This facilitates finding the equilibrium risk premia and

optimal portfolio shares as functions of Xt.

2.3 Related Methods

Our solution method is most closely related to Campbell, Chan and Viceira (2003) (CCV). They developed

an approximation for returns on household’s wealth which preserves the multiplicative nature of portfolio

weighting. Their expression for returns holds exactly in continuous time when asset prices follow diffusions

and remains very accurate in discrete time for short time intervals. CCV apply this approximation method

to study dynamic portfolio choice in a partial equilibrium setting where returns follow an exogenous process.

Our solution method can be viewed as an extension of CCV to DSGE models.

Our approach also builds on the perturbation methods developed and applied in Judd and Guu (1993,

1997), Judd (1998), and further discussed in Collard and Juillard (2001), Jin and Judd (2002), Schmitt-

Grohe and Uribe (2004) among others. These methods extend solution techniques relying on linearizations

by allowing for second- and higher-order terms in the approximation of the policy functions. Applications

of the perturbation technique to the models with portfolio choice have been developed in Devereux and

Sutherland (2006a,b) and Tille and van Wincoop (2007). Both approaches are based on Taylor series

approximations. Devereux and Sutherland (2006a) use second-order approximations to the portfolio choice

conditions and first-order approximations to the other optimality conditions in order to calculate the steady

state portfolio allocations in a DSGE model. Equilibrium conditions are approximated around the unknown

portfolio, which is then derived endogenously as the one consistent with the approximations. Our method

also produces constant portfolio shares in the case where equilibrium returns are i.i.d. because S (Xt) is a
constant matrix.

To study time-variation in portfolio choice, Devereux and Sutherland (2006b) and Tille and van Wincoop

(2007) use a method that incorporates third-order approximations of portfolio equations and second-order

technique consists of choosing basis functions over the space of continuous functions and using them to approximate G(Xt,σ)
and H(Xt,σεt+1). In most applications, families of orthogonal polynomials, like Chebyshev’s polynomials, are used to form
ϕi (Xt,σ) . Given the chosen order of approximation, the problem of solving the model translates into finding the coefficient
vectors ψ and δ that minimize a residual function.
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approximations to the rest of the model’s equilibrium conditions. This approach delivers a first-order ap-

proximation for optimal portfolio holdings that vary with the state of the economy. By contrast, we are able

to derive second-order approximations to portfolio holdings from a set of second-order approximations to the

equilibrium conditions of the model and covariance matrix S (Xt). Thus, we avoid the numerical complex-
ity of computing at least third-order approximations in order to study the portfolio-choice dynamics. This

aspect of our method will be important in models with larger number of state variables and where agents

choose between many assets. The model in Section 1 has 8 state variables and five assets, but was solved

without much computational difficulty. We view this as an important practical advantage of our method

that will make it particularly useful for solving international DSGE models. By their very nature, even a

minimally specified two-country DSGE model will have many state variables and several assets.

3 Implementing the Method

We now provide a detailed, step-by-step description of how the model in Section 1 is solved. We proceed in

four steps: In Step 1 we write the system of nonlinear stochastic difference equations summarized in Section

1.3 in log-approximate form. In Step 2 we conjecture the time-series process describing the equilibrium

dynamics of the state variables, prices and the risk-free rate. In Step 3 we use the conjecture from Step 2 to

characterize the optimal decisions of firms and households. Step 4 combines the aggregate implications of

the firms’ and households’ decisions with the requirements of market clearing to determine the properties of

equilibrium prices and returns. We then check that these properties match the conjecture made in Step 2.

Step 1: Log-Approximations

Here we derive the log-approximations to the equations arising from the households’ and firms’ first-order

conditions, budget constraints and market clearing conditions. These approximations are quite standard

in both Macro and Finance aside from the point of approximation. Let xt denote the state vector, where

xt ≡ [zt, kt, k̂t, wt, ŵt]0, kt ≡ ln (Kt/K), k̂t ≡ ln(K̂t/K), wt ≡ ln(Wt/W0) and ŵt ≡ ln(Ŵt/Ŵ0) with K and

K̂ as the steady state capital stocks (steady state values have no t subscript). W0 and Ŵ0 are the initial

levels of h and f households’ wealth. Hereafter, lowercase letters denote the log transformations for all other

variables in deviations from their steady state or initial levels (e.g., rt ≡ lnRt − lnR, ptt ≡ lnP tt − lnP t,
etc.). Appendix A.1 summarizes the approximation point of our economy and lists all equations used in the

model’s solution. We focus below on the behavior of households and firms in country h; the behavior in

country f is characterized in an analogous manner.

Following CCV we use a first-order log-approximation to the budget constraint of the representative h

household:

∆wt+1 = ln (1− Ct/Wt) + lnR
w
t+1,

= − µ
1−µ (ct − wt) + rwt+1, (19)

11



where µ is the steady state consumption expenditure to wealth ratio. In our model, households have log

preferences, so the optimal consumption expenditure is a constant fraction of wealth, Ct ≡ Ctt + QntCnt =
(1 − β)Wt. Thus, in this case ct − wt = 0. rwt+1 is the log return on optimally invested wealth which CCV
approximate as

rwt+1 = rt +α0tert+1 +
1
2α

0
t (diag (Vt(ert+1))− Vt(ert+1)αt) , (20)

where α0t ≡ [ αht αft αnt ] is the vector of portfolio shares, er
0
t+1 ≡ [ rht+1 − rt rft+1 − rt rnt+1 − rt ] is a

vector of excess log equity returns, and Vt(.) is the variance conditioned on period-t information. Importantly,
we can say something about the accuracy of this approximation. In particular, CCV show that the ap-

proximation error associated with the expression in (20) disappears in the limit where asset prices follow

continuous—time diffusion processes.

Next, we turn to the first-order conditions in (9). Using standard log-normal approximations, we obtain

Et
£
rκt+1

¤− rt + 1
2Vt

¡
rκt+1

¢
= −CVt

¡
mt+1, r

κ
t+1

¢
, (21a)

rt = −Et [mt+1]− 1
2Vt(mt+1), (21b)

where rκt+1 is the log return for equity κ = {h, f, n} , and mt+1 ≡ lnMt+1− lnM is the log IMRS. CVt (., .)
denotes the covariance conditioned on period-t information. With log utility the IMRS of h households,

Mt+1, is equal to βWt/Wt+1, so mt+1 = −∆wt+1. After substituting for log wealth from (19) and (20),

equation (21a) can be rewritten in vector form as

Et [ert+1] = Vt(ert+1)αt − 1
2diag (Vt(ert+1)) . (22)

This equation implicitly identifies the optimal choice of the h household’s portfolio shares, αt. Notice that

this approximation does not require an assumption about the portfolio shares chosen in the steady state.

We will determine those endogenously below. Combining (22) with (19) and (20) gives us a log-approximate

version of the h household’s budget constraint:

∆wt+1 = − µ
1−µ (ct − wt) + rt + 1

2α
0
tVt(ert+1)αt +α0t (ert+1 − Etert+1) . (23)

This equation shows that the growth in household’s wealth between t and t+1 depends upon the consump-

tion/wealth ratio in period t (zero in the case of log utility), the period-t risk free rate, rt, portfolio shares,

αt, the variance-covariance matrix of excess returns, Vt(ert+1), and the unexpected return on assets held
between t and t+ 1, α0t (ert+1 − Etert+1) . The first three terms on the right comprise the expected growth
rate of wealth under the optimal portfolio strategy.

The remaining equations characterizing the model’s equilibrium are approximated in a standard way.

The consumption of traded and nontraded goods is pinned down by combining (9a) with Ctt + Q
n
tC

n
t =

(1−β)Wt to give Q
n
tC

n
t = (1−β)[1+ϑ(Qnt )]

−1Wt and C
t
t = (1− β)ϑ(Qnt )[1+ϑ(Qnt )]

−1Wt, where ϑ(Q
n
t ) ≡

12



(λt/λn) (Q
n
t )
φ/(1−φ). Log-linearizing these expressions around the initial value of Wt and Q

n
t gives

ctt = wt +
φ

(1+ϑ)(1−φ)q
n
t , and cnt = wt − 1−φ+ϑ

(1+ϑ)(1−φ)q
n
t , (24)

with ϑ denoting the initial value of ϑ(Qnt ).

Optimal investment by h firms requires that

Etrkt+1 − rt + 1
2Vt

¡
rkt+1

¢
= CVt

¡
rkt+1,∆wt+1

¢
, (25)

where rkt+1 is the log return on capital approximated by

rkt+1 = ψztt+1 − (1− θ)ψkt+1, (26)

with ψ ≡ 1− β(1− δ) < 1. The dynamics of the h capital stock are approximated by

kt+1 =
1
βkt +

ψ
βθ z

t
t − ϕ

θβd
t
t , (27)

where ϕ = ψ − δθβ > 0.

We follow Campbell and Shiller (1988) in relating the log returns on equity to the log dividends and the

log prices of equity:

rht+1 = ρhptt+1 + (1− ρh)dtt+1 − ptt , (28a)

rft+1 = ρfp̂tt+1 + (1− ρf)d̂tt+1 − p̂tt , (28b)

rnt+1 = ρnpnt+1 + (1− ρn)dnt+1 − pnt , (28c)

where ρκ is the reciprocal of one plus the dividend-to-price ratio. In the non-stochastic steady state, ρκ = β

for κ = {h, f, n}.Making this substitution, iterating forward, taking conditional expectations, and imposing
limj→∞ Etβjptt+j = 0, we can derive the h traded equity price as

ptt =
∞X
i=0

βi
©
(1− β)Etdtt+1+i − Etrht+1+i

ª
. (29)

Analogous expressions describe the log prices of f traded equity and nontraded equities.7

Finally, the market clearing conditions are approximated as follows. Market clearing in the goods’ markets

requires Dn
t = ηZnt , D̂

n
t = ηẐnt and D

t
t + D̂

t
t = C

t
t + Ĉ

t
t . The first two conditions can be imposed without

approximation as dnt = z
n
t and d̂

n
t = ẑ

n
t .We rewrite the condition for traded goods as d

t
t +ln(1+exp(d̂

t
t −dtt )

= ctt + ln(1+ exp(ĉ
t
t − ctt )) and take second-order approximations around the initial values for consumption

7We confirm that the no-bubbles conditions are satisfied in our model.
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and steady state values for dividends:

(dtt + d̂
t
t ) +

1
4(d

t
t − d̂tt )2 = (ctt + ĉtt ) + 1

4 (c
t
t − ĉtt )2. (30)

Market clearing in traded equity requires Aht + Â
h
t = 1 and Aft + Â

f
t = 1. Combining these conditions

with the definitions for portfolio shares and the fact that the consumption-wealth ratio for all households is

equal to 1−β, we obtain exp(ptt −wt)/β = αht + α̂ht exp(ŵt−wt) and exp(p̂tt − ŵt)/β = α̂ft +αft exp(wt− ŵt).
We approximate the left-hand side of these expressions around the steady state values for P tt /Wtβ and

P̂ tt /Ŵtβ and their right-hand side around the initial wealth ratio Ŵ0/W0, which we take to equal one. In

this model, it is straightforward to show that the steady state values P t/Wβ = [(1− β)/β] (P t/Dt) and

P̂ t/Ŵβ = [(1− β)/β] (P̂ t/D̂t) equal 1/2, so a second-order approximation to both sides of the market

clearing conditions gives

αh
£
1 + ptt − wt + 1

2(p
t
t − wt)2

¤
= αht + α̂ht

³
1 + ŵt − wt + 1

2 (ŵt − wt)2
´
, (31a)

αf
£
1 + p̂tt − ŵt + 1

2(p̂
t
t − ŵt)2

¤
= α̂ft + αft

³
1 + wt − ŵt + 1

2 (wt − ŵt)2
´
, (31b)

where αh is the initial value of αht + α̂ht , and αf is the initial value of α̂ft +αft . These values are pinned down

by the steady state share of traded consumption in the total consumption expenditure. When the traded

and nontraded sectors are of equal size, as in our model, αh = αf = 1/2. Market clearing in the nontraded

equity (15) requires αnt = exp(q
n
t + p

n
t − wt)/β and α̂nt = exp(q̂

n
t + p̂

n
t − ŵt)/β. Using the same approach we

obtain

αnt = αn
¡
1 + qnt + p

n
t − wt + 1

2(q
n
t + p

n
t − wt)2

¢
, (32a)

α̂nt = α̂n
¡
1 + q̂nt + p̂

n
t − ŵt + 1

2(q̂
n
t + p̂

n
t − ŵt)2

¢
, (32b)

where αn and α̂n are the initial values of αnt and α̂nt ; α
n = α̂n = 1/2. All that now remains is the bond

market clearing condition: Bt + B̂t = 0. Walras Law implies that this restriction is redundant given the

other market clearing conditions and budget constraints.

Step 2: State Variable Dynamics

The key step in our solution procedure is deriving a general yet tractable set of equations that describe the

equilibrium dynamics of the state variables. We conjecture that the l× 1 vector of state variables xt follows

xt+1 = Φ0 + (I − Φ1)xt +Φ2x̃t + ut+1, (33)

where x̃t ≡ vec(xtx0t), Φ0 is the l× 1 vector of constants, Φ1 is the l× l matrix of autoregressive coefficients
and Φ2 is the l × l2 matrix of coefficients on the second-order terms. ut+1 is a vector of innovations with a
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zero conditional mean, and a conditional covariance that is a function of Xt :

E (ut+1|xt) = 0,

E
¡
ut+1u

0
t+1|xt

¢
= Ω(Xt) = Ω0 +Ω1xtx

0
tΩ

0
1. (34)

This conjecture has two notable features: First, it introduces nonlinearity in the process for xt+1 by

allowing its squares and cross-products in period t to enter the law of motion via Φ2 matrix. Second, the

variance-covariance matrix of xt+1 depends on xt. As we noted above, this conditional heteroskedasticity

arises even though the productivity process is homoskedastic because xt contains wt and ŵt, and log wealth

is endogenously heteroskedastic when asset markets are incomplete.

The period-t information set of our economy consists of xt and x̃t, which we conveniently combine in

the extended state vector Xt = [ 1 x0t x̃0t ]
0 with L = 1 + l + l2 elements. Our solution method requires

that we characterize the dynamics of Xt. In particular, we need to find an equation for the dynamics of x̃t

consistent with (33) and (34). For this purpose, we first write the vectorized conditional variance of ut as

vec (Ω(Xt)) =
h
Σ0 0 Σ1

i
1

xt

x̃t

 = ΣXt. (35)

Next, we consider the continuous time analogue to (33) and derive the dynamics of x̃t+1 via Ito’s lemma.

Appendix A.2 shows that the resulting process can be approximated in discrete time by

x̃t+1 =
1
2DΣ0 + (Φ0 ⊗ I)+ (I ⊗ Φ0)xt +

¡
I− (Φ1 ⊗ I)− (I ⊗ Φ1)+1

2DΣ1
¢
x̃t + ũt+1 (36)

where

ũt+1 = [(I ⊗ xt) + (xt ⊗ I)]ut+1,

D =

·
U
µ
∂x

∂x0
⊗ I

¶
+

µ
∂x

∂x0
⊗ I

¶¸
, and U =

X
r

X
s

Ers ⊗E0r,s.

Er,s is the elementary matrix which has a unity at the (r, s)
th position and zero elsewhere. Equation (36)

approximates the dynamics of x̃t+1 because it ignores the role played by cubic and higher order terms

involving the elements of xt. In this sense, (36) represents a second—order approximation to the dynamics

of the second—order terms in the state vector. Notice that the variance of ut+1 affects the dynamics of x̃t+1

via the D matrix and that ũt+1 will generally be conditionally heteroskedastic.

We can now combine (33) and (36) into a single equation:
1

xt+1

x̃t+1

=


1 0 0

Φ0 I − Φ1 Φ2
1
2DΣ0 (Φ0 ⊗ I)+ (I ⊗ Φ0) I− (Φ1 ⊗ I)− (I ⊗ Φ1)+1

2DΣ1



1

xt

x̃t

+


0

ut+1

ũt+1

 ,
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or more compactly

Xt+1 = AXt + Ut+1, (37)

with E (Ut+1|Xt) = 0 and E
¡
Ut+1U

0
t+1|Xt

¢ ≡ S (Xt) . In Appendix A.3 we show that
S (Xt) =


0 0 0

0 Ω (Xt) Γ (Xt)

0 Γ (Xt)
0
Ψ(Xt)

 , (38)

where

vec (Γ (Xt)) = Γ0 + Γ1xt + Γ2x̃t,

vec
¡
Γ (Xt)

0¢ = Λ0 + Λ1xt + Λ2x̃t,

vec (Ψ(Xt)) = Ψ0 +Ψ1xt +Ψ2x̃t.

The Γi, Λi and Ψi matrices are functions of the parameters in (33) and (34); their precise form is shown in

Appendix A.3.

Our solution procedure expresses all the endogenous variables in the model as linear combinations of Xt.

Thus, for any two variables at and bt, we find the vectors πa and πb such that at = πaXt and bt = πbXt.

Below we derive restrictions from the optimality and market clearing conditions sufficient to identify the π

vectors for all the endogenous variables. As part of this process we will need to compute conditional first

and second moments. Appendix A.4 shows that to a second-order approximation, (37) implies

E [at+h|Xt] = πaAhXt, and (R1)

CV (at+1, bt+1|Xt) = A (πa,πb)Xt. (R2)

These expressions show that both the first and second conditional moments are approximately linear in

Xt. This is straightforward in the case of E [at+h|Xt] , but for CV (at+1, bt+1|Xt) the linear dependence is
determined by the A (., .) vector which has elements that depend on the vectors πa,πb, and the parameters
of the Xt process. The product of at and bt can be similarly approximated to second-order by

atbt = B (πa,πb)Xt, (R3)

where B (., .) is another vector with elements that depend on πa,πb, and the parameters of the Xt process.

We use (R1)-(R3) extensively in the steps below. The precise forms for A (., .) and B (., .) are presented in
Appendix A.4.

To this point we have approximated the dynamics of Xt given a conjecture concerning Φ0,Φ1,Φ2, Ω0,

and Ω1. To complete Step 2, we characterize the behavior of log asset prices and the log risk-free rate. In
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particular, we conjecture that

ptt = πtpXt, pnt = πnpXt, qnt = πnqXt,

p̂tt = πtp̂Xt, p̂nt = πnp̂Xt, q̂nt = πnq̂Xt, and rt = πrXt,

(39)

for some πκ vectors of coefficients determined in Steps 3 and 4 below.

Step 3: Non-Predetermined Variables

In this step we use our conjectures for the dynamics of the state variables, prices and the risk-free rate to

characterize the equilibrium behavior of firms and households. We begin with the restrictions on the process

for dividends, which are determined by the firms’ first-order conditions approximated in (25). Combining

the expressions for the log capital stock from (27) with the log return on capital from (26), and taking

conditional expectation yields

E[rkt+1|Xt] = ψE
£
ztt+1|Xt

¤− (1− θ)ψ
h
1
βkt +

ψ
βθ z

t
t − ϕ

βθd
t
t

i
.

Combining this expression with the firm’s first-order conditions in (25), we can solve for dividends as

dtt =
θ
ϕkt +

ψ
ϕz

t
t − βθ

(1−θ)ϕE
£
ztt+1|Xt

¤
+ βθ

(1−θ)ψϕ
£
rt − 1

2V
¡
rkt+1|Xt

¢
+CV(rkt+1,∆wt+1|Xt)

¤
.

Applying (R1) and (R2) to this expression implies the following restriction on the πd vector:

πtd =
θ
ϕ ık +

ψ
ϕ ızt − θβ

(1−θ)ϕ ıztA+
θβ

(1−θ)ϕψ
£
πr − 1

2ψ
2A(ızt , ızt) + ψA(ızt , ıw)

¤
, (40)

where ıκ is a vector of zeros and a one that picks out variable κ from Xt (e.g. z
t
t = ıztXt, 1 = ı1Xt, etc.).

The πd vector characterizes the optimal dynamics of dividends given the process for the state variables and

the risk-free rate conjectured in Step 2.

Next we derive the optimal portfolio and consumption decisions of households. Equation (22) implicitly

identifies the relation between the optimal portfolio shares and the state vector. Let us first write this

relation as

αt ≡


αht

αft

αnt

 =


πhα

πfα

πnα

Xt. (41)

To find the πκα vectors we first must derive log excess returns as linear functions of the state variables.
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Substituting for equity prices and dividends from (39) into equations in (28) gives
erht+1

erft+1

ernt+1

 ≡

rht+1 − rt
rft+1 − rt
rnt+1 − rt

 =


βπtp + (1− β)πtd

βπtp̂ + (1− β)πt
d̂

βπnp + (1− β)πnd

Xt+1 +

−πtp − πr

−πtp̂ − πr

−πnp − πr

Xt,
or, more compactly,

ert+1 = γ1Xt+1 + γ2Xt, (42)

where γi ≡ [ γhi γfi γni ]
0. Using (R1) and (R2) we can now derive the moments of log excess returns as

E [ert+1|Xt] = (γ1A+ γ2)Xt, and V(ert+1|Xt) =


A(γh1, γh1)Xt A(γh1, γf1)Xt A(γh1, γn1)Xt
A(γf1, γh1)Xt A(γf1, γf1)Xt A(γf1, γn1)Xt
A(γn1, γh1)Xt A(γn1, γf1)Xt A(γn1, γn1)Xt

 .

Substituting these results into equation (22) and combining the result with (41) gives us the following set of

restrictions on the πκα vectors:

γκ1 A+ γκ2 = B (A(γκ1 , γh1),πhα) + B (A(γκ1 , γf1),πfα) + B (A(γκ1 , γn1),πnα)− 1
2A(γκ1 , γκ1 ) (43)

for κ = {h, f, n}.
Let ctt = πtcXt and c

n
t = πncXt represent the optimal choice of traded and nontraded consumption by

country h households. Combining (24) with the conjecture for relative prices in (39) gives

πtc = ıw +
φ

(1+ϑ)(1−φ)π
n
q , and πnc = ıw − 1−φ+ϑ

(1+ϑ)(1−φ)π
n
q .

The optimal decisions of households and firms in country f can be related to the state vector in a similar

manner. More specifically, we can derive an analogous set of equations that pin down the vectors {πt
d̂
,πtĉ ,π

n
ĉ ,

πhα̂,π
f
α̂,π

n
α̂}, where d̂tt = πt

d̂
Xt, ĉ

t
t = πtĉXt, ĉ

n
t = πnĉXt and α̂κt = πκα̂Xt for κ = {h, f, n̂}.

Step 4: Verification

We now verify our conjectures about the state vector xt ≡ [zt, kt, k̂t, wt, ŵt], equilibrium prices and the

risk-free rate. In particular, we use the firms’ and households’ optimal dividend, portfolio and consumption

decision rules to make sure our conjectures for the parameters in the process for xt and vectors π in (39)

satisfy the market clearing conditions.

To verify our conjecture concerning the behavior of the state variables in (33), we equate the conditional

first and second moments of all the elements in xt with the moments implied by the firms’ and households’

decisions derived in Step 3. Equation (33) implies that the expectation of the i’th. element in xt+1 condi-
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tioned on Xt is given by the i’th. row of [ Φ0 I − Φ1 Φ2 ]Xt, while the conditional covariance between

the i’th. and j’th. elements is equal to [ Ωi,j0 0 Ωj,.1 ⊗ Ωi,.1 ]Xt where Ω
i,j
0 denotes the i, j’th. element of

Ω0 and Ω
i,.
1 denotes the i’th. row of Ω1.We now compare these expressions with the moments of equilibrium

productivity, capital and wealth.

Recall that the first four rows of xt comprise the vector of productivities that follow the exogenous AR(1)

process in (4) so E[zt+1|Xt] = [ 0 a 0 ]Xt and V[zt+1|Xt] = Se. Equating moments gives the following

restrictions on Φi and Ωi parameters of the xt process:

[ 0 a 0 ]i,. = [ Φ0 I − Φ1 Φ2 ]
i,. and [ Si,je 0 0 ] = [ Ωi,j0 0 Ωj,.1 ⊗ Ωi,.1 ],

for i = {1, 2, 3, 4} and j = {1, 2, ..8}.
The next elements in xt are the log capital stocks in the two countries. From the log-approximated

dynamics for kt in (27) we get E[kt+1|Xt] = [ 1β ık+ ψ
βθ ı

t
z− ϕ

θβπ
t
d]Xt and CV[kt+1, x

j,.
t+1|Xt] = 0 for j = {1, 2, ..8}.

The moment restrictions on the xt process parameters are therefore

[ 1β ık +
ψ
βθ ı

t
z − ϕ

θβπ
t
d] = [ Φ0 I − Φ1 Φ2 ]

5 and [ 0 0 0 ] = [ Ω5,j0 0 Ωj,.1 ⊗ Ω5,.1 ],

for j = {1, 2, ..8}. The dynamics of the f capital stock imply an analogous set of restrictions.
Deriving the equilibrium restrictions on the dynamics of wealth in (23) is a little more complicated and

requires the use of (R2) and (R3). With log utility, equation (23) implies that E [wt+1|Xt] = wt + rt +
1
2α

0
tV(ert+1|Xt)αt. Using the expressions for V[ert+1|Xt] and αt derived in Step 3, together with (R3), we

have

1
2α

0
tV(ert+1|Xt)αt = 1

2

P
κ 0 B

³
πκ

0
α ,
P
κ B

³
πκα ,A(γκ

0
1 , γ

κ
1 )
´´
Xt,

where the κ and κ0 indices pick out the three equities {h, f, n} available to h households. The restriction
on the xt process implied by the first conditional moment of h wealth is, therefore,

ιw + πr +
1
2

P
κ 0 B

³
πκ

0
α ,
P
κ B

³
πκα ,A(γκ

0
1 , γ

κ
1 )
´´
= [ Φ0 I − Φ1 Φ2 ]

7. (45)

Next we consider the implications of the wealth dynamics in (23) for the covariance between wt+1 and

all the elements of xt+1. According to (23), the conditional covariance between wt+1 and the j’th. element

of xt+1, ıjXt+1, is
P
κ α

κ
t CV(erκt+1, ıjX .

t+1|Xt) for κ = {h, f, n}. After substituting for erκt+1 and ακt

with (42) and (41), and using (R2) and (R3), we can rewrite this covariance as
P
κ B(πκα ,A(γκ1 , ıj))Xt. Now

(33) implies that this covariance equals [ Ω7,j0 0 Ωj,.1 ⊗ Ω7,.1 ]Xt, so the second moment restrictions on h

household’s wealth are

X
κ
B(πκα ,A(γκ1 , ıj)) = [ Ω7,j0 0 Ωj,.1 ⊗ Ω7,.1 ], (46)

for j = {1, 2, ...8}. The dynamics of f wealth imply a further set of moment restrictions analogous to (45)
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and (46). These restrictions identify the 8’th. row of [ Φ0 I − Φ1 Φ2 ] and the corresponding rows of Ω.

We now need to verify the conjecture about equilibrium prices and the risk-free rate in (39). Combining

mt+1 = −∆wt+1 with the first-order condition for bonds in (21b) and substituting for the conditional
moments using (R1) and (R2) gives

rt = πrXt =
£
ıw (A− I)− 1

2A (ıw, ıw)
¤
Xt. (47)

The term in brackets identifies the πr vector that determines the equilibrium log risk-free rate. Turning to

equity prices, we first combine (47) with (42) to give us the expected return on equity κ:

E[rκt+1|Xt] ≡ E[erκt+1|Xt] + rt = [γκ1 A+ γκ2 + πr]Xt,

for κ = {h, f, n}. We can now compute the present value term in the equations for equilibrium log equity

prices. In particular, (29) becomes

ptt =
∞X
i=0

βi {(1− β)πtdE[Xt+1+i|Xt]− (γh1A+ γh2 + πr)E[Xt+i|Xt} ,

=
h
{(1− β)πtdA− (γh1A+ γh2 + πr)} (I − βA)−1

i
Xt.

The term in brackets identifies the πtp vector. The other vectors relating equilibrium log equity prices to the

state (i.e., πtp̂,π
n
p and πnp̂) are pinned down in an analogous manner.

Finally, we need to verify that equilibrium goods prices satisfy the market clearing conditions. Market

clearing in nontraded goods implies that dnt = z
n
t and d̂

n
t = ẑ

n
t , so π

n
d = ızn and πn

d̂
= ıẑn . Applying (R3) to

the market clearing condition for traded goods in (30) implies the following restriction:

πtd + πt
d̂
+ 1

4B(πtd̂ − πtd,π
t
d̂
− πtd) = πtc + πtĉ +

1
4B(πtĉ − πtc ,π

t
ĉ − πtc).

Similar sets of restrictions come from combining the market clearing conditions for equity in (31) and (32)

with the equations for the optimal portfolio shares in (41):

αh
£
ι1 + πtp − ιw +

1
2B(πtp − ιw,π

t
p − ιw)

¤
= πhα + B

¡
πhα̂,

£
ι1 + ιŵ − ιw +

1
2B (ιŵ − ιw, ιŵ − ιw)

¤¢
,

αf
£
ι1 + πtp̂ − ιŵ +

1
2B(πtp̂ − ιŵ,π

t
p̂ − ιŵ)

¤
= πfα̂ + B

¡
πfα,

£
ι1 + ιw − ιŵ +

1
2B (ιw − ιŵ, ιw − ιŵ)

¤¢
,

πnα = αn
£
ı1 + πnq + πnp − ıw + 1

2B(πnq + πnp − ıw,πnq + πnp − ıw)
¤
,

πnα̂ = α̂n
£
ı1 + πnq̂ + πnp̂ − ıŵ + 1

2B(πnq̂ + πnp̂ − ıŵ,πnq̂ + πnp̂ − ıŵ)
¤
.

The Numerical Procedure

We have described how the log-approximated equations characterizing the equilibrium of the model are

used to derive a set of restrictions on the behavior of the state vector and the non-predetermined variables.

A solution to the model requires that we find values for the π vectors and the state process parameters
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{Φ0,Φ1,Φ2,Ω0,Ω1} that satisfy these restrictions for a particular calibration of the taste and technology
parameters. Let bF(Υ) = 0 denote these restrictions where Υ is a vector of all the unknown coefficients in
the π’s, Φ’s and Ω’s. Our objective is to find the value for Υ that satisfies this set of equations. To this end

our numerical procedure chooses Υ to minimize the least squares projection || bF (.) ||2, where || . || denotes
the Euclidean norm.

4 Results

In this section we evaluate the accuracy of our solution method. For this purpose we consider two versions of

our model: a simplified version with complete markets and the full version with incomplete markets. Results

from the simplified model are informative because they can be compared against known analytical properties

of the equilibrium. The results from the full model demonstrate the accuracy of our solution method in an

application where no analytical characterization of the equilibrium is available.

Our model simplifies considerably if we let (1 − φ)−1 → ∞, set λt = 1 and λn = 0 in both countries,

and assume that the variance of nontraded productivity shocks equal zero. These restrictions effectively

eliminate the nontraded sectors in each country; the supply and demand for nontraded goods is zero, and

so too is the price of nontraded equity. The equilibrium properties of the other variables will be identical to

those in a world where households have log preferences defined over traded consumption and allocate their

portfolios between h and f traded equities and the risk-free bond. In particular, the equilibrium will be

characterized by complete risk-sharing if both h and f households start with the same initial level of wealth.

Complete risk-sharing occurs in our simplified setting because all households have the same preferences

and investment opportunity sets. We can see why this is so by returning to conditions determining the

households’ portfolio choices. In particular, combining the log-approximated first-order conditions with the

budget constraint in (22) under the assumption of log preferences gives

αt = Θ
−1
t (Etert+1 + 1

2diag(Θt)) and α̂t = Θ
−1
t (Etert+1 + 1

2diag(Θt)), (48)

where α0t ≡ [ αht αft ], α̂
0
t ≡ [ α̂ht α̂ft ], er

0
t+1 ≡ [ rht+1 − rt rft+1 − rt ], and Θt ≡ Vt(ert+1). The key

point to note here is that all households face the same set of returns and have the same information. So the

right hand side of both expressions in (48) are identical in equilibrium. h and f households will therefore

find it optimal to hold the same portfolio shares. This has a number of implications if the initial distribution

of wealth is equal. First, households’ wealth will be equalized across countries in all periods. Second, since

households with log utility consume a constant fraction of wealth, consumption will also be equalized. This

symmetry in consumption implies that mt+1 = m̂t+1, so risk sharing is complete. It also implies, together

with the market clearing conditions, that bond holdings are zero and wealth is equally split between h and

f equities (i.e., Aht = Â
h
t = A

f
t = Â

f
t = 1/2).We can use these equilibrium asset holdings as a benchmark for

judging the accuracy of our solution technique.

The remainder of this section examines the equilibrium properties of both the complete and incomplete
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markets versions of the model computed by our solution method.8 These calculations were performed

assuming a discount factor β equal to 0.99, the technology parameter θ equal to 0.36 and a depreciation

rate for capital, δ, of 0.02. In the complete markets version, the log of h and f traded productivity, lnZt

and ln Ẑt, are assumed to follow independent AR(1) processes with autocorrelation coefficients, aii, equal to

0.95 and innovation variance, Siie , equal to 0.0001 for i = {h, f}. In the incomplete markets version we set
the share parameters, λt and λ̂

t
, equal to 0.5 and the elasticity of substitution, (1 − φ)−1, equal to 0.74.

The autocorrelation in traded and nontraded productivity was set to 0.99 and 0.78 respectively, and the

innovations variances, Siie , were assumed equal to 0.0001, for i = {t, t̂, n, n̂}. All of these parameter values
are quite standard and were chosen so that each period in the model represents one quarter. Once the model

is “solved”, we simulate Xt over 300 quarters starting from an equal wealth distribution. The statistics we

report are derived from 1200 simulations and so are based on 90,000 years of simulated quarterly data in

the neighborhood of the initial wealth distribution.

4.1 Risk-Sharing and Asset Holdings

We begin our assessment of the solution method by considering the equilibrium portfolio holdings. Panel A

of Table 1 reports statistics on the equilibrium asset holdings of h households computed from the simulations

of the complete markets model. Theoretically speaking, we should see that Bt = 0 and Aht = Aft = 1/2.

The simulation results conform closely to these predictions. The equity portfolio holdings show no variation

and on average are exactly as theory predicts. Average bond holdings, measured as a share of wealth, are

similarly close to zero, but show a little more variation. Overall, simulations based on our solution method

appear to closely replicate the asset holdings theory predicts with complete risk sharing.

Panel B of Table 1 reports statistics on the asset holdings of h households in the incomplete markets

model. Households continue to diversify their holdings between the equity issued by h and f firms producing

tradable goods. The table shows that while these holdings are split equally on average, they are far from

constant. Both the standard deviation and range of the tradable equity holdings are orders of magnitude

larger than the simulated holdings from the complete markets model. The differences between panels A and

B are even more pronounced for bond holdings. When markets are incomplete, shocks to productivity in the

nontradable sector affect h and f households differently and create incentives for international borrowing and

lending. In equilibrium most of this activity takes place via trading in the bond market, so bond holdings

display a good deal of volatility in our simulations of the incomplete markets model.

4.2 Accuracy Tests

To assess the performance of our solution method we compute several tests of model accuracy. First, we

evaluate the importance of the third-order terms omitted in the model solution. Second, we report the size

8Implementation of the solution method for the complete markets version follows the steps described in Section 3, but
excludes the restrictions involving the nontraded sectors.
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Table 1: Portfolio Holdings

Aht Aft Ant Bt
(i) (ii) (iii) (iv)

A: Complete Markets

mean 0.5000 0.5000 0.0000%
stdev 0.0000 0.0000 0.0174%
min 0.5000 0.5000 -0.0581%
max 0.5000 0.5000 0.1438%

B: Incomplete Markets

mean 0.5000 0.5000 1.0000 0.0316%
stdev 0.0015 0.0015 0.0000 0.1415%
min 0.4911 0.4912 1.0000 -0.5611%
max 0.5097 0.5094 1.0000 0.8268%

Note: Aht , A
f
t , and A

n
t correspond, respectively, to h household’s holdings of

equity issued by h, f traded firms, and h nontraded firms. Bt refers to h
household’s bond holdings as a share of h wealth.

of Euler equation errors. Next, we compute a summary measure of accuracy based on the den Haan and

Marcet (1994) χ2 test. Finally, we examine the accuracy of our solution over various simulation spans.

Third-Order Terms

When we derived the approximate dynamics of the state vector in equation (37) we ignored the impact

of third-order terms in xt. In this way we abstracted from the role of skewness, kurtosis, and higher-order

moments of returns for the portfolio decisions of households. We now evaluate the importance of the third-

order terms.

Recall that xt denotes the vector of state variables expressed in log deviations from the steady state or

initial distribution and x̃t ≡ vec(xtx0t). To evaluate the importance of third-order terms in the state vector,
we compute the maximum, average, and standard deviation for each of the elements in |vec(xtx̃0t)| over our
simulated data sample. We then report the 90th, 95th and 99th percentiles of the distributions of these

summary statistics across the cross-section of elements in |vec(xtx̃0t)|.
Table 2 reports the percentiles for the third-order terms from the solution to both versions of our model.

Panel A shows that in the complete markets model 99% of the largest third-order terms in |vec(xtx̃0t)| are
smaller than 4.86E-03. Among the average absolute third-order terms, 99% lie to the left of 1.08E-04, while

the standard deviation of third-order terms exceeds 3.56E-03 only 1 % of the time. The results in panel B

from the incomplete markets model are quite comparable. Overall, there is little evidence in these results to

indicate that the omission of third-order terms is significant for the models we are studying.
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Table 2. Accuracy: 3rd Order Terms

90% 95% 99%
(i) (ii) (iii)

A: Complete Markets

max 3.2955E-03 3.9629E-03 4.8562E-03
mean 5.9929E-05 7.5292E-05 1.0820E-04
stdev 2.1558E-03 2.9178E-03 3.5606E-03

B: Incomplete Markets

max 1.8399E-03 2.8364E-03 9.3801E-03
mean 4.4280E-05 5.7344E-05 2.1923E-04
stdev 1.7294E-03 2.2252E-03 8.3427E-03

Note: max, mean and stdev refer to the corresponding summary statistic calcu-

lated for each element in the absolute vector of third-order terms, |vec(xtx̃0t)|.
90%, 95%, and 99% stand for the respective percentiles of the distributions of

these summary statistics across the cross-section of |vec(xtx̃0t)|.

Euler Equation Errors

Judd (1992) recommends using the size of the errors that households and firms make to assess the accuracy

of an approximated solution. Recall from (16) that the Euler equations from the firms’ and households’

optimizations problems can be expressed as 0 = Etf(Yt+1, Yt,Xt+1,Xt,S1/2

(Xt) εt+1). To implement Judd’s

approach we use our approximate solution for the state variable dynamics and the non-predetermined vari-

ables to compute the Euler equation errors:

ξt+1 = f(bG ³ bH³Xt, bS1/2

(Xt) εt+1

´
, bS ³ bH³Xt, bS1/2

(Xt) εt+1

´´´
,

bG ³Xt, bS (Xt)´ , bH³Xt, bS1/2

(Xt) εt+1

´
, Xt, bS1/2

(Xt) εt+1), (49)

where bG, bH, and bS are the approximate decision rules. In the complete markets model the ξt+1 vector

contains four errors for each country: two for equity, one for capital, and one for bonds. For example,

the Euler equation errors for h households and firms are given by ξt+1 = 1 − [Mt+1 ⊗Rκ ] , where Rκ =
{Rht+1, Rft+1, Rkt+1, Rt} and Mt+1 = βWt/Wt+1. Notice that ξt+1 provides a scale-free measure of the error.

In the incomplete markets model there are two more errors associated with the optional choice of nontraded

equity holdings.

Table 3 reports the upper percentiles of the distribution for the absolute errors in both versions of the

model. Columns (i)-(iii) show percentiles for the errors from h households’ Euler equations for h, f and

n equity; while columns (iv) and (v) show the percentile from the h capital and bond Euler equations,

respectively. Comparing the results in panels A and B, we see that the percentiles of Euler equation errors in

the incomplete markets model are similar to those found in the complete markets version. More importantly,
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Table 3. Accuracy: Euler Equation Errors

Aht Aft Ant Kt Bt
(i) (ii) (iii) (iv) (v)

A: Complete Markets

90th percentile 0.0026 0.0026 0.0029 0.0033
95th percentile 0.0031 0.0031 0.0035 0.0039
99th percentile 0.0040 0.0040 0.0046 0.0051

B: Incomplete Markets

90th percentile 0.0016 0.0016 0.0015 0.0023 0.0025
95th percentile 0.0019 0.0019 0.0017 0.0028 0.0030
99th percentile 0.0025 0.0025 0.0023 0.0036 0.0039

Note: Aht , A
f
t , and A

n
t refer to the absolute errors from the Euler equations for h

household’s holdings of equity issued by h and f traded firms, and h nontraded firms;
Kt and Bt correspond to the absolute errors from capital and bond Euler equations

at h.

the results in both panels are comparable to those reported in the accuracy checks for standard growth models

without portfolio choice (e.g., Arouba et al. 2005 and Pichler 2005).

The Den Haan and Marcet Test

We can supplement the results in Table 3 with an accuracy test applied to the optimality conditions in

the model. The den Haan and Marcet (1994) test of approximation accuracy consists of checking whether

Euler equation errors are orthogonal to any function of the state variables describing the information set in

period t. Let ω(Xt) denote any function that converts the L—dimensional vector of state variables Xt into

a q—dimensional sequence of instrumental variables, ω : RL −→ Rq. If households form their expectations

rationally, the Euler equation errors derived in (49) must satisfy

E[ξt+1 ⊗ ω(Xt)] = 0. (50)

The idea behind the test consists of evaluating how closely condition (50) holds for simulated data on Xt and

for any function ω(.). In particular, let bars denote simulated data from the model, allowing us to calculate

the sample analog of (50) as

BT =
1

T

TX
ξ̄t+1 ⊗ ω(X̄t),
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where T is a simulated sample size. den Haan and Marcet evaluate whetherBT is close to zero by constructing

a test-statistic

JT = TB
0
TA
−1
T BT , (51)

where AT is a consistent estimate of the matrix

∞X
i=−∞

E
h¡
ξt+1 ⊗ ω(Xt)

¢ ¡
ξt+1−i ⊗ ω(Xt−i)

¢0i
.

Under the null that the solution is accurate and if Xt is stationary and ergodic, den Haan and Marcet

show that JT converges to a χ2 distribution with qg degrees of freedom, where g is the number of Euler

equation errors. To implement the test, our vector of instruments for the complete markets model consists

of a constant, {Ztt , Ẑtt ,Kt, K̂t,∆Wt}, and two lags of {Kt, K̂t,∆Wt}. For the incomplete markets model, we
use a constant, {Ztt , Ẑtt , Znt , Ẑnt ,Kt, K̂t,∆Wt,∆Ŵt} and two lags of {Kt, K̂t,∆Wt, ∆Ŵt} as instruments.9
Estimates of AT are computed from the standard GMM estimator that allows for heteroskedasticity but no

serial correlation in the errors.

Table 4 reports the results of the test applied to both versions of our model. Following den Haan and

Marcet, we repeat the test 100 times for different realizations of the stochastic processes and compare the

resulting distribution of JT with its true distribution. The table reports the percentage of realizations of JT

in the lower and upper 5% of a χ2qg distribution.

Columns (i) - (v) of Table 4 report the results of tests on each Euler equation in country h. These JT

statistics indicate that our method provides a very accurate solution to both versions of the model. The

upper and lower percentiles computed from the empirical distribution of the JT statistics closely correspond

to the percentiles from the true χ2qg distribution. Column (vi) reports the results from joint tests on the

Euler equations. Unfortunately, it is impossible to compute accurate JT statistics for all the Euler equations

in each version of the model because the errors from the individual equations are very highly correlated.10

We therefore report results for the joint accuracy of a subset of the Euler equations. The statistics in panel

A are based on the Euler equations for h equity and capital. In panel B they are based on the equations for

h and f traded equity and capital. As the table shows, the empirical distribution of the JT statistics for the

joint tests correspond closely to the true χ2qg distribution for both versions of our model.

Wealth Dynamics and Simulation Spans

Our solution method does not incorporate any assumptions about how shocks affect the international dis-

tribution of wealth in the long run. Instead, we characterize the equilibrium dynamics of the model in the

9We did not use lagged productivity shocks to reduce the collinearity across the set of instruments. We include the first
difference of wealth to insure that our instruments are stationary.
10The high degree of correlation makes it impossible to invert the estimate of matrix AT that enters the test statistic in (51)

accurately. Indeed, we find the condition number for the estimate of AT based on all the Euler equations within each country
to be in excess of 106.
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Table 4. Accuracy: den Haan and Marcet Test

Aht Aft Ant Kt Bt Joint
(i) (ii) (iii) (iv) (v) (vi)

A: Complete Markets

lower 5% 0.07 0.08 0.07 0.06 0.04
upper 5% 0.08 0.08 0.02 0.02 0.04

B: Incomplete Markets

lower 5% 0.05 0.03 0.06 0.08 0.08 0.02
upper 5% 0.06 0.04 0.06 0.07 0.08 0.06

Note: Aht , A
f
t , and A

n
t correspond to the percentiles of the χ

2 test statistics calculated based

on the errors from h country Euler equation for h and f tradable equity, and n equity; Kt
and Bt refer to the percentiles of the χ

2 test statistics for capital and bond Euler equations at

h. The percentiles in column (vi) of panel A are for joint JT statistics on the Euler equation
errors for h equity and capital. In panel B they are for the Euler equation errors for h and f

traded equity and capital.

neighborhood of an initial international wealth distribution. This approach broadens the applicability of our

solution method but it also has implications for how we simulate solutions to the model.

Recall that the dynamics of h and f wealth are given by

wt = wt−1 + Et−1rwt +α0t−1 (ert − Et−1ert) , and

ŵt = ŵt−1 + Et−1r̂wt + α̂0t−1 ( bert − Et−1 bert) .
These equations show that productivity shocks can affect the household wealth through two channels. First,

period-t shocks to productivity produce unexpected capital gains and losses on households’ equity holdings

that affect wealth via the third terms in each equation. Second, productivity shocks can change expectations

regarding future dividends, risk premia and the risk-free rate which in turn affect the expected future return

on optimally invested wealth, Etrwt+i and Etr̂wt+i for i > 0. Consequently, period-t productivity shocks can

affect the expected future growth in wealth, Et∆wt+i = Etrwt+i and Et∆ŵt+i = Etr̂wt+i for i > 0. Notice that
when the second channel is inoperable, productivity shocks will have permanent effects on the level of wealth

because the log of period-t wealth appears with a unit coefficient on the right hand side of each equation.

Under these circumstances, a productivity shock that results in, say, a capital gain for h households alone,

will permanently shift the international distribution of wealth towards country h. Our solution method

allows productivity shocks to affect wealth via both channels: we identify how period-t shocks produce

capital gains via the α0t−1 (ert − Et−1ert) and α̂0t−1 ( bert − Et−1 bert) terms, and also how they affect Etrwt+i
and Etr̂wt+i for i > 0. This approach does not require any assumption about how a productivity shock affects
wealth in the long run. It is applicable to models where productivity shocks can have extremely persistent
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effects on individual wealth and to models where the long run distribution of wealth is easily identified (e.g.,

models with portfolio adjustment costs, Uzawa-type preferences, or overlapping generations).

Our solution method does require an assumption about the initial wealth distribution. This raises two

possible concerns. The first relates to robustness. Our characterization of the equilibrium dynamics is

conditioned on a particular initial wealth distribution, so the characterization may materially change if we

assume a different initial distribution. In view of the model’s complexity, we cannot check for this problem

analytically. However, it is straightforward to compare solutions based on different initial distributions. Our

experience with this and other models is that the equilibrium dynamics are robust to the choice of initial

wealth distribution, but this is something that should be checked on a case-by-case basis. Of course, the

long-run wealth distribution is a natural choice for the initial distribution in cases where the former is easily

identified.

The second concern relates to simulations of the model’s solution. The approximations we use to char-

acterize the solution are only accurate in a neighborhood of the initial wealth distribution. If shocks to

productivity push the wealth distribution outside this neighborhood in a few periods with high probability,

we will not be able to accurately simulate long time series from the model’s equilibrium. This is not a concern

for the model in this paper. The accuracy tests reported in Tables 2 - 4 are based on solution simulations

that span 75 years of quarterly data, a longer time span than is available for most macroeconomic data

series. Nevertheless, it is instructive to consider how the accuracy of the simulated equilibrium dynamics

varies with the simulation span. For this purpose we examined the empirical error distributions from bond

market clearing for different simulation spans.

Recall that the bond market clearing condition, Bt + B̂t = 0, was not used in our method, so the value

of Bt + B̂t implied by our solution provides a further accuracy check: If there is no approximation error in

the equations we use for the other market clearing conditions and budged constraints, Bt + B̂t should equal

zero by Walras Law in our simulations of the model’s solution.11 We examine the accuracy of the simulated

equilibrium dynamics by computing the empirical distribution of (Bt+ B̂t)/(2βRtWt) within a simulation of

a given span, and then comparing the distributions across different spans. The scaling allows us to interpret

the bond market errors as shares of h household’s wealth.

Table 5 reports the mean and percentiles of the bond market error distribution from simulations spanning

50 to 500 quarters. Panel A shows statistics for the error distributions computed from the complete markets

version of the model where optimal bond holdings are zero. Here, the dispersion of the error distribution

increases with the span of our simulations, but the upper and lower percentiles of the distributions remain

a very small percentage of wealth. The bond market errors in this version of the model are economically

insignificant. These results are not surprising. The initial wealth distribution used in the simulations is

equal to the long run distribution in the complete markets version of our model. Consequently, realizations

of equilibrium wealth should never be too far from their initial values even when the span of the simulations

is very long.

The statistics derived from the incomplete markets version of the model tell a different story. Panel B

11We thank Anna Pavlova for suggesting this accuracy evaluation.
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Table 5. Accuracy: Bond Market Clearing

Span 1% 5% mean 95% 99%
(i) (ii) (iii) (iv) (v)

A: Complete Markets

50 -0.0091% -0.0058% 0.0000% 0.0073% 0.0152%
100 -0.0133% -0.0096% 0.0000% 0.0132% 0.0285%
200 -0.0235% -0.0170% 0.0001% 0.0262% 0.0477%
300 -0.0296% -0.0225% -0.0002% 0.0297% 0.0482%
400 -0.0374% -0.0272% -0.0006% 0.0333% 0.0503%
500 -0.0451% -0.0320% -0.0008% 0.0367% 0.0552%

B: Incomplete markets

50 -0.0012% -0.0003% 0.0015% 0.0043% 0.0061%
100 -0.0009% -0.0001% 0.0034% 0.0090% 0.0129%
200 -0.0005% 0.0003% 0.0111% 0.0332% 0.0477%
300 -0.0003% 0.0006% 0.0284% 0.0928% 0.1340%
400 -0.0001% 0.0009% 0.0672% 0.2438% 0.3586%
500 -0.0001% 0.0012% 0.1560% 0.6267% 0.9325%

Note: 1, 5, 95, 99 and mean refer to the corresponding percentiles and mean
of the error distribution in the bond market clearing condition. All entries are

measured as shares of h household’s wealth.

shows that both the location and dispersion of the error distribution shift significantly as the span of our

simulations increases. The change in the error distribution is particularly pronounced in the upper percentiles

as the span increases beyond 300 quarters. For perspective on these statistics, recall from Table 1 that the

estimated bond holdings of country h households range from -0.56% to 0.83% of wealth over simulations

spanning 300 quarters. The support of the corresponding bond error distribution is an order of magnitude

smaller. Beyond 300 quarters, the support of the distributions approaches the range of variation in the

estimated bond holdings. At least some of the bond errors in these simulations are economically significant.

The results in Table 5 have two important implications for the applicability and accuracy of our solution

method. First, we can stimulate very long accurate equilibrium time series from models if we can use

the known long-run wealth distribution as a point of approximation in our solution method. Second, our

method is capable of generating accurate equilibrium time series over empirically relevant time spans in the

neighborhood of an assumed initial wealth distribution. For the model studied here, the results in Panel B

indicate that the accuracy of the simulated series deteriorates in an economically significant way in spans

greater than 300 quarters or 75 years. For this reason all the accuracy statistics reported in Tables 1 - 4

were based on simulations with a span of 300 quarters.
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5 Conclusion

We have presented a numerical method for solving general equilibrium models with many financial assets,

heterogeneous agents and incomplete markets. Our method builds on the log-approximations of Campbell,

Chan and Viceira (2003) and the second-order perturbation and projection techniques developed by Judd

(1992) and others. To illustrate its use, we applied our solution method to complete and incomplete markets

versions of a two-country general equilibrium model with production. The numerical solution to the complete

markets version closely conforms to the predictions of theory and is highly accurate based on a number of

standard tests. This gives us confidence in the accuracy of our technique. The power of our method is

illustrated by solving the incomplete markets version of the model. The array of assets in this model is

insufficient to permit complete risk-sharing among households, so the equilibrium allocations cannot be

found by standard analytical techniques. Our accuracy tests show that simulations of our solution to this

version of the model are very accurate over spans of 75 years of quarterly data.

Our solution method can be applied to more richly specified models than the one examined here. For

example, the method can be applied to solve models with more complex preferences, capital adjustment

costs, or portfolio constraints. As a result, we believe that our method will be useful in the future analysis

of many models in international macroeconomics and finance.
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A Appendix:

A.1 Model equations and the approximation point

The system of equations characterizing the equilibrium of our model consists of

1. Process for productivity

zt = azt−1 + S
1/2

e et

2. h and f budget constraints

Wt+1 = Rwt+1 (Wt − Ctt −QntCnt )
Rwt+1 = Rt + αht (R

h
t+1 −Rt) + αft (R

f
t+1 −Rt) + αnt (R

n
t+1 −Rt)

and

Ŵt+1 = R̂wt+1(Ŵt − Ĉtt − Q̂nt Ĉnt )
R̂wt+1 = Rt + α̂ht (R

h
t+1 −Rt) + α̂ft (R

f
t+1 −Rt) + α̂nt (R̂

n
t+1 −Rt).

3. h and f bond and equity Euler equations

1 = Et [Mt+1Rt] , 1 = Et
h
M̂t+1Rt

i
,

1 = Et
£
Mt+1R

h
t+1

¤
, 1 = Et

h
M̂t+1R

h
t+1

i
,

1 = Et
£
Mt+1R

f
t+1

¤
, 1 = Et

h
M̂t+1R

f
t+1

i
,

1 = Et
£
Mt+1R

n
t+1

¤
, 1 = Et

h
M̂t+1R̂

n
t+1

i
,

where Mt+1 = β (Ctt +Q
n
tC

n
t ) /

¡
Ctt+1 +Q

n
t+1C

n
t+1

¢
= βWt/Wt+1 and M̂t+1 = βŴt/Ŵt+1.

4. h and f optimality conditions determining relative goods prices

Qnt =

µ
λn
λt

¶1−φµ
Cnt
Ctt

¶φ−1
, and Q̂nt =

Ã
λ̂n

λ̂t

!1−φÃ
Ĉnt

Ĉtt

!φ−1
.

5. Capital Euler equation at h and f

1 = Et
£
Mt+1R

k
t+1

¤
, with Rkt+1 ≡ θZtt+1 (Kt+1)

θ−1 + (1− δ)

1 = Et
h
M̂t+1R̂

k
t+1

i
, with R̂kt+1 ≡ θẐtt+1(K̂t+1)

θ−1 + (1− δ)

6. Market clearing conditions
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(a) traded goods

Ctt + Ĉ
t
t = D

t
t + D̂

t
t

(b) nontraded goods

Cnt = Y
n
t = D

n
t and Ĉnt = Ŷ

n
t = D̂

n
t .

(c) bond

0 = Bt + B̂t.

(d) traded equity

1 = Aht + Â
h
t and 1 = Aft + Â

f
t ,

which can equivalently be written as

P tt = αht βWt + α̂ht βŴt

P̂ tt = αftβWt + α̂ftβŴt

(e) nontraded equity

1 = Ant 1 = Ânt ,

which is equivalent to

αnt = Q
n
tP

n
t /βWt α̂nt = Q̂

n
t P̂

n
t /βŴt.

The approximation point is given by R = Rk = R̂k = Rh = Rf = Rn = R̂n = Rw = R̂w = 1
β .

K = K̂ = (βθ)1/(1−θ) (1− β + βδ)1/(θ−1) , Dt = D̂t = Kθ − δK, P t = P̂ t = βDt/(1 − β). Dn = D̂n = η,

so that Cn = Ĉn = η and P n = P̂ n = βη/(1 − β). Wealth at h and f is approximated around an initial

level, W0 and Ŵ0. When W0 = Ŵ0, then C
t
0 = Ĉt0 = Dt. Then portfolios are approximated around

αn = α̂n = λ1−φn (Cn0 /C0)
φ and αh = αf = λ1−φt (Ct0/C0)

φ , where αh and αf denote the initial values of¡
αht + α̂ht

¢
and

¡
α̂ft + αft

¢
, respectively, as before.
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A.2 Derivation of Equation (36)

We start with quadratic and cross-product terms, x̃t and approximate their laws of motion using Ito’s lemma.

In continuous time, the discrete process for xt+1 in (33) becomes

dxt = [Φ0 − Φ1xt +Φ2x̃t] dt+Ω(x̃t)1/2dWt

Then by Ito’s lemma:

dvec(xtx
0
t) = [(I ⊗ xt) + (xt ⊗ I)]

³
[Φ0 − Φ1xt +Φ2x̃t] dt+Ω(x̃t)1/2dWt

´
+1
2

·
(I ⊗ U)

µ
∂x

∂x0
⊗ I

¶
+

µ
∂x

∂x0
⊗ I

¶¸
d [x, x]t

= [(I ⊗ xt) + (xt ⊗ I)]
³
[Φ0 − Φ1xt +Φ2x̃t] dt+Ω(x̃t)1/2dWt

´
+1
2

·
U
µ
∂x

∂x0
⊗ I

¶
+

µ
∂x

∂x0
⊗ I

¶¸
vec {Ω(x̃t)} dt

= [(I ⊗ xt) + (xt ⊗ I)]
³
[Φ0 − Φ1xt +Φ2x̃t] dt+Ω(x̃t)1/2dWt

´
+ 1

2Dvec {Ω(x̃t)} dt, (A1)

where

D =

·
U
µ
∂x

∂x0
⊗ I

¶
+

µ
∂x

∂x0
⊗ I

¶¸
, U =

X
r

X
s

Ers ⊗E0r,s,

and Er,s is the elementary matrix which has a unity at the (r, s)
th position and zero elsewhere. The law of

motion for the quadratic states in (A1) can be rewritten in discrete time as

x̃t+1 ∼= x̃t + [(I ⊗ xt) + (xt ⊗ I)] [Φ0 − Φ1xt +Φ2x̃t] + 1
2Dvec (Ω(x̃t))

+ [(I ⊗ xt) + (xt ⊗ I)] εt+1,
∼= 1

2DΣ0 + [(Φ0 ⊗ I) + (I ⊗ Φ0)]xt +
£
I − (Φ1 ⊗ I)− (I ⊗ Φ1) + 1

2DΣ1
¤
x̃t + ε̃t+1,

where ε̃t+1 ≡ [(I ⊗ xt) + (xt ⊗ I)] εt+1. The last equality is obtained by using an expression for vec (Ω(Xt))
in (35), where Σ0 = vec(Ω0) and Σ1 = Ω1 ⊗ Ω1, and by combining together the corresponding coefficients
on a constant, linear and second-order terms.

A.3 Derivation of Equation (38)

Recall that Ut+1 = [ 0 εt+1 ε̃t+1 ]
0, so E (Ut+1|Xt) = 0 and

E
¡
Ut+1U

0
t+1|Xt

¢ ≡ S (Xt) =

0 0 0

0 Ω (Xt) Γ (Xt)

0 Γ (Xt)
0 Ψ(Xt)


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To evaluate the covariance matrix, we assume that vec(xt+1x̃
0
t+1)

∼= 0 and define:

Γ (Xt) ≡ Etεt+1ε̃0t+1,

= Etxt+1x̃0t+1 − Etxt+1Etx̃0t+1,
= Etxt+1x̃0t+1 − (Φ0 + (I − Φ1)xt +Φ2x̃t)

×
³
1
2Σ

0
0D

0 + x0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0 + x̃0t
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤0´
,

∼= −Φ0
³
1
2Σ

0
0D

0 + x0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0 + x̃0t
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤0´

−(I − Φ1)xt
¡
1
2Σ

0
0D

0 + x0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0
¢− 1

2Φ2x̃tΣ
0
0D

0,

= −12Φ0Σ00D0 − Φ0x0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0 − 1
2(I − Φ1)xtΣ00D0

−Φ0x̃0t
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤0 − (I − Φ1)xtx0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0 − 1

2Φ2x̃tΣ
0
0D

0.

Hence

vec (Γ (Xt)) = Γ0 + Γ1xt + Γ2x̃t,

Γ0 = −1
2
(DΣ0 ⊗ Φ0) vec(I),

Γ1 = − [(Φ0 ⊗ I) + (I ⊗ Φ0)]⊗ Φ0 + 1
2 (DΣ0 ⊗ (I − Φ1)) ,

Γ2 = − £I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1
2DΣ1

¤⊗ Φ0 − 1
2 (DΣ0 ⊗ Φ2)

− [(Φ0 ⊗ I) + (I ⊗ Φ0)]⊗ (I − Φ1).

Note also from above that

Γ (Xt)
0 = − 12DΣ0Φ00 − [(Φ0 ⊗ I) + (I ⊗ Φ0)]xtΦ00 − Σ0x0t(I − Φ1)0

− £I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1
2DΣ1

¤
x̃tΦ

0
0 − [(Φ0 ⊗ I) + (I ⊗ Φ0)]xtx0t(I − Φ1)0 − 1

2DΣ0x̃
0
tΦ

0
2.

So

vec
¡
Γ (Xt)

0¢ = Λ0 + Λ1xt + Λ2x̃t,

Λ0 = −12 (Φ0 ⊗DΣ0) vec(I),
Λ1 = − (Φ0 ⊗ [(Φ0 ⊗ I) + (I ⊗ Φ0)]) + 1

2 ((I − Φ1)⊗DΣ0) ,
Λ2 = − ¡Φ0 ⊗ £I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤¢− 1

2 (Φ2 ⊗DΣ0)
− ((I − Φ1)⊗ [(Φ0 ⊗ I) + (I ⊗ Φ0)]) .
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Next, consider the variance of ε̃t+1 :

Ψ (Xt) ≡ Etε̃t+1ε̃0t+1 = Etx̃t+1x̃0t+1 − Etx̃t+1Etx̃0t+1,
= Etx̃t+1x̃0t+1 −

³
1
2DΣ0 + [(Φ0 ⊗ I) + (I ⊗ Φ0)]xt +

£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤
x̃t

´
×
³
1
2Σ

0
0D

0 + x0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0 + x̃0t
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤0´
,

∼= −12DΣ0
³
1
2Σ

0
0D

0 + x0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0 + x̃0t
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤0´

− [(Φ0 ⊗ I) + (I ⊗ Φ0)]xt
¡
1
2Σ

0
0D

0 + x0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0
¢

− £I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1
2DΣ1

¤
x̃t
1
2Σ

0
0D

0,

= −14DΣ0Σ00D0 − 1
2DΣ0x

0
t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0 − 1

2 [(Φ0 ⊗ I) + (I ⊗ Φ0)]xtΣ00D0

−12DΣ0x̃0t
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤0 − [(Φ0 ⊗ I) + (I ⊗ Φ0)]xtx0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0

−12
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤
x̃tΣ

0
0D

0.

Hence,

vec (Ψ (Xt)) = Ψ0 +Ψ1xt +Ψ2x̃t,

Ψ0 = −14 (DΣ0 ⊗DΣ0) vec(I),
Ψ1 = −12 ([(Φ0 ⊗ I) + (I ⊗ Φ0)]⊗DΣ0)− 1

2 (DΣ0 ⊗ [(Φ0 ⊗ I) + (I ⊗ Φ0)]) ,
Ψ2 = −12

£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤⊗DΣ0 − 1

2

¡
DΣ0 ⊗

£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤¢

− [(Φ0 ⊗ I) + (I ⊗ Φ0)]⊗ [(Φ0 ⊗ I) + (I ⊗ Φ0)] .

A.4 Derivation of Results R2 and R3

Let mt = πmXt and nt = πnXt for two variables mt and nt.We want to find the conditional covariance

between the two:

CVt (mt+1, nt+1) =
h
π0m π1m π2m

i
0 0 0

0 Ω(Xt) Γ (Xt)

0 Γ (Xt)
0
Ψ(Xt)




π00n
π10n
π20n

 ,
= π1mΩ(Xt)π

10
n + π2mΓ (Xt)

0
π10n + π1mΓ (Xt)π

20
n + π2mΨ(Xt)π

20
n ,

=
¡
π1n ⊗ π1m

¢
vec (Ω(Xt)) +

¡
π1n ⊗ π2m

¢
vec

¡
Γ (Xt)

0¢
+
¡
π2n ⊗ π1m

¢
vec (Γ (Xt)) +

¡
π2n ⊗ π2m

¢
vec (Ψ (Xt)) ,

=
¡
π1n ⊗ π1m

¢
Σ0 +

¡
π1n ⊗ π2m

¢
Λ0 +

¡
π2n ⊗ π1m

¢
Γ0 +

¡
π2n ⊗ π2m

¢
Ψ0

+
¡¡
π1n ⊗ π2m

¢
Λ1 +

¡
π2n ⊗ π1m

¢
Γ1 +

¡
π2n ⊗ π2m

¢
Ψ1
¢
xt

+
¡¡
π1n ⊗ π1m

¢
Σ1 +

¡
π1n ⊗ π2m

¢
Λ2 +

¡
π2n ⊗ π1m

¢
Γ2 +

¡
π2n ⊗ π2m

¢
Ψ2
¢
x̃t.
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So, to summarize,

CVt (mt+1, nt+1) = A (πm,πn)Xt,
A (πm,πn) =

h
A0m,n A1m,n A2m,n

i
,

A0m,n =
¡
π1n ⊗ π1m

¢
Σ0 +

¡
π1n ⊗ π2m

¢
Λ0 +

¡
π2n ⊗ π1m

¢
Γ0 +

¡
π2n ⊗ π2m

¢
Ψ0,

A1m,n =
¡
π1n ⊗ π2m

¢
Λ1 +

¡
π2n ⊗ π1m

¢
Γ1 +

¡
π2n ⊗ π2m

¢
Ψ1,

A2m,n =
¡
π1n ⊗ π1m

¢
Σ1 +

¡
π1n ⊗ π2m

¢
Λ2 +

¡
π2n ⊗ π1m

¢
Γ2 +

¡
π2n ⊗ π2m

¢
Ψ2.

To obtain the products of vectors involving the state vector Xt, we note that

πmXtX
0
tπ
0
n =

h
π0m π1m π2m

i
1 x0t x̃0t
xt xtx

0
t 0

x̃t 0 0




π00n
π10n
π20n

 ,
=

¡
π0m + π1mxt + π2mx̃t

¢
π00n +

¡
π0mx

0
t + π1mxtx

0
t

¢
π10n + π0mx̃

0
tπ
20
n ,

=
¡
π0n ⊗ π0m

¢
+
¡
π0n ⊗ π1m

¢
xt +

¡
π0n ⊗ π2m

¢
x̃t +

¡
π1n ⊗ π0m

¢
xt

+
¡
π1n ⊗ π1m

¢
x̃t +

¡
π2n ⊗ π0m

¢
x̃t.

Hence

πmXtX
0
tπ
0
n = B (πm,πn)Xt,

B (πm,πn) =
h
B0m,n B1m,n B2m,n

i
,

B0m,n =
¡
π0n ⊗ π0m

¢
vec(I) = vec(π0n ∗ π0m),

B1m,n =
¡
π0n ⊗ π1m

¢
+
¡
π1n ⊗ π0m

¢
,

B2m,n =
¡
π0n ⊗ π2m

¢
+
¡
π1n ⊗ π1m

¢
+
¡
π2n ⊗ π0m

¢
.
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