New Electronic Trading Systems
in Foreign Exchange Markets

Dagfinn Rime*
Norges Bank and Stockholm Institute for Financial Research

January 13, 2003

I Introduction 3
II The structure of foreign exchange markets 5
III Direct trading and voice brokers 12
IV Electronic brokers 19
V Internet trading 30
VI Summary 37
A Web sites on trading and networks 39

Glossary

Bid-ask spread Difference between the best buy price (ask) and best sell price (bid). The initiator of a trade buys at the ask and sells at the lower bid price. The spread is a measure of transaction costs. The buy price is also called the “offer”.

Broker Brokers match dealers in the interbank market without being a party to the transactions themselves, and without taking positions (cf. dealer).

The author would like to acknowledge helpful comments from Jan Strømme, Jan Engebretsen, Tina Kane, Steinar Holden, Tommy Sveen, Randi Næs, Johannes Skjeltorp, Haakon O.Aa. Solheim and two anonymous reviewers. Editorial assistance by Beverley Wahl is appreciated. Any remaining errors are the author’s responsibility. The views expressed here do not necessarily express those of Norges Bank (Central Bank of Norway). For correspondence: Norges Bank, P.O. Box 1179 Sentrum, N-0107 Oslo, Norway. Email: dagfinn.rime@norges-bank.no. Homepage http://www.sifr.org/dagfinn.html.
Counterparty credit risk The risk that the market participant on the other side of a transaction will default. Due to the large trade sizes in foreign exchange markets, credit risk is an important issue.

Call market A market where all traders trade at the same time when called upon.

Dealer A person employed by a bank whose primary business is entering into transactions on both sides of wholesale financial markets and seeking profits by taking risks in these markets (cf. broker).

Dealer market Market where orders for execution pass to an intermediary (dealer) for execution.

Interbank market The market where dealers trade exclusively with each other, either bilaterally or through brokers.

Liquidity Characteristic of a market where transactions do not excessively move prices. It is also easy to have a trade effected quickly without a long search for counterparties (“immediacy”). Liquid markets usually have low bid-ask spreads, high volume and (relatively) low volatility.

Limit order Order to buy a specified quantity up to a maximum price, or sell subject to a minimum price (cf. market order)

Market maker Dealer ready to quote buy and sell prices upon request. The market maker provides immediacy (liquidity services) to the market and receives compensation through the spread. There is no formal obligation to quote tight spreads; rather, market making is governed by reciprocity.

Market order Order to buy (or sell) a specified quantity at the best prevailing price (cf. limit order).

Order driven market Market where prices are determined by an order execution algorithm from participants sending firm buy and sell orders which are incorporated into the limit order book (cf. quote-driven or dealer market).

Order flow Signed flow of transactions. The transaction is given a positive (negative) sign if the initiator of the transactions is buying (selling).

Price discovery Determination of prices in a market. Incorporation of information into prices.

Quote-driven market Refers to a market where market makers post bid and ask quotes upon bilateral request. In the interbank market these prices are on a take-it-or-leave-it basis (cf. Order driven market).

Transparency Ability of market participants to observe trade information in a timely fashion.

The foreign exchange market can be divided in two segments: the interbank market and the customer market. Two recent advances in trading technology, electronic brokers in the interbank market and internet trading for customers, have significantly changed the structure of the foreign exchange market. In this paper we explain the functioning of electronic brokers and internet trading and discuss the economic con-
sequences.

I Introduction

The 1990s gave us what might prove to be the two biggest changes in foreign exchange market structure since World War II: electronic brokers were introduced into the interbank market in 1992; and in the late 1990s the internet became available as a trading channel for customers. What are the consequences for the market of these innovations? Is there any reason to believe that these recent technological developments have influenced the market in any significant way? Do not dealers in the foreign exchange market still fulfill their function as liquidity providers and aggregate information in their price setting? And, do not basic macroeconomic variables still drive exchange rates, irrespective of trading technology?

In an ideal world with perfect information these changes to the institutions of trading probably would not matter that much at the macroeconomic level. In such a world, exchange rates would be determined by expectations regarding macroeconomic fundamentals like inflation, productivity growth and interest rates. Exchange rates will be efficient asset prices when all market participants observe these fundamentals and agree on how they influence exchange rates. Furthermore, provision of liquidity would be much less risky than in a situation with imperfect information. However, as empirical evidence has shown all too clearly, models of an ideal world with perfect information do not hold, at least not for horizons shorter than a year or so.

Recently the microstructure approach to foreign exchange has made some promising steps towards solving some of these puzzles (see Richard K. Lyons, 2001a). This approach differs from the traditional macroeconomic approach by allowing for imperfect information, heterogeneous agents, and thereby, leaving a role for trading institutions as such. In such a world, technological changes such as the introduction of electronic
brokers and internet trading may be significant because they change the structure of the market. A different market structure changes the game played between the market participants. This may influence information aggregation capabilities and incentives for liquidity provision, and thereby different aspects of market quality like efficiency (price discovery), liquidity, and transaction costs. We are interested in understanding market structure since a well functioning foreign exchange market is important for the macroeconomy. This paper considers the impact of recent technological advances on the foreign exchange market by focusing on these properties of market quality.

New Economy and foreign exchange markets is a vast subject. We limit ourselves to the two major innovations in trading technology since trading institutions are an important part of a financial market’s structure. Furthermore, several recent studies show that trading is important for the determination of exchange rates. There is particular focus on a property of market structure called transparency, i.e. how much of the trading process market participants can observe. Since trading is an important determinant of exchange rates, observing the trading process is important to enable dealers to set the “correct” exchange rates. On a more general level, transparency relates to how efficient dealers can aggregate information.

There are of course many other uses of Information and Communication Technology (ICT) that have obviously influenced the markets that we do not address here. These include information providers such as Reuters and Bloomberg, computers’ calculation capabilities and the importance for option trading, and of course network technologies and computers in general. Two other technological innovations deserving special attention which we do not consider are the newly started settlement service CLS Bank (Continuous Linked Settlement), which went live on September 9th 2002, and the netting technology FXNet. The former links all participating countries’ payment systems for real-time settlement. With such a system in place in 1974 the famous Bankhaus Herstatt default would never had happened. FXNet is a technology for netting out gross liabilities. Both are very important for the handling of counterparty...
credit risk.

Sections II and III provide the background to the introduction of electronic brokers and internet trading. A brief description and history is given of the structure of the market prior to these innovations, followed by some considerations that dealers take account in their trading. The trading institutions of the 1980s are referred to clarify the differences. Section IV discusses electronic brokers, while Section V discusses internet trading. Section VI provides a summary.

II The structure of foreign exchange markets

Before we discuss electronic brokers and internet trading, we need an overview of the general structure of the foreign exchange market so to be able to understand the impact of these new trading institutions. Although electronic brokers were undoubtedly the most significant structural change in the 1990s, the general description given here is valid for the structure both before and after the introduction of electronic brokers. The reason is that brokers were present in the market also before electronic brokers were introduced. The introduction of internet trading, on the other hand, is still very recent, but may prove to be the most significant structural shift of the first decade of this century. This shift has the potential to overthrow the general structure of the market completely, a point that we come back to in Section V.

A Information and agents

The foreign exchange market is the oldest and largest financial market in the world, with $1,200 billion changing hand every day (April 2001). These trades can be divided into interbank trades and customer trades, representing the two segments of the market. In the interbank market, trading is either direct (bilateral – taking place

1This number includes spot, forward and swap volumes. In the following we will focus on spot trading since spot is the most fundamental.
between dealers) or brokered (inter-dealer trades). Prior to the advent of internet, customers traded only with banks. We could have added customer-to-customer internet based trading sites, but feel it is too early to pay them the same attention as the three methods already mentioned (interbank, either direct or brokered, and customer-bank). In the 1990s the market was often divided into three groups: customers, dealers and brokers. However, as broking becomes more and more electronic, and also is open to customers through the internet, we feel that it is more natural to focus on two main groups of traders: customers and dealers. The customers are the ultimate end-users of currency and they typically make the largest single trades. Customers may be central banks, governments, importers and exporters of goods and financial institutions like hedge funds.

Important characteristics of the foreign exchange market are that customers do not have access to the interbank market and that they do not trade with each other (except on the customer-to-customer sites mentioned above, which we return to later). The trading that takes place with customers is private information for the banks, and dealers stress the importance of seeing customer flows. An interesting question is what kind of information this trading may reveal? For understanding the concept of information in foreign exchange market we need to add some details to what we mean by information, and Lyons (2002) suggests the description given in Figure 1. The starting point is the expression of an asset price as the discounted expected value. Information may concern the expected value, the payoff-relevant part, or the discount rate (including the risk premium).

![Figure 1: Sources of private information](image)

<table>
<thead>
<tr>
<th>Concentrated</th>
<th>Payoffs</th>
<th>Discount rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispersed</td>
<td>Interest rate changes, interventions</td>
<td>Risk premiums (risk aversion, portfolio shift)</td>
</tr>
<tr>
<td></td>
<td>Expectations, info. interpretation (“market sentiment”)</td>
<td></td>
</tr>
</tbody>
</table>

Lyons (2002) suggests that information in the upper left corner is unlikely in foreign exchange markets, and that the lower right corner is the more relevant.
The upper left corner of Figure 1, concentrated payoff-relevant information, or information on risk-neutral valuations if you like, is the kind of private information that is typical in equity markets. In the case of foreign exchange, it probably does not constitute the main motivation for information-based trading. Changes in central banks’ interest rates are too infrequent and too shrouded in secrecy for private information about these rates to be a major driver of trading. However, private information about interventions is a possible candidate since central banks sometimes perform their interventions through particular banks. Bettina Peiers found that the exchange rate changes made by Deutsche Bank were leading the rates of other banks around through rumors of interventions.

Rather, Lyons suggests that it is the lower row in the table that is most relevant in foreign exchange markets. The information that needs to be aggregated by the market is not concentrated on a few people, but rather dispersed among many. In their 2002 paper, Martin D.D. Evans and Lyons present a model where customer trading represents portfolio shifts and signals changes in risk premiums (information of the type in the lower right cell). A risk premium arises as the compensation necessary to induce others to take the other side of the portfolio shift. This risk premium must be a permanent change in exchange rates since the new holders of currency must want to continue holding the currency. Their empirical results confirms this.

We can also make an argument for the lower left cell. Since no model so far has proven to be the correct model for exchange rates, agents are likely to have different views on exchange rates. Customers’ trading counts the “votes” of the customers on where the exchange rate is heading. The hypothesis that information is dispersed has implications for optimal market structure — what kind of trading institutions are best fitted for aggregating dispersed information? We come back to this in Section IV.
B Institutions

The market structure has not always been like the present structure. Prior to telecommunications, trading in foreign exchange markets could be described as a centralized call market. Trading in foreign exchange can be traced back to ancient times, when foreign exchange trading was a way to circumvent the ban on usury. Back in the 16th century, trading in foreign exchange occurred every third month at fairs in the Genoa area, each of which lasted for eight days.\(^2\) However, telecommunications changed the general structure of the foreign exchange market, and it has been more or less unaltered from the early 1930s up to the present.\(^3\) Drawing on the theory of the microstructure of financial markets, we can describe the current interbank foreign exchange market as follows:

- Trading is *decentralized* across several locations, as opposed to *centralized* on an exchange as is the case in many equity markets.
- There is *continuous* trading around the clock, as opposed to only when called upon as in a *call* market.
- There are *several* dealers that provide liquidity, as opposed to e.g. the specialist on the NYSE floor in earlier days.
- Liquidity is both *quote-driven*, i.e. created by quoting bid and ask prices in response to trading initiatives (market making, or dealer market), and *order-driven*, i.e. by entering limit-orders with brokers (auction market).
- The market is relatively *opaque*, i.e. has low transparency, compared with many equity markets.

\(^2\)The Genoa fairs lasted from 1532 to 1763 (see papers by M. de Cecco in Newman, Milgate, and Eatwell, 1992). After this Amsterdam, and then London, took over as the main locations for currency trading.

\(^3\)It is difficult to find information on market structure from earlier periods. Several brokers started up in London in the 1930s with broking over the telephone. Really active trading in foreign exchange did not, however, start until the mid 1960s, when regulations were eased in several European countries.
The introduction of telecommunications allowed decentralized trade of the asset foreign exchange, as is most natural. Banks want to be present where the customers are, and since an exchange rate is the relative price of two assets from two different countries, it is natural to have a decentralized market. Given that customers are in different time zones and may have an interest in the same asset, say $, trading must also be continuous around the clock. Finally, given the geographical pattern of customers, and that several banks serve them, it is natural to have a number of dealers acting as liquidity providers in each currency pair. The decentralized structure also makes it very difficult to regulate foreign exchange trading, and the market structure has therefore evolved endogenously. These factors, together with the lack of regulatory disclosure requirements, means that the foreign exchange markets are characterized by low transparency.

All this has economic consequences. Low transparency means that few of the dispersed signals that order flow may reveal will be observed by a single dealer. In a centralized call market, which is more transparent, information aggregation will typically be faster and more accurate. The lack of regulation is also important. Disclosure requirements are imposed on equity markets so that more trading, and hence more information, is observed by the market participants. As will be discussed later, the trading institutions also have implications for risk sharing.

C Interbank trading options

Foreign exchange trading typically follows a sequence. Customers’ trading is the primary source of currency demand, and the sequence starts with a customer contacting his bank with a wish to trade (dealers never take the initiative). The bank acts as market maker and gives quotes to the customer. Customers do not have access to the interbank market, so an exporter cannot contact his counterparty or counterparty’s bank directly. For a customer, trading with the counterparty directly involves credit risk which could be handled more efficiently by a bank. A dealer in the bank then
turns to the interbank market to cover the customer trade. Interbank trading actually accounts for between 60% and 80% of the total volume of foreign exchange trading, and we will come back to this issue in the next section since it is closely related to trading institutions.

In the interbank market the dealer has several options, as illustrated by the 2×2 matrix in Figure 2. In a multiple-dealer market the dealer may choose to provide liquidity as a market maker and give quotes when contacted by other dealers (incoming trade), or he may trade on other market makers' quotes (outgoing trade). Since this is bilateral, it is often called direct trading. Furthermore, the interbank market is a hybrid market in the sense that liquidity can be provided both through making markets and by entering limit orders with brokers. The brokers announce the best bid and ask prices, and trading on these is a market order. Brokered trades are often called indirect trading.

The information signal in trading is connected to the action of the most active part in the trade, often called the initiator or aggressor (outgoing trade). If the aggressor buys (sells) we say that it is a positive (negative) order flow, so order flow is just transactions with a sign. How is this informative? Think of the portfolio shift model of Evans and Lyons mentioned in the discussion of Figure 1: If the aggressor buys, that could be because he is covering a position after a customer purchase (portfolio shift into that currency). Alternatively, think of the proposition that order flow reveals information about other dealers’ expectations. Then a purchase on behalf of the aggressor could be a signal, with noise, that the aggressor believes the currency is undervalued. In both cases the positive order flow signals that the exchange rate should appreciate.

D Transparency

As mentioned above, transparency is low in foreign exchange markets compared to most equity markets. There are many forms of transparency: pre-trade and post-trade transparency, transparency of prices or trades, and transparency with respect
Figure 2: Interbank trading options

<table>
<thead>
<tr>
<th></th>
<th>Incoming (non-aggressor)</th>
<th>Outgoing (aggressor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Give quotes on request (market making)</td>
<td>Trade at other dealers’ quotes (“taker”)</td>
</tr>
<tr>
<td>Indirect</td>
<td>Dealer gives quote(s) to a broker (limit order)</td>
<td>Dealer trades at quotes given by a broker (market order)</td>
</tr>
</tbody>
</table>

A Market Maker gives quotes (buy and sell prices) on request from other dealers. The dealer that takes the initiative and asks for quotes is called the “aggressor”. Direct trading is bilateral trade over the D2000-1 computer system or the telephone. Indirect trading is trading through a broker, either a traditional “voice” broker (closed telephone network) or the electronic brokers D2000-2 and EBS.

to wether the customers or only the dealers can observe the trading process. To start with the last of these, in the foreign exchange markets only the dealers can observe anything other than their own trading. The trades with customers that initiate the trading sequence are only observed by the bank that receives the order, and hence are private information for the banks. In the interbank market, trades that are made directly between two dealers are only observed by the two dealers. The lack of disclosure requirements also ensures that these trades will not be observed by other dealers after the trade is made. Indirect trading is more transparent since the price and sign (buying or selling by aggressor) of the last trades are observable. In this sense trading through brokers is what determines the level of trade transparency. This level has evolved endogenously as a result of dealers indirect trading.

Price transparency is higher than trade transparency, but until recently customers’ ability to see prices was less than that of dealers. However, compared to many equity markets with indirect trading, transparency is still low. In many equity markets a trader may be able to see the identity of the best bid and ask, and often also a part of or the entire order book (all the other limit orders). In case of a trade, both the size and the identity of the counterparties are revealed in many equity markets.
III Direct trading and voice brokers

In this section we provide a further elaboration on the working of the interbank market prior to the electronic brokers by discussing how indirect and direct trading actually function and affect dealers’ behavior. As mentioned earlier, the trading institutions have been more or less unaltered for a long time, perhaps since the early 1930s when the first telephone brokers started. The composition of direct vs indirect trading has changed over time, however. For telephone brokers the main innovation came in the 1960s when brokers started operating through private telephone networks. These are installed free of charge in banks by brokers. The broker announces the best (limit order) bid and ask prices over intercoms at the dealers’ desk. If the dealer wants to trade at a limit order, i.e. submit a market order, he picks up the phone with the direct line and just say “MINE” if he is buying (at the ask price) and “YOURS” if he is selling (at the bid price). The voice broker then knows which of the two announced prices he is trading at. After a trade the broker announces the price and whether it was traded on the bid or the ask price. The size of the trade is not announced but standard sizes are like 1 and 5 million. This announcement was the only signal on market-wide order flow that the dealer received. Telephone brokers are often called voice brokers due to the announcements over intercom systems. Voice brokers were very popular up to mid 1980s at least. The main advantage for the dealers is that the dealer stays anonymous until the trade is made.

Direct trading was made by telephone or telex in the 1970s. In February 1981 Reuters introduced the Reuters Market Data Service (RMDS), which was like a bilateral bulletin board for conveying trading interest, for subsequent trading over the telephone. This system was replaced in 1987 by Reuters Dealing 2000-1, a closed network for bilateral electronic communication. Although a system for electronic trading, it did not revolutionize the market. The D2000-1 is more like an advanced telephone, and made the direct trading that used to place over the telephone more efficient. D2000-1
quickly became the dominant tool for trading bilaterally. The dealers “chat” in much the same manner as with “instant messengers” on the internet. Furthermore, trade tickets, needed to check trades and for settlement with counterparties, were sent automatically to the back office, and the dealer could trade faster and more efficiently with up to four conversations going simultaneously. With this system in place, direct trading started to take market share from voice brokers, and in the late 1980s/early 1990s interbank volume was split 50/50 between direct trading and voice brokers.

Table 1 reports some volume numbers from the UK, the US and Japan, the three largest single markets, to help us get an idea of the size of the market. First we notice that in London (UK) alone there is trading for over $500 billion each day, down from over $630 in 1998. The foreign exchange market have grown rapidly from the collapse of Bretton Woods in the early 1970s, until the downturn in volume that we see from 1998. Total volume has decreased similarly, down to $1,200 billion in 2001 from $1,490 billion in 1998. We come back to the downturn in the next section. The increase in volume through the 1980s and 1990s was primarily driven by increased globalization, a dramatic increase in trading with customers in the late 1980s, and more banks entering the foreign exchange market. The introduction of D2000-1 might, however, have been a useful trading tool in this process. Not only could the system handle more trades simultaneously, the dealer could contact four market makers simultaneously, but D2000-1 also made cross-border trading easier. Voice brokers are quite regional. There are New York-based, London-based, Frankfurt-based, Tokyo-based brokers, brokers serving Scandinavia etc. Chatting electronically seems to be less hampered by borders.

Notice also the high interbank share of foreign exchange volume in Table 1. During the 1990s the interbank share was between 60% and 80%, possibly at the high end for financial centers. This has been interpreted as speculative trading on the part of the banks, since it cannot be related to goods trading etc. However, within this trading structure with a high share of direct trading, a high interbank share may be the re-
Table 1: Daily trading volumes

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>US</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Total volume</td>
<td>504</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Total Interbank</td>
<td>341</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Total spot</td>
<td>151</td>
<td>104</td>
</tr>
<tr>
<td>1998</td>
<td>Total volume</td>
<td>637</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>Total Interbank</td>
<td>530</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Total spot</td>
<td>217</td>
<td>148</td>
</tr>
<tr>
<td>1995</td>
<td>Total volume</td>
<td>464</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>Total Interbank</td>
<td>349</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Total spot</td>
<td>186</td>
<td>134</td>
</tr>
<tr>
<td>1992</td>
<td>Total volume</td>
<td>290</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Total Interbank</td>
<td>230</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Total spot</td>
<td>148</td>
<td>95</td>
</tr>
<tr>
<td>1989</td>
<td>Total volume</td>
<td>184</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Total Interbank</td>
<td>161</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Total spot</td>
<td>119</td>
<td>81</td>
</tr>
<tr>
<td>1986</td>
<td>Total volume</td>
<td>90</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Total “Interbank”</td>
<td>82</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Total spot</td>
<td>66</td>
<td>34</td>
</tr>
</tbody>
</table>

Source: Average daily volumes as reported in BIS (1990, 1993, 1996, 1999, 2002). Volume and share in left and right column respectively for each country. All volumes corrected for local double-counting. Total volume and total interbank volume in each country is the sum of spot, forward and swap volumes in the overall and interbank markets respectively. Interbank share and spot share are calculated as share of total interbank volume.
sult of risk sharing between the banks after receiving large customer orders. Imagine that a large customer order, for example €100 million, ends at the desk of an interbank dealer. Let us assume that the dealer wants to get rid of it. The dealer has relationships with 10 other dealers/market makers and sells 10 million to each through (outgoing) direct trading. For the sake of the argument, assume that none of these dealers are particularly interested in the position. They accept the trade because they get compensation through the bid-ask spread (incoming trade on their behalf). Each of them turns to two of their contacts, and sells 5 million each. The interbank volume is now 200 million, and it continues to grow. The 5 million that 20 dealers have received are sold to other dealers again, and the volume reaches 300 million! The customer trade is passed on like a “hot potato”. When the process comes to an end all dealers, including our initial dealer, hold a share of the initial customer order. Large interbank trading flows could in other words be a consequence of a market structure with a high share of direct trading.

A Dealer behavior

How do the dealers behave in such a hybrid market? We can use the dealer studied by Lyons in 1992 (see Lyons, 2001a) as an example of how a market maker works. The dealer operated as a market maker in a New York investment bank in 1992, and traded almost entirely by giving quotes on the D2000-1 system (market making/direct incoming trading).

A market maker sets bid- and ask prices, the difference being the spread and the midpoint typically being his expectation. The spread is a function of three components: (i) adverse selection protection; (ii) risk management; and (iii) order processing costs and rents. To discourage informed traders, and make money from the uninformed (he loses always to the better informed), the market maker increases the spread with trade size, hence making it more expensive to trade. Similarly, the spread increases with size as compensation for taking on the risk in the trade. The part of
the spread due to order processing costs and rents is usually modeled as a constant.

The spread is measured in “pips”, with one pip being the fourth decimal in most exchange rates (the fifth in £-exchange rates). The median spread for the dmark/$ dealer studied by Lyons was three pips, and the median trade size was $3 million. Geir Bjønnes and Dagfinn Rime find in similar data for direct trading from 1998 a median spread of two pips, with a median trade size being $1 mill. The spread was relatively constant up to $5 million. This may seem like a tiny transaction cost. If the dmark/$ was trading at 1.8 then a two pip-spread is only slightly more than one basis-point (1%/100), and buying $1 million would cost approximately $55. When you realize that in April 1998 dmark/$ was traded for almost $100 billion daily in the interbank market alone (corrected for double counting), the risk sharing process mentioned above becomes quite expensive ($5.5 million daily in interbank dmark/$ trading alone).

The dealer that makes the contact (aggressor) asks for bid and ask prices for a given size without revealing his trading intentions. In “direct” trading, market makers are expected to give tight quotes promptly on request, and the aggressor is similarly expected to reply quickly. The quotes are on a take-it-or-leave-it basis. If there is a trade, the server analyzes the conversation to make precise transaction tickets. An example of a ticket with a conversation can be seen in Figure 3 and in the mid-panel of Figure 4(a).

The “Lyons dealer” increased his spread with the size of the trade to protect himself against better informed dealers. After observing the direction of the trade, he also adjusted the midpoint to take account of the information contained in the trade. Furthermore, he reduced/increased (“shaded”) both his prices when his inventory of currency was higher/lower than preferred so as to induce trade in his preferred direction in order to control his inventory risk. If he was “long” (positive holdings of e.g. $ against dmark) he wanted to make it attractive for others to buy from him.

This strategy makes perfect sense for this kind of dealer. The dealer, working in
An example of a transaction ticket with a D2000-1 conversation made March 16 1998. The first word means that the call came “From” another dealer. There is information regarding the institution code and the name of the counterpart, and the time (Greenwich Mean) of the printing of the ticket, the date, and the number assigned to the communication. DEM 1 means that this is a request for a spot DEM/USD quote for up to USD 1 million, since it is implicitly understood that it is DEM against USD. On line 4 we find the quoted bid and ask prices. Only the last two digits of the four decimals are quoted. In this case, the bid quote is 1.8145 and the ask quote is 1.8147. When confirming the transaction, the communication record provides the first three digits. In this case, the calling dealer buys USD 1 million at the price 1.8147. The record confirms the exact price, quantity and valuation (delivery) date (two days later for spot). The transaction price always equals the bid or the ask. There is also information regarding the settlement bank. ‘My DEM to “Settlement bank”’ identifies the settlement bank of “our bank”, while ‘My USD to “Settlement bank”’ identifies the settlement bank of the other bank. It is usual to end a conversation with standard phrases, such as “thanks and bye,” “thanks for deals friends.” The conversation ended one minute prior to printing of the transaction ticket, as seen from the last line.
an investment bank, did not see any customer order flow, and was consequently uninformed about events like portfolio or sentiment shift. Given that he did not have any superior information, there was little reason for him to trade at others’ quotes, which would cost him half the spread. Instead, he made money by making markets, selling on the high ask price and buying at the lower bid price. This explains his high incoming trade share. Furthermore, to make money on the spread it is necessary to price competitively in order to attract trades, so he controlled his inventory by shading his quote instead of submitting market orders to brokers, for example. Finally, as he attracted large dealers with his competitive pricing he also had to make sure to protect himself against an unfavorable information position.

This strategy would not necessarily work for a well informed dealer with large customer flow. First, he would be willing to pay half the spread to make use of the customer’s information quickly. Second, since he had a relationship with the Lyons dealer he was probably happy trading with a competitive and (relatively) uninformed market maker.

Other dealers could of course have chosen to trade with the voice brokers. With the broker the dealer had more options. He could have placed a market order with the broker, but if he was well informed there was always a risk of information leakage. Besides, direct trading was often the preferred channel when trading either very large or odd sizes. An alternative could be to post a limit order with the broker. First, he could choose whether he wanted to give two-way quotes (bid and ask) or only one-way quotes (bid or ask). If he knew whether he wanted to buy or sell, for example because he was well informed or for inventory control, he would give a one-way quote. Furthermore, timing is another important distinction between direct and indirect trades. In an incoming direct trade, the dealer does not decide when to trade. In an incoming indirect trade there is a timing decision, since the dealer decides when to place the limit order with the broker.

On the other hand, voice brokers are quite expensive to trade with. With many
voice brokers both the liquidity provider (the limit order dealer) and the aggressor have to pay commission, while with direct trading on the D2000-1 the only cost incurred is the fixed rental cost to Reuters for the keystation.

What were the consequences of the introduction of electronic direct trading through D2000-1? Probably not very extensive. As mentioned above, D2000-1 merely replaced the telephone as the tool for direct trading. The fact that it was more efficient, both for the dealer and for the back office, might have led to a decrease in the order processing cost of the spread, and hence lower spreads. More efficient trading could also allowed more trading, which again could have resulted in a more liquid market. In a more liquid market, meaning one in which it is easier to trade without a price impact, the risk of taking on a trade is lower, since it is easier to get rid of as well, and the inventory part of the spread may also have decreased. There is insufficient foreign exchange spread data available to allow anything precise to be said about this. We do know from market participants that spreads decreased during the late 1980s, but the main reason might have been increased competition between the banks and a more liquid market due to more active customers.

IV Electronic brokers

Electronic brokers collect orders from screens connected together in a network and match the orders, hence letting the screens represent a more centralized marketplace. As such they are perfectly suited to a decentralized market in need of efficient matching. The foreign exchange market, with its decentralized structure and quickly growing volumes, was also among the early adopters of electronic brokers.\(^4\) Subsequently many equity markets have also adopted electronic brokers.

Today there are two electronic brokers in the interbank market. The first, Dealing 2000-2, was introduced by Reuters in April 1992. The D2000-2 system comes bundled

\(^4\)The government bond markets, another decentralized market sharing many properties with foreign exchange markets, was even earlier in adopting electronic brokers.
together with the previously mentioned direct system, D2000-1. A year later, in April 1993, Minex was launched by Japanese banks, with EBS (Electronic Broking Services) following in September 1993. The EBS Partnership was established by several major market making banks to counter the dominant role of Reuters, and EBS acquired Minex in December 1995 and thereby gained a significant market share in Asia. Figure 4(a) shows the Dealing 2000 screen, which consists of both D2000-1 and D2000-2, while Figure 4(b) shows the EBS screen.

Figure 4: Electronic trading screens

(a) Reuters Dealing 2000 system
(b) EBS (electronic broker)

(a) Reuters Dealing 2000: This screen shows the Reuters Dealing 2000 system. The part in the middle contains the D2000-1 system for direct bilateral trading, and the top section is the D2000-2 electronic broker. The dealer may choose the contents of the screen. The dealer may choose which exchange rates to display in the electronic broker, and whether to display the best prices in the market (column marked best) and/or the best available to him (from credit-approved banks only). From the D2000-1 part we can see that the dealer has been contacted for a quote for USD4 million against DEM. The dealer replies with the quote “05 08”, which is understood to be bid 1.8305 and ask 1.8308. The contacting dealer responds with “I BUY”, and the system automatically fills in the line “TO CONFIRM AT 1.8308 ...” In the lower right corner of the screen, the dealer can see the price and direction of the last trades through the D2000-2 system.

(b) EBS: The left half of the EBS screen shows the bid and offer (ask) prices. The dealer chooses which exchange rates to display (the base currency is written first). The prices shown are either the best prices in the market, or the best available (from credit-approved banks only). The upper part of the right half of the screen show the dealer’s own trade. The lower part shows the price and direction of all trades through the system for selected exchange rates. “Given” means that it was traded at the bid price, and “Paid” means it was traded at the ask price. The intuition is that the limit order dealer is “given” the base currency (buys).

The electronic brokers work in a similar way to voice brokers; they actually offer speakers as well. When a limit order is entered there is first a price priority to ensure that it is always the best prices that are traded on, and then a time priority (price-time priority). Market orders are given priority according to time of entry, and the system matches the counterparties automatically. As with voice brokers, the entry of orders

5 Reuters Dealing 2000 was replaced by Dealing 3000 in 2000.
6 Electronic brokers are therefore also called automatic matching or electronic matching systems.
is anonymous, but both parties see the counterparty’s identity immediately after the trade.

Electronic brokers differ from voice brokers in three respects, and we come back to each later on: First, electronic brokers offer a higher level of transparency. Second, the fee structure makes electronic brokers cheaper. Finally, electronic brokers matches orders much more efficiently, at least for liquid standardized instruments. Table 2 compares spot volumes, and shares of interbank spot volumes, for direct trading, electronic brokers and voice brokers. Initially, electronic brokers took market shares only from the voice brokers, but later direct trading also lost market share to electronic brokers. Today electronic brokers constitutes the main trading channel in the interbank market. In Japan electronic brokers had almost three times more $/€ spot trading than D2000-1 in April 2001, and twice as much ¥/$ spot trading.

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>US</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001 Interbank spot</td>
<td>107</td>
<td>56</td>
<td>28</td>
</tr>
<tr>
<td>Voice broker, spot</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>El. broker, spot</td>
<td>72</td>
<td>44</td>
<td>13</td>
</tr>
<tr>
<td>Direct (teleph./D2000-1)</td>
<td></td>
<td>13</td>
<td>47</td>
</tr>
<tr>
<td>1998 Interbank spot</td>
<td>180</td>
<td>72</td>
<td>47</td>
</tr>
<tr>
<td>Voice broker, spot</td>
<td>9</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>El. broker, spot</td>
<td>70</td>
<td>46</td>
<td>17</td>
</tr>
<tr>
<td>Direct (teleph./D2000-1)</td>
<td>101</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>1995 Interbank spot</td>
<td>146</td>
<td>82</td>
<td>43</td>
</tr>
<tr>
<td>Voice broker, spot</td>
<td>51</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>El. broker, spot</td>
<td>23</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Direct (teleph./D2000-1)</td>
<td>71</td>
<td>33</td>
<td>27</td>
</tr>
<tr>
<td>1992 Interbank spot</td>
<td>115</td>
<td>95</td>
<td>48</td>
</tr>
<tr>
<td>Voice broker, spot</td>
<td>53</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>D2000-1</td>
<td>55</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>1989 Interbank total</td>
<td>161</td>
<td>116</td>
<td>78</td>
</tr>
<tr>
<td>Total broker</td>
<td>71</td>
<td>57</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
</tbody>
</table>

Source: BIS (1990, 1993, 1996, 1999, 2002). Volume and share in left and right column respectively for each country. All volumes corrected for local double-counting. The interbank spot share is the share of the interbank volume as defined earlier. The shares of each system is the share of the interbank spot volume. The direct share for 1995, 1998 and 2001 (Japan only) is the interbank spot volume less the broker volumes. The electronic broker numbers for the UK in 2001 is only approximate, based on interviews by BoE with dealers and brokers. Empty cells are due to missing data but there is reason to believe that spot volumes of voice brokers in 2001 were small. Electronic brokers were introduced after the 1992 survey.
A Transparency

The introduction of electronic brokers have definitely led to higher transparency in the market. Firstly, dealers can see the price and sign of all trades, and not only the ones that the voice broker manages to announce. Hence, post-trade transparency is higher. Secondly, it is easier to follow the evolution of several exchange rates, so price transparency is higher. The dealer decides himself which exchange rates to display on the screen. Furthermore, even if the dealers can’t see the whole order book, they do have more pre-trade information with electronic brokers than with voice brokers. In the top right-hand part of the D2000 screen and at the side of the bid and offer (ask) on the EBS screen the dealers can see the best bid and ask prices for trades larger than 10 million. Although this means higher transparency, the information is not particularly useful. As can be seen from the EBS screen, all figures here are equal to the best bid and ask prices. In periods with high liquidity spreads can be more or less constant up to 10 million, as can be seen from the 16:00 o’clock graph in Figure 5(b).

Figure 5(a) shows the whole order book on D2000-2 at 18:00 one day in October 1997. The market is much deeper at the bid (lower curve) than at the ask (upper curve).7 If a dealer wants to buy 10 million with a market order he will “walk up the book” ("lift the ask"), the first part of his 10 million will be filled at the lowest ask, and then subsequently at higher prices.8 The dealer cannot see these curves, but on the electronic broker screens he would see that the ask prices for sizes larger than 10 million is (much) higher than the best ask. So when entering his market order for 10 million, he knows approximately what his average price will be. This information would not be available with voice brokers.

The economic impact of higher transparency may be a more informationally efficient market, i.e. exchange rates that reflect available information better. Richard

7This kind of picture is not unusual at this time of day after the European markets have ceased their most active trading ("closed"). The similar picture from 16:00 in Figure 5(b) when both Europe and New York are active shows almost similar depth at both the bid and the ask.

8If the dealer is selling, his market order will be “hitting the bid”, i.e. first selling at the highest bid and subsequently at lower prices.
Payne and William Killeen, Lyons and Michael Moore have studied the information content of order flow through D2000-2 and EBS respectively. Both studies find a permanent effect on exchange rates due to order flow. This implies that order flow aggregates relevant information, since if the effect was temporary it would mean that the information lost value, which can hardly be a property of truly relevant information.

Since electronic brokers do not see geographical borders like voice brokers, they might be more effective in aggregating dispersed information. All participating banks are on an equal footing, and from Table 3 we see that the cross-border share of interbank spot trading has increased. This positive aggregation effect could be counteracted by fragmentation of the trading process since there are two electronic brokers. Fragmentation is unfortunate because there is a positive externality if all flow is concentrated in one system; both liquidity and information aggregation improves. However, before the introduction of electronic brokers the market for indirect trading was probably more fragmented, as the voice brokers were both more regional in their coverage and more numerous. Furthermore, the market has settled the fragmentation problem already: EBS is dominant in $, € and ¥ trading, while D2000-2 dominates in £ and smaller currencies.

Reuters and EBS report having installed 7000 and 2500 keystations respectively. In
terms of volume, EBS is probably the larger given its dominant position in the largest markets. Reuters probably has more keystations installed because almost all banks want the D2000-1 part that comes with the Dealing 2000 system.

<table>
<thead>
<tr>
<th></th>
<th>Interbank share</th>
<th>Cross-border interbank spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>77</td>
<td>75</td>
</tr>
<tr>
<td>United States</td>
<td>73</td>
<td>57</td>
</tr>
<tr>
<td>Japan</td>
<td>76</td>
<td>74</td>
</tr>
<tr>
<td>Singapore</td>
<td>79</td>
<td>73</td>
</tr>
<tr>
<td>Germany</td>
<td>84</td>
<td>82</td>
</tr>
<tr>
<td>Switzerland</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>86</td>
<td>85</td>
</tr>
<tr>
<td>France</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td>Canada</td>
<td>74</td>
<td>61</td>
</tr>
<tr>
<td>Netherlands</td>
<td>85</td>
<td>76</td>
</tr>
<tr>
<td>Sweden</td>
<td>68</td>
<td>74</td>
</tr>
<tr>
<td>Denmark</td>
<td>80</td>
<td>87</td>
</tr>
<tr>
<td>Norway</td>
<td>78</td>
<td>62</td>
</tr>
<tr>
<td>Finland</td>
<td>78</td>
<td>71</td>
</tr>
<tr>
<td>Austria</td>
<td>81</td>
<td>55</td>
</tr>
<tr>
<td>Belgium</td>
<td>72</td>
<td>74</td>
</tr>
<tr>
<td>Greece</td>
<td>64</td>
<td>55</td>
</tr>
<tr>
<td>Ireland</td>
<td>88</td>
<td>84</td>
</tr>
<tr>
<td>Italy</td>
<td>73</td>
<td>70</td>
</tr>
<tr>
<td>Spain</td>
<td>93</td>
<td>91</td>
</tr>
</tbody>
</table>

Source: BIS (1990, 1993, 1996, 1999, 2002). Interbank-share of total volume and cross-border share of interbank spot volume. For almost all countries the cross-border share of interbank spot volume has increased. For a majority of the countries the interbank share has decreased.

The increased transparency probably represents the greatest progress for the foreign exchange market. At a first glance, it might seem optimal to have a perfectly transparent market. But then informed dealers do not have incentives to participate, and hence less information will be aggregated. Furthermore, higher transparency makes it more risky to take on large trades from customers because it is more difficult to offset the trade before the rest of the market is aware of it. As suggested in Section III, inventory control after customer trades is very important in the foreign exchange market. However, the transparency of the interbank foreign exchange market prior to electronic brokers was so low that in this case the improvement in transparency is probably welfare improving. And there are no signs that dealers do not want to trade
using the electronic brokers, despite the higher transparency. As Table 2 above shows, the volume and share of trading have been increasing since their introduction.

B Liquidity

There seems to be some disagreement as to whether the electronic brokers have improved the liquidity of the market. In a quote driven market, liquidity is provided on demand, i.e. when the market maker is contacted (direct trading, like D2000-1). The market maker might be reluctant to trade, perhaps because of high volatility, and therefore demands a wide spread, but if he follows the norms of the market, immediacy will be supplied. In an order driven market, immediacy will not be supplied unless the liquidity provider, the limit order submitter, finds it beneficial. Voice brokers used to call market makers to get them to enter limit orders in such situation, but electronic brokers can hardly make such calls.

In a survey by the Federal Reserve Bank of New York in 1998 market participants expressed concerns that the electronic brokers were replacing not only voice brokers but also market makers (direct trading). They also believed that electronic brokers would lead to less two-way (both bid and ask) quoting in periods of distress, and hence lower liquidity. Entering a limit order on a electronic broker is an free option given to the market, and this option increase in value with volatility. Judging from Table 2 above, electronic brokers have taken market share also from direct trading, so the concern of less market making may be justified.

It would be wrong, however, to conclude that liquidity is lower due to the adoption of electronic brokers. Alain Chaboud and Steven Weinberg have found that there is no changes in volatility in the period from 1987 to 2001. And the fear of a shortage of limit orders on both buy and sell side of the market applies more to markets with lower liquidity initially. The currencies traded through electronic brokers were those that were most liquid before the introduction of electronic brokers.

Electronic brokers may actually prove more liquid than direct market making trad-
ing in periods of distress. This because with the electronic brokers more dealers are exposed to informed traders. Thus, the dealers share the disadvantage of trading with better informed dealers, while in direct trading the market maker must carry the disadvantage alone.

Furthermore, the comparison is not completely fair. Both the voice brokers and the direct trading have a stronger regional focus while electronic brokers are not aware of borders or established relationships. Electronic matching is much more efficient, and without the regional focus electronic brokers can attract liquidity more easily than voice brokers and direct trading. Consequently, the potential for liquidity is much greater with electronic brokers.

Gabrielle Galati links the fall in volume from 1998 to 2001, seen from Table 1, partly to the introduction of electronic brokers. With the increased price transparency offered by electronic brokers there is less need for dealers to trade to know where the market price is trading at the moment. Of course, the regional voice broker could have filled that role (they do announce prices), but the global electronic broker do it so much better. And more efficient matching means that there is less need for the hot potato trading mentioned above as a means of sharing risk. Electronic brokers are particularly apt for the kind of risk sharing we see in the interbank market. Table 3 also show that the interbank share of trading has decreased in most of the countries, consistent with less hot potato trading. Also, the fall in volume has come without any increase in volatility implying that electronic brokers maintain a level of liquidity at a lower level of volume than the previous market structure.

C Transaction costs

Dealers choose to trade through the electronic brokers in stead of voice brokers, despite the increased transparency, because of more efficient matching, higher execution

\footnote{The other reasons Galati invokes are consolidation within the banking and corporate sector and increased risk perception after the Asian crises in 1998.}
speed and lower transaction costs. Commissions are lower for electronic brokers than for voice brokers. On the electronic brokers only the aggressor (market order) pays commission, and in the case of Reuters D2000-2 the commission is $25 independent of order size. The presence of a competitor probably keeps commissions low as well. After all, EBS was started as a challenge to Reuters’ dominant position. Commissions for voice brokers is often paid by both parties, and increase with size. However, voice brokers often charge individual commissions so some dealers may find that for small orders voice brokers are cheaper. Lower commissions together with more efficient order processing reduces the order processing cost element of the spread.

Since dealers share the disadvantage of trading with better informed counterpar-ties with other dealers when trading on brokers, the information component may also have decreased. The more liquid the broker is, the stronger is this sharing. More effi-cient matching makes inventory control easier, which decreases the inventory element of spreads. Furthermore, the flexibility and liquidity of electronic brokers makes inventory control cheaper in a subtle way. Back in 1992 the Lyons dealer mentioned above could control inventory by placing a market order (direct or indirect) and paying half the spread, by shading quotes, or by placing a limit order with a (less liquid) voice broker. The dealers studied by Bjønnes and Rime in 1998 used a different strat-egy: They placed limit orders at the best bid when they wanted to increase inventory (buy), thereby avoided the cost of “shading” to induce trade in their preferred direc-tion. In calm periods brokers’ liquidity was so good that they did not have to improve upon the best prices in order to control inventory.

Finally, since the dealer can decide on the time of submission of limit orders, there is more scope for active timing that is not available with incoming direct trades. A dealer that wants to buy immediately, e.g. in order to utilize information, can either submit a market order at the best ask, or enter a limit order that improves the best bid. Of course this kind of “shading” is a signal to the rest of the market, but so is a market order. The advantage is that the dealer does not pay commissions on the limit order,
and that he may trade at a better price than with a market order. This strategy makes
the spread tighter, especially since it is seldom the same dealer that submits both best
bid and best ask.

The decrease in spreads should not be exaggerated. Spreads were small also in 1992
according to the study by Lyons (three pips), while evidence from electronic brokers
shows spreads around two pips. Charles Goodhart, Ryan Love, Payne and Rime find
that average spread in both dmark/$ and $/€ was between 2.5 and 3 pips, using data
from 1997 and 1999 respectively. In the meantime volume also increased, so the direct
impact of electronic brokers as such is difficult to evaluate. For customers and small
banks the gains are significant, however. Small banks did not have access to tight
spreads earlier, and higher price transparency has enabled customers to have a more
precise view of spreads in the interbank market which has led to smaller spreads for
customers.

To this it should be added that it has been suggested that the effective spread in
$/€ may be higher than for dmark/$ because the electronic brokers are rigidly set at
four decimals. Since a typical dmark/$ exchange rate was 1.8 and the typical $/€ rate
is somewhat below parity, each pip is more valuable. The electronic brokers have so
far set the quote at 4 decimals, perhaps 5 decimals should have been used.

D The future of direct trading and voice brokers

So far electronic brokers have taken market share from both voice brokers and direct
trading. This does not mean that voice brokers and direct trading will disappear from
the market. Electronic brokers are most suitable for very liquid markets, and the for-
eign exchange market is much more than $/€. Many smaller currencies are not traded
on electronic brokers because their markets are not liquid enough. And in periods of
distress some direct trading may be wanted since then there are always trading pos-
sibilities, while the liquidity of electronic brokers may diminish during such periods.
The recent release by EBS of a direct trading product called EBSTrader constitutes fur-
ther evidence. Furthermore, it is no means sure that a pure electronic broker market would be optimal. The results are mixed (see Larry Harris, 2002).

Voice brokers too have a role in the market. In less liquid currencies they can use their knowledge of positions to track down counterparties. Voice brokers are also moving into less liquid derivatives. Instead, what we can expect to see is more derivative trading through electronic brokers. Forwards were introduced on the D2000-2 in 1997, and attempts are being made to set up electronic brokers, independently of Reuters and EBS, for options trading.

E Policy implications

What are the consequences for the authorities? Increased transparency is beneficial also for the authorities. Several central banks have electronic brokers installed and use them for market monitoring among other things. Electronic brokers may prove useful for secret interventions, given pre-trade anonymity and matching without human interventions and possible information leakages as with voice brokers.

If we come to a situation where the majority of interbank trading is directed through the two electronic brokers, they may also prove useful in attempts to regulate the foreign exchange market. By regulating brokers, and requiring banks to use only regulated electronic brokers, the way could be opened for implementing trading halts for example. Another possibility is to collect a transaction tax (“Tobin tax”) through the electronic brokers.

Will we see electronic brokers with open limit order books, i.e. so that dealers can see the curves in Figure 5? Many equity markets have introduced this. Some equity markets have done it to counter competing trading venues and thereby attract liquidity. For the sake of argument, we leave the question of competing trading venues like internet sites for customers for the next section.

10 A questionnaire survey of central bank use of electronic brokers has been conducted for this paper. Many central banks required confidentiality for their replies, which prevents us from being specific.
In the foreign exchange market an open limit order would be a giant leap with respect to transparency. So far transparency has evolved endogenously, and at a rather low level. Reuters and EBS will probably not open the book unless the users, the banks, want it. Interbank trading is very much about inventory control since the customer orders are so much larger than the ordinary interbank transaction. Opening the book as in equity markets would make it much more difficult to control inventory because it would be harder to hide one’s trading intentions.

Even if an open book could improve efficiency it is by no means certain that regulators should try to implement it. The increased inventory costs could feed back to customer spreads because it becomes more risky to take on large positions.

V Internet trading

Internet trading represents a possible structural change in the bank-customer relationship. Through the 1990s, customers’ trading was an important source of both income and information for banks. Internet trading has made the customer segment much more competitive, and may increase the transparency of customers’ trading and thereby change the information role of customers. In this section we discuss the evolution of customer trading, the consequences of internet trading, and what may lie ahead.

In the early 1990s, customers’ access to information on interbank market activity were low, and they was relatively loyal to their banks. Customers requested quotes from banks over the telephone. A Reuters service called FXFX provided customers with information on interbank prices, but spreads on FXFX were much wider than in the interbank market. The midpoint was quite accurate, though. Banks used this screen as an advertising channel to customers. In this period customer trading was very profitable for banks.

During the 1990s, price transparency for customers increased, partly as a result of
electronic brokers that made interbank transaction prices easier to collect and publish online. This, together with an increasing concern on the part of customers about non-competitive terms and being locked-in with their banks, led customers to start shopping around at several banks for quotes. The customer segment became more competitive.

A The emergence of non-bank customer trading

In the mid-1990s several Electronic Communication Networks (ECNs) were set up in the US as alternative trading venues for equity trading. Also in these markets, customers were concerned about non-competitive pricing by their brokers trading on the NYSE and NASDAQ, and they could often get better terms with the ECNs. In the same spirit, CMC started Deal4Free, the first non-bank internet site for customer trading, in May 1996. Later, several non-bank internet sites were established for customer-to-customer trading, such as IFX Markets (1999), MatchbookFX (Sep. 1999, closed down in 2000), HotSpotFX (Feb. 2001), OANDA (Mar. 2001) and ChoiceFX. Most of these systems are organized as crossing networks, but try to resemble electronic brokers. Crossing networks are trading systems that obtain their prices from another trading venue; hence there is no price discovery. However, some, like CMCs Deal4Free, are more like traditional direct trading, hence with their own price discovery, while some, like ChoiceFX, depend on limit orders from customers (like an electronic broker).

Most of the independent sites start up as crossing networks because they cannot expect to get sufficient limit orders to create a viable market. Some of them, like Deal4Free and IFX, operated as market makers prior to internet and provide some liquidity on their own. The sites mimic electronic brokers, but most often the site is counterparty to all trades. This suits customers because they do not want to take the counterparty risk themselves, but on the other hand they could be concerned that the site may not take sufficient account of their needs as the site also trades on its own. The sites can be counterparty to all transactions because customers must place a mar-
gin account with the sites, and because they control the matching. Some of the sites probably hope to some day have sufficient liquidity, i.e. limit orders, to have a true exchange, but many are happy being crossing networks. It is important to note that crossing networks are dependent of the interbank market (primary market) and therefore cannot replace it. They can attract a lot of customers from the banks, however, and thereby influence the interbank market.

Transparency differs from site to site. ChoiceFX is very similar to the interbank electronic brokers, while HotSpotFX, ChoiceFX, and MatchbookFX before cease of business, show the whole order book. Knowing the whole book is useful even in a crossing network of two reasons: first, it may give a signal on market-wide customer flow, and second, it may be useful for timing of own trading.

Whether non-bank sites will be a major force depends on whether they give competitive terms. In many cases they do not. The interbank spread for volumes of €1–5 million is two pips, and the customer spread could be 3–5 pips for good customers. Some of the non-bank sites advertise these kinds of spreads, but then for a tenth of the volume. The focus for many non-bank sites is the small customers, and they might be competitive in this sub-segment, but they will not be a major force. That does not mean that their presence does not influence the competition for customers; it does.

B Internet trading with banks

Banks’ initial response to the non-bank internet trading sites for customers was to establish their own customer sites. In these sites, pricing is still given on request, but the administration of orders is easier for both customers and banks. The first network-based trading opportunity offered to customers by a bank was a closed network called FX Connect introduced by State Street in August 1996. The introduction of the bank-independent Currenex, which started trading in April 2000, was a turning point. This was the first multi-bank site, meaning that several banks were invited to provide prices. Immediately afterwards FX Connect opened up its system to other
dealers as liquidity providers. FXall followed with their first trading in May 2001, established initially with seven major banks as owners in June 2000. The last addition was Atriax, started in December 2000 and backed by Reuters and three of the biggest banks. The big four sites quickly became FXConnect, Currenex, FXall and Atriax, but Atriax was later closed down in early April 2002. More details on the four multi-bank sites are provided in Table 4.

According to a survey made by TowerGroup in March 2002, volumes traded through banks’ internet portals are still limited. FX Connect by State Street is the largest with $6 billion as a daily average for March 2002. FXall was second with $1.5 billion, Currenex third with $1.1 billion, while Atriax had $0.3 billion (just before they closed down). The volume of banks’ proprietary customer sites was estimated to be $5.5 billion aggregated. This should be compared with the total volumes of other financial institutions ($329 billion) and non-financial customers ($156 billion) from the most recent survey by BIS. The total internet bank volume of $14.4 billion is small, so far, compared to the traditional volume. The aggregate volume of the non-bank independent portals is probably lower. Euromoney reports strong growth for these sites since, and reports $10 billion and $4 billion on normal days in November 2002 for FX Connect and FXall respectively.

The lack of convincing success (several portals have closed down already) is probably related to the facts that (i) many customers are worried about security with internet based trading (FX Connect started as a closed network), and (ii) the portals struggling with high costs, as true straight through processing (STP) is expensive to install. STP means that the trade enters directly into the customers’ systems without any manual work. In a recent survey by Euromoney after the demise of Atriax, a majority believed that there would be only two multi-bank portals within a short time. Which of the three remaining big ones will disappear is difficult to say from banks’ practices. Today most banks participate in two or three of the multi-bank portals in addition to running their own (single-bank) portal.
<table>
<thead>
<tr>
<th>Shareholders</th>
<th>Atriax</th>
<th>Currenex</th>
<th>FXall</th>
<th>FX Connect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Three banks, Reuters,</td>
<td>VC firms, 1 corporate,</td>
<td>14 Banks</td>
<td>State Street</td>
</tr>
<tr>
<td></td>
<td>employees.</td>
<td>1 bank, employees.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transaction fee</td>
<td>Paid by price makers</td>
<td>Both counterparties</td>
<td>Paid by price makers</td>
<td>Paid by price makers</td>
</tr>
<tr>
<td>No. of banks</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>Up to 5.</td>
</tr>
<tr>
<td>competing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pricing</td>
<td>Request for quote</td>
<td>Request + Streaming</td>
<td>Request + Streaming</td>
<td>Request for quote</td>
</tr>
<tr>
<td></td>
<td></td>
<td>prices (auto/manual feed)</td>
<td>prices</td>
<td></td>
</tr>
<tr>
<td>Real-time</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>streaming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>firm prices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of currencies</td>
<td>43</td>
<td>160</td>
<td>Unlimited</td>
<td>Unlimited</td>
</tr>
<tr>
<td>No. liquidity providers</td>
<td>About 70</td>
<td>45</td>
<td>53</td>
<td>34</td>
</tr>
<tr>
<td>No. of customers</td>
<td>300 (approx)</td>
<td>200 (approx)</td>
<td>Undisclosed</td>
<td>425</td>
</tr>
<tr>
<td>Customer type</td>
<td>Corporates 50%, Investors 50% (est.)</td>
<td>Corporates 75%, Investors 25%</td>
<td>Corporates 40%, Investors 60%</td>
<td>100% investors</td>
</tr>
</tbody>
</table>

Source: Euromoney, FXWeek and companies web pages. Atriax ceased business in April 2002. Number of liquidity providers mean banks providing prices.
So far the main consequence of internet trading is limited to transactions costs for customers. As Table 4 shows, requesting quotes, as in market making, as opposed to trading through brokers, is still the most common. Compared with earlier practice, multi-bank portals enable the customer to obtain quotes from more banks more efficiently and this increases the competition. With pricing on request, customer order flow will still be private information held by banks. With an electronic broker for customers, as with interbank brokers, customer trading would to a lesser extent be private information. But recently, at least two of the portals have started working with structures more similar to crossing networks, with prices feeding into the system automatically.

C Possible scenarios

Lyons (2002) suggests three possible scenarios with regard to the bank-customer relationship: In the first, internet trading proves so successful that banks lose their entire customer trading. Hence, interbank trading will also vanish since customer trading is the primary reason for interbank trade in the first place. Since there is a positive externality with centralized trading, a network benefit, a centralized electronic broker that reaps all network benefits will probably emerge. Customers trade with each other, while the banks act as legal middlemen for the counterparties in the settlement of the trade. Lyons believes that a centralized electronic broker would be more efficient in providing liquidity than the current dealership structure where dealers, acting as market makers, fill orders from their own inventory. The reason for this is that the risks associated with such trading are high, and the efficient matching performed by electronic brokers makes them very efficient for risk-sharing. Furthermore, the banks have an advantage in settling the trades since they are better at credit management. This centralized electronic broker will offer much higher transparency than there is at present, but customer order flow will still be informative.

The second scenario is a continuation of the current state of affairs, with banks
having all customer trading. In this scenario banks give customers favourable terms so as to keep away the competition from non-bank sites. Banks are willing to this because they are able to profit from the information in their customer order flows.

In the final scenario, one of the interbank electronic brokers allows customers to trade alongside dealers. If a non-bank site acquired considerable liquidity, the owners of EBS, one of the interbank electronic brokers, could open their system to customers and offer much higher liquidity than their non-bank competitor. Also in this scenario, the banks would be middlemen between customers. This third scenario implies higher transparency than there is in today’s structure, but unless the electronic broker in which customers participate is an open one, customer order flow will remain private information because one cannot tell identities from the electronic brokers. Information about market-wide order flow will be much better, however.

Of these scenarios, the second, the continuation of the current bank-customer structure, is most likely. If the first were about to emerge, the third scenario would certainly put a stop to it. However, of the three scenarios, it is the second that the banks prefer. They would rather keep information about their customer flows private than share it. So banks quote tight spreads to customers, keep the non-bank sites at a low level, and gain by their informational advantage. We see that this is how FXall and FX Connect are set up: price competitively, so as to gain customer flow and keeping the non-bank sites away, but within a dealership structure so as to keep the customer order flow private information.

Let us end this section by drawing attention to the CLS Bank mentioned in the introduction. Currently, banks are better at handling counterparty risk than non-bank sites. Since only banks can participate in the CLS Bank, this system will give banks an even larger advantage in handling counterparty risk, making it even more difficult for non-bank sites to attract large flows.
VI Summary

In this paper we have discussed the possible consequences of electronic trading in foreign exchange markets. The first electronic trading system in the foreign exchange market was the Reuters D2000-1 system for direct trading. Its contribution was merely to replace trading over the telephone or telex, and to make direct trading more efficient. The impact on the market structure as such was small.

In 1992 electronic brokers were introduced. They quickly took market shares from the traditional voice brokers, because of their lower costs. At the end of the 1990s they also took market shares from direct trading. Their main advantage is the very efficient matching they offer, which is so important for controlling risk in foreign exchange markets. Their introduction has made the market more transparent, and thus hopefully also more efficient, but this is hard to test. When it comes to liquidity provision, the interbank market is still a hybrid market. However, it is more transparent, more centralized, more effective in matching, and with a shift of focus from market making to order books. When it comes to consequences for volatility and transaction costs, the effect of electronic brokers seems to be modest. Transaction costs have not changed much since 1992 and volatility has stayed more or less the same. In the coming years we expect to see more derivative trading on electronic brokers.

Internet trading is recent in the area of foreign exchange. Independent internet sites have challenged the banks’ relationship with customers, and made competition for customers stiffer, with lower transaction costs for customers as a result. Will these non-bank internet sites be able to take over banks’ dominant position as liquidity providers to customers? Most likely not. The banks believe that customer order flow is important private information, and hence are willing to fight for it. Furthermore, they have the necessary means to win the war. At the moment the bank-based internet sites have more liquidity and are pricing competitively so as to keep the non-bank sites out of the main market. If this does not succeed, they can let customers into the interbank
market. We will most likely see a consolidation of internet sites in the future as the site with highest liquidity reaps the network effects and become dominant. This site will have liquidity provided by several banks. This might lead to an increase in customer flow transparency, but not alter the private information nature of customer trading.

It is important to note that the structure of the foreign exchange market has evolved endogenously with the banks in the driver seat. The structure, and previous changes in structure, have probably been beneficial for the banks. Do the private interests of banks go hand in hand with public interest? One could of course argue that the market should be regulated, that trading should be more transparent etc., but it is not certain that this would lead to a welfare improving outcome. Transaction costs are low, also for customers, and the market has implemented new systems that make trading more efficient in handling the peculiarities of foreign exchange. However, volumes are also extremely large in the foreign exchange market, making the amounts used on transaction costs considerable, and the efficiency of foreign exchange rates, or the lack thereof, is an open question. The introduction of electronic trading has made the market more centralized and hence more accessible to regulation. Regulation of foreign exchange markets is no longer a utopia, and should be considered.
A Web sites on trading and networks

As of Dec. 31st 2002:

- **Academic sites**
 - Nicholas Economides’ site for network economics (www.stern.nyu.edu/networks/site.html)
 - Ian Domiwitz’ page for trade automation (www.smeal.psu.edu/faculty/ihd1/automation.html)

- **Interbank trading systems**
 - EBS (www.ebs.com)
 - Reuters D3000 (about.reuters.com/products/dealing3000/index.asp)
 - Reuters D3000 and D2000 (about.reuters.com/transactions/tran00m.htm)

- **Multi-bank internet trading**
 - FXall (www.fxall.com). Supported by 55 banks. Voted best in Euromoney’s 2002 FX poll, second in market share. Started trading in May 2001, tradable prices are fed automatically into the system from other systems.
 - FX Connect (can be reached through www.globallink.com). Initially a closed-system owned by State Street, now an internet platform where 33 banks participate. Rated no. 1 on market share in Euromoney’s 2002 FX poll. Opened up to other banks in March 2000.
 - Centradia (www.centradia.com)

- **Single-bank internet trading**
 - Citigroup’s CitiFX (www.citifx.citibank.com). Trading occurs at daily fixings on prices from EBS and Reuters.
 - Goldman Sachs (fx.gs.com)
 - Dresdner Kleinwort Wasserstein’s Piranha FX (www.drkw.com/online/fx)
 - Deutsche Bank’s db-markets (www.deutsche-bank.de/tradingproducts_e.htm with further links to db-markets)

11These pages are usually for registered customers only. The list here contains only those that have some information for non-registered customers.
Credit Suisse First Boston’s PrimeFX

Canadian Imperial (www.fxdealing.cibc.com)

Non-bank sites for internet-trading

- HotSpotFX, online trading (www.hotspotfx.com). A system that resembles an electronic broker, but for customers.
- IG Markets, online trading (www.igforex.com)
- OANDA (fxtrade.oanda.com). Test the trading platform with virtual money
- FX DealerDirect (www.fxdd.com). Direct trading software for the retail market
- DealStation (www.mgforex.com). Direct trading
- GAIN Capital (www.gaincapital.com). Internet electronic broker
- ChoiceFX (www.choicefx.com)
- GFT’s DealBookFX (www.gftforex.com/products/dealbookfx)
- GCI (www.gcitrading.com)
- CMS (www.cms-forex.com)
- IFX Markets (www.ifxmarkets.com)

General information:

- Yahoo (dir.yahoo.com/Business_and_Economy/Shopping_and_Services/Financial_Services/Investment_Services/Brokerages/Currencies/Internet_Trading)
- Business.com (www.business.com/directory/financial_services/investment_banking_and_brokerage/brokerage_firms/foreign_exchange_brokers)
- Euromoney magazine (www.euromoney.com). All but the four latest issues are free to the public, including their FX poll.
- FXStreet (www.fxstreet.com). A portal to online brokers
- FXLinks (www.fxlinks.com). A portal to trading and analysis
- FXWeek magazine (www.fxweek.com). Lots of useful links, surveys of banks and bank revenues.
- The Foreign Exchange Committee of Federal Reserve Bank of New York (www.newyorkfed.org/fxc/fxc.html)

Continuous Linked Settlement (www.cls-services.com)

FXNet (www.fxnet.com)
Further reading

