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1 Introduction

The endogenous technological change literature provides a coherent and attractive framework

for modeling productivity growth at the industry and the aggregate level. It also enables

a study of how economic growth responds to policies and market structure. A key aspect

of the growth process is the interplay between innovations and productivity improvements

by existing firms on the one hand and entry by more productive, new firms on the other.

Existing evidence suggests that this interplay is important for productivity growth. For

example, Bartelsman and Doms (2000) and Foster et al. (2000), among others, document that

entry of new establishments (plants) accounts for about 25% of average TFP growth at the

industry level, with the remaining productivity improvements accounted for by continuing

establishments (Lentz and Mortensen (2008) find an even more important role for entry).

These issues, however, are diffi cult to address with either of the two leading approaches to

endogenous technological change, the expanding variety models, e.g., Romer (1990), Gross-

man and Helpman (1991c), Jones (1995), and the Schumpeterian quality ladder models, e.g.,

Segerstrom and Dinopoloulos (1990), Aghion and Howitt (1992), Grossman and Helpman

(1991b).1 The expanding variety models do not provide a framework for directly addressing

these questions.2 The Schumpeterian models are potentially better suited to studying the

interplay between incumbents and entrants as they focus on the process of creative destruc-

tion and entry. Nevertheless, because of Arrow’s replacement effect (Arrow 1962), these

baseline models predict that all innovation should be undertaken by new firms and thus does

not provide a framework for the analysis of the bulk of productivity growth accounted for

continuing firms and establishments.3

This paper provides a simple framework that combines these two ideas by Schumpeter

and involves simultaneous innovation by new and existing establishments.4 The model is a

tractable (and minimal) extension of the textbook multisector Schumpeterian growth model.

1Klette and Kortum (2004) is an exception and will be discussed below.
2In the expanding variety models, the identity of the firms that are undertaking the innovation does not

matter, so one could assume that it is the existing producers that are inventing new varieties, though this
will be essentially determining the distribution of productivity improvements across firms by assumption.

3Models of step-by-step innovation, such as Aghion et al. (2001), Aghion et al. (2005a), and Acemoglu
and Akcigit (2006), allow innovation by incumbents, but fix the set of firms competing within an industry,
and thus do not feature entry. Aghion et al. (2005b) consider an extension of these models in which there is
entry, but focus on how the threat of entry may induce incumbents to innovate.

4In the model, each firm will consist of a single plant, thus the terms “establishment,” “plant” and
“firm”can be used interchangeably. Clearly, models that distinguish between plants and firms made up of
multiple plants would be better suited to empirical analysis of industry dynamics, but would also be more
complex. We are following the bulk of the endogenous technological change literature in abstracting from
this important distinction. For models in which dynamics of multi-establishment firms can be studied to see
Klette and Kortum (2004) and Acemoglu et al. (2013).
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A given number of sectors produce inputs (machines) for the unique final good of the econ-

omy. In each sector, there is a quality ladder, and at any point in time, a single firm has

access to the highest quality input (machine). This firm can increase its quality contin-

uously by undertaking “incremental” R&D in order to increase productivity and profits.

These R&D investments generate productivity growth by continuing firms. At the same

time, potential entrants undertake “radical” R&D in order to create a better input and

replace the incumbent.5 A large case study literature on the nature of innovation, for exam-

ple, Freeman (1982), Pennings and Buitendam (1987), Tushman and Anderson (1986) and

Scherer (1984), documents how established firms are the main source of innovations that

improve existing products, while new firms invest in more radical and “original”innovations

(see also the discussion in Arrow 1974). Recent work by Akcigit and Kerr (2010) provides

empirical evidence from the US Census of Manufacturers that large firms engage more in

“exploitative”R&D, while small firms perform “exploratory”R&D (defined similarly to the

notions of “incremental”and “radical”R&D here).

The dynamic equilibrium of this economy can be characterized in closed-form and leads

to a number of interesting comparative static results. It generates endogenous growth in a

manner similar to the standard endogenous technological change models, but the contribution

of incumbent (continuing plants) and new firms to growth is determined in equilibrium.

Our model identifies a new effect: the rate of entry of new firms depresses the profitability

of incumbent innovation and, via this channel, may reduce aggregate productivity growth.

Whether this is the case or not depends on the degree of diminishing returns to incumbent

innovation. When incumbent innovation has a linear technology, greater entry or policies

that encourage entry reduce overall innovation and growth. But in the more plausible case

where incumbent innovation exhibits diminishing returns, the relationship between entry

and overall growth is ambiguous, and depends on whether the degree of diminishing returns

is above or below a critical threshold. This result highlights that, despite the Schumpeterian

character of the model here, policies that encourage entry may create countervailing effects

and may have less than expected or little impact on the overall innovation and growth rate

of the economy.

Since existing firms are involved in innovation and expand their sizes as they increase

their productivity and there is entry and exit of firms, the model, despite its simplicity, also

5Continuing firms do not invest in radical R&D because of Arrow’s replacement effect, but generate
productivity growth as they have access to a technology for improving the quality of their machines/products
and have the incentives to do so. Etro (2004) provides an alternative model in which incumbents invest in
R&D because, as in Aghion et al. (2001), Aghion et al. (2005a), and Acemoglu and Akcigit (2006), they are
engaged in a patents race against entrants. He shows that the Arrow replacement effect disappears when
incumbents are Stackelberg leaders in this race.
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generates rich firm dynamics and an endogenous distribution of firm sizes. The available

evidence suggests that firm size distribution, or its tail for firms above a certain size, can be

approximated by a Pareto distribution with a shape coeffi cient close to one (i.e., the so-called

“Zipf’s distribution,”where the fraction of firms with size greater than S is proportional to

1/S, e.g., Lucas 1978, Gabaix 1999, Axtell 2001).6 We show that a slight variant of the

model where costly imitation is also allowed (so that new firms enter into sectors that fall

significantly below the average in terms of quality, ensuring an endogenous lower bound

to quality), the stationary firm size distribution has a Pareto tail with a shape coeffi cient

approximately equal to one.7

Our paper is most closely related to Klette and Kortum (2004), and to a handful of

recent papers building on their work, such as Lentz and Mortensen (2008) and Acemoglu

et al. (2013). Klette and Kortum construct a rich model of firm and aggregate innovation

dynamics. Their model is one of expanding product varieties and the firm size distribution is

driven by differences in the number of products that a particular firm produces. Klette and

Kortum assume that firms with more products have an advantage in discovering more new

products. With this assumption, their model generates the same patterns as here and also

matches additional facts about propensity to patent and differential survival probabilities by

size. One disadvantage of this approach is that the firm size distribution is not driven by the

dynamics of continuing plants (and if new products are interpreted as new plants or estab-

lishments, the Klette-Kortum model predicts that all productivity growth will be driven by

entry of new plants, though this may be an extreme interpretation, since some new products

are produced in existing plants). The current model is best viewed as complementary to

Klette and Kortum (2004), and focuses on innovations by existing firm in the same line of

business instead of the introduction of new products. In practice, both types of innovations

appear to be important and it is plausible that existing large firms might be more success-

6Our model also implies that firm growth is consistent with the so-called “Gibrat’s Law,”which posits
a unit root in firm growth and appears to be a good approximation to the data (see, for example, Sutton
(1997) and Sutton (1998)), even though detailed analysis shows significant deviations from Gibrat’s Law for
small firms, see, for example, Hall (1987), Akcigit (2010) and Rossi-Hansberg and Wright (2007b). See also
Dunne and Samuelson (1988), Dunne and Samuelson (1989) and Klepper (1996) for patterns of firm entry
and exit. For evidence on firm size distribution, see the classic paper by Simon and Bonini (1958) and the
recent evidence in Axtell (2001), and Rossi-Hansberg and Wright (2007b). The later finds a slight deviation
from Zipf’s law for firms with more than 10,000 employees. For the size distribution of cities, see, among
others, Dobkins and Ioannides (1998), Gabaix (1999) and Eeckhout and Jovanovic (2002).

7Firm dynamics leading to this result are richer than those implied by many existing models, since firm
growth is driven both by the expansion of incumbents and entry (both of which are fully endogenous).
Nevertheless, as in standard Schumpeterian models, entrants are more productive, and hence larger, than
incumbents. This feature can be relaxed by assuming that it takes entrants a while to reach their higher
potential productivity, though this extension would significantly complicate the analysis (e.g., Freeman
(1982)). See Luttmer (2010a) for a model with this feature.
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ful in locating new product opportunities.8 Nevertheless, both qualitative and some recent

quantitative evidence suggest that innovation by existing firms and existing lines of products

are important in innovation and productivity growth. Abernathy (1980), Lieberman (1984),

and Scherer (1984), among others, provide various case studies documenting the importance

of innovations by existing firms and establishments in the same line of business (for example,

Abernathy stresses the role of innovations by General Motors and Ford in the car industry).

Empirical work by Bartelsman and Doms (2000) and Foster et al. (2000) also suggests that

productivity growth by continuing establishments plays a major role in industry productivity

growth, while Broda and Weinstein (1996) provide empirical evidence on the importance of

improvements in the quality of products in international trade.

Several papers provide models with innovation from both incumbents and entrants, but

based on a different approach from ours. Grossman and Helpman (1991a), Segerstrom and

Zolnierek (1999), and Denicolo and Zanchettin (2012) generate this result focusing only

on “radical innovations” that replace old products, but assume that the incumbents have

lower cost of doing innovation compared to the entrants. Peretto (1999), Luttmer (2007),

Atkeson and Burstein (2010), and Acemoglu et al. (2013) consider models in which entrants’

new products are fully differentiated from the incumbents’product, thus eschewing creative

destruction (and incumbents and entrants are equally likely to invest in new products). In

contrast to these papers, in our work incumbents specialize on improving their products

while entrants engage in radical R&D in order to create higher quality product and overtake

product lines previously operated by incumbents.

Other related papers include Lentz and Mortensen (2008), Klepper (1996) and Acemoglu

et al. (2013). Lentz and Mortensen (2008) and Acemoglu et al. (2013) extend Klette and

Kortum’s model by introducing additional sources of heterogeneity and estimate the model’s

parameters. Klepper (1996) documents various facts about firm size, entry and exit decisions,

and innovation, and provides a simple descriptive model that can account for these facts.

Lastly, our paper is also related to the set of papers on firm heterogeneity and firm size

distribution which include Jovanovic (1982), Hopenhayn (1992), Ericson and Pakes (1995),

Melitz (2003), Rossi-Hansberg and Wright (2007b,a), Lagos (2001), and Luttmer (2004,

2007, 2010a,b). Many of these papers generate realistic firm size distributions based on pro-

ductivity heterogeneity (combined with fixed costs of operation). They typically take the

stochastic productivity growth process of firms as exogenous, whereas our focus here is on

understanding how R&D decisions of firms shape the endogenous process of productivity

8Scherer (1984), for example, emphasizes both the importance of innovation by continuing firms (and
establishments) and that larger firms produce more products.
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growth. Luttmer’s recent papers (2010a, 2010b) are particularly notable, as they also in-

corporate exit and entry decisions, and generate empirically realistic firm size distributions

under the assumption that there are knowledge spillovers across firms (and with exogenous

aggregate growth). Our model, despite being highly tractable and only a small deviation

from the textbook Schumpeterian model, also generates a realistic firm size distribution

(with a Pareto tail as in Luttmer (2007) for firm sizes, Gabaix (1999) and Cordoba (2008)

for cities, or Benhabib et al. (2010) for wealth distribution). To the best of our knowledge,

ours is the first paper to analytically characterize the stationary firm size distribution with

fully endogenous growth rates (of both continuing firms and entrants).9

The rest of the paper is organized as follows. Section 2 presents the basic environment

and characterizes the equilibrium. In Section 3, we characterize the balanced growth path

and equilibrium firm size distribution. Section Section 5 concludes, while the Appendix

contains several proofs omitted from the text and some additional results.

2 Baseline Model

2.1 Environment

The economy is in continuous time and admits a representative household with the standard

constant relative risk aversion (CRRA) preference∫ ∞
0

e−ρt
C (t)1−θ − 1

1− θ dt,

where θ is the coeffi cient of relative risk aversion or the inverse of the intertemporal elasticity

of substitution.

Population is constant at L and labor is supplied inelastically. The resource constraint

at time t takes the form

C (t) +X (t) + Z (t) ≤ Y (t) , (1)

where C (t) is consumption, X (t) is aggregate spending on machines, and Z (t) is total

expenditure on R&D at time t.

There is a continuum of machines (inputs) normalized to 1 used in the production of a

unique final good. Each machine line is denoted by ν ∈ [0, 1]. The production function of

the unique final good is given by:

Y (t) =
1

1− β

[∫ 1

0

q (ν, t)β x (ν, t|q)1−β dν

]
Lβ, (2)

9See Luttmer (2010c) for a review of the current literature.

5



where x (ν, t|q) is the quantity of the machine of type ν of quality q used in the production
process. This production process implicitly imposes that only the highest quality machine

will be used in production for each type of machine ν ∈ [0, 1].

Throughout, the price of the final good at each point is normalized to 1 (relative prices

of final goods across different periods being determined by the interest rate).

The engine of economic growth here will be two forms of process innovations that lead to

quality improvements: (1) Innovation by incumbents. (2) Creative destruction by entrants.

Let q (ν, t) be the quality of machine line ν at time t. We assume the following “quality

ladder”for each machine type:

q (ν, t) = λnq (ν, s) for all v and t,

where λ > 1 and n is the number of incremental innovations on this machine line between

time s ≤ t and time t, where time s is the date at which this particular machine type was first

invented and q (ν, s) refers to its quality at that point. The incumbent has a fully enforced

patent on the machines that it has developed (though this patent does not prevent entrants

leapfrogging the incumbent’s quality). We assume that at time t = 0, each machine line

starts with some quality q (ν, 0) > 0 owned by an incumbent with a fully-enforced patent on

this initial machine quality.

Incremental innovations can only be performed by the incumbent producer.10 So we

can think of those as “tinkering” innovations that improve the quality of the machine. If

the current incumbent spends an amount z (ν, t) q (ν, t) of the final good for this type of

innovation on a machine of current quality q (ν, t), it has a flow rate of innovation equal to

φ (z (ν, t)), where φ (z) is strictly increasing, concave in z and satisfies the following Inada-

type assumption:11

φ (0) = 0 and φ′ (0) =∞.

Recall that such an innovation results in a proportional improvement in quality and the

resulting new machine will have quality λq (ν, t).

The alternative to incremental innovations are radical innovations. A new firm (entrant)

can undertake R&D to innovate over the existing machines in machine line ν at time t.12 If

10This is similar to the assumption in section 7.3 in Barro and Sala-i Martin (2004) that the incumbents
have some cost advantage in conducting research. Here we make an extrem assumption that the cost
of incremental research is infinite to the entrants. However, incumbents and entrants have equal cost in
performing radical research.

11More formally, this implies that for any interval ∆t > 0, the probability of one incremental innovation
is φ (z (ν, t)) ∆t and the probability of more than one incremental innovation is o (∆t) with o (∆t) /∆t → 0
as ∆t→ 0.

12Incumbents could also access the technology for radical innovations, but would choose not to. Arrow’s
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the current quality of machine is q (ν, t), then by spending one unit of the final good, this

new firm has a flow rate of innovation equal to η(ẑ(ν,t))
q(ν,t)

, where η (·) is a strictly decreasing,
continuously differentiable function, and ẑ (ν, t) q (ν, t) is the total amount of R&D by new

entrants towards machine line ν at time t. The presence of the strictly decreasing function η

captures the fact that when many firms are undertaking R&D to replace the same machine

line, they are likely to try similar ideas, thus there will be some amount of “external”

diminishing returns (new entrants will be “fishing out of the same pond”). Since each entrant

attempting R&D on this line is potentially small, they will all take ẑ (ν, t) as given. Given the

total amount of R&D,ẑ (ν, t) q (ν, t), by new entrants and the assumption on the flow rate of

innovation, the rate of radical innovations realized in machine ν at time t is ẑ (ν, t) η (ẑ (ν, t)).

This implicit assumption that the cost of radical innovations is proportional to the current

quality level in a sector is consistent with the assumption on the innovation technology, φ (·)
of the incumbents.

Throughout we assume that zη (z) is strictly increasing in z so that greater aggregate

R&D towards a particular machine line increases the overall likelihood of discovering a

superior machine. We also suppose that η (z) satisfies the following Inada-type assumptions

lim
z→0

zη (z) = 0 and lim
z→∞

zη (z) =∞.

An innovation by an entrant leads to a new machine of quality κq (ν, t), where κ > λ. This

is the sense in which innovation by entrants are more “radical” than those of incumbents.

Existing empirical evidence from studies of innovation support the notion that innovations

by new entrants are more significant or radical than those of incumbents.13 We assume that

whether the entrant was a previous incumbent or not does not matter for its technology of

innovation or for the outcome of its innovation activities.14

Simple examples of functions φ (·) and η (·) that satisfy the requirements above are

φ (z) = Az1−α and η (z) = Bz−γ, (3)

with α, γ ∈ (0, 1). We will sometimes use these functional forms to illustrate the results we

present below.

replacement effect implies that since entrants make zero or negative profits from this technology (because
of free entry), the profits of incumbents, who would be replacing their own product, would be negative.
Incumbents will still find it profitable to use the technology for incremental innovations, which is not available
to entrants.

13However, it may take a while for the successful entrants to realize the full productivity gains from these
innovations (e.g., Freeman 1982). We are abstracting from this aspect.

14The model in Chapter 14.3 in Acemoglu (2008) corresponds to a special case of the model presented
here with linear φ, i.e., φ (z) = φz.
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Now we turn to describing the production technology. Once a particular machine of

quality q (ν, t) has been invented, any quantity of this machine can be produced at constant

marginal cost, which we normalize at 1−β without loss of any generality in order to simplify
the expressions below. This implies that the total amount of expenditure on the production

of intermediate goods at time t is

X (t) = (1− β)

∫ 1

0

x (ν, t) dν, (4)

where x (ν, t) is the quantity of this machine used in final good production. Similarly, the

total expenditure on R&D is

Z (t) =

∫ 1

0

[z (ν, t) + ẑ (ν, t)] q (ν, t) dν, (5)

where q (ν, t) refers to the highest quality of the machine of type ν at time t. Notice also that

total R&D is the sum of R&D by incumbents and entrants (z (ν, t) and ẑ (ν, t) respectively).

Finally, define px (ν, t|q) as the price of machine type ν of quality q (ν, t) at time t. This

expression stands for px (ν, t|q (ν, t)), but there should be no confusion in this notation since

it is clear that q refers to q (ν, t), and we will use this notation for other variables as well (and

moreover, we also write z (ν, t) and ẑ (ν, t) without conditioning on the type and quality of

the machine at which R&D is directed, since this will not cause any confusion and simplifies

the notation).

2.2 Equilibrium Definitions

An allocation in this economy consists of time paths of consumption levels, aggregate spend-

ing on machines, and aggregate R&D expenditure [C (t) , X (t) , Z (t)]∞t=0, time paths for

R&D expenditure by incumbents and entrants [z (ν, t) , ẑ (ν, t)]∞v∈[0,1],t=0, time paths of prices

and quantities of each machine and the net present discounted value of profits from that

machine, [px (ν, t|q) , x (ν, t) , V (ν, t|q)]∞v∈[0,1],t=0, and time paths of interest rates and wage

rates, [r (t) , w (t)]∞t=0. An equilibrium is an allocation where R&D decisions by entrants max-

imize their net present discounted value; pricing, quantity and R&D decisions by incumbents

maximize their net present discounted value; the representative household maximizes utility;

final good producers maximize profits; and the labor and final good markets clear.

Let us start with the aggregate production function for the final good production. Profit

maximization by the final good sector implies that the demand for the highest available

quality of machine ν ∈ [0, 1] at time t is given by

x (ν, t) = px (ν, t|q)−1/β q (ν, t)L for all ν ∈ [0, 1] and all t. (6)
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The price px (ν, t|q) will be determined by the profit maximization of the monopolist holding
the patent for machine of type ν and quality q (ν, t). Note that the demand from the final

good sector for machines in (6) is iso-elastic, so the unconstrained monopoly price is given

by the usual formula with a constant markup over marginal cost. Throughout, we assume

that:

Assumption 1 κ ≥
(

1
1−β

) 1−β
β

So after an innovation by an entrant, there will not be limit pricing. Instead, the entrant

will be able to set the unconstrained profit-maximizing (monopoly) price.15 By implication,

an entrant that innovates further after its own initial innovation will also be able to set the

unconstrained monopoly price.16 Assumption 1 also implies that, when the highest quality

machine is sold at the monopoly price, the final good sector will only use this machine type

and thus justifies the form of the final good production function in (2) which imposes that

only the highest quality machine in each line will be used.

Since the demand for machines in (6) is iso-elastic and given the marginal cost 1−β, the
profit-maximizing monopoly price is

px (ν, t|q) = 1. (7)

Combining this with (6) implies

x (ν, t|q) = qL. (8)

Consequently, the flow profits of a firm with the monopoly rights on the machine of quality

q can be computed as:

π (ν, t|q) = βqL. (9)

15This assumption is adopted for simplicity. Our results would not be affected if immediately after entry,
new firms set a limit price as in Grossman and Helpman (1991a), though in this case we would have to keep
track of changing markups for the first few incremental innovations after entry.

16In this analysis, we are ignoring the incumbent’s potential incentives, after being replaced, to continue
to invest in “incremental” innovations with the hope of eventually catching up with a new entrant. This is
without much loss of generality, since such investment is unlikely to be profitable. In particular, let Ṽ (ν, t|q)
denote the value of a just replaced incumbent. Then its optimal investment in incremental innovation is

given by z̃ = arg maxz≥0 φ (z)
(
Ṽ (ν, t|λq)− Ṽ (ν, t|q)

)
− zq. We have Ṽ (ν, t|λq)− Ṽ (ν, t|q) ≤ Ṽ (ν, t|λq) ≤

V (ν, t|λq) = vλq, where V is defined in (14) as the value function of an incumbent which has not been
replaced by an entrant; and V (ν, t|λq) = vλq in a balanced growth path. From the first-order condition on

z we have z̃ =
(
φ′
)−1 ( q

Ṽ (ν,t|λq)−Ṽ (ν,t|q)

)
≤
(
φ′
)−1 ( 1

vλ

)
= z. Hence, the condition

φ (z) ≤ η (ẑ)

is suffi cient (though of course not necessary) to ensure that it is more profitable to invest in R&D for radical
innovations (where η (ẑ) is the equilibrium rate of success in such innovations derived below). This condition
is thus also suffi cient to ensure that it is not profitable for just-replaced incumbents to invest in incremental
innovations.
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Next, substituting (8) into (2), we obtain that total output is given by

Y (t) =
1

1− βQ (t)L, (10)

where

Q (t) ≡
∫ 1

0

q (ν, t) dν (11)

is the average total quality of machines and will be the only state variable in this economy.

Since we have assumed that q (ν, 0) > 0 for all ν, (11) also implies Q (0) > 0 as the relevant

initial condition of our economy.17

As a by-product, we also obtain that the aggregate spending on machines is

X (t) = (1− β)Q (t)L. (12)

Moreover, since the labor market is competitive, the wage rate at time t is

w (t) =
∂Y

∂L
=

β

1− βQ (t) . (13)

To characterize the full equilibrium, we need to determine R&D effort levels by incum-

bents and entrants. To do this, let us write the net present value of a monopolist with the

highest quality of machine q at time t in machine line ν:

V (v, t|q) = Et

[∫ T (ν,t)

t

e−
∫ t+s
t r(t+s̃)ds̃ (π (ν, t+ s|q)− z (ν, t+ s) q (t+ s)) ds

]
, (14)

where T (ν, t) is a stopping time where a new entrant enters into the sector ν.18Under optimal

R&D choice of the incumbents, their value function V (ν, t|q) satisfies the standard Hamilton-
Jacobi-Bellman equation:

r (t)V (ν, t|q)−
.

V (ν, t|q) = max
z(ν,t)≥0

{π (ν, t|q)− z (ν, t) q (ν, t)

+φ (z (ν, t)) (V (ν, t|λq)− V (ν, t|q))− ẑ (ν, t) η (ẑ (ν, t))V (ν, t|q)},
(15)

17One might be worried about whether the average quality Q (t) in (11) is well-defined, since we do not
know how q (ν, t) will look like as a function of ν and the function q (·, t) may not be integrable. This is not
a problem in the current context, however. Since the index ν has no intrinsic meaning, we can rank the ν’s
such that ν 7→ q (ν, t) is nondecreasing. Then the average in (11) exists when defined as a Lebesgue integral.

18The quality q (ν, t+ s) follows a Poisson process such that q (ν, t+ s+ ∆s) = λq (ν, t+ s) with proba-
bility φ (z (ν, t+ s)) ∆s (obviously with ∆s infinitesimal), and if the R&D of the entrants into the sector is
ẑ (ν, t+ s1), then the distribution of T (ν, t) is

Pr (T (ν, t) ≥ t+ s) = Et
[
e−

∫ s
0
ẑ(ν,t+s1)η(ẑ(ν,t+s1))ds1

]
.

10



where ẑ (ν, t) η (ẑ (ν, t)) is the rate at which radical innovations by entrants occur in sector ν

at time t and φ (z (ν, t)) is the rate at which the incumbent improves its technology. The first

term in (15), π (ν, t|q), is flow of profit given by (9), while the second term is the expenditure
of the incumbent for improving the quality of its machine. The second line includes changes

in the value of the incumbent due to innovation either by itself (at the rate φ (z (v, t)), the

quality of its product increases from q to λq) or by an entrant (at the rate ẑ (ν, t) η (ẑ (ν, t)),

the incumbent is replaced and receives zero value from then on).19 The value function is

written with a maximum on the right hand side, since z (ν, t) is a choice variable for the

incumbent.

Free entry by entrants implies that we must have:20

η (ẑ (ν, t))V (ν, t|κq (ν, t)) ≤ q (ν, t) , and

η (ẑ (ν, t))V (ν, t|κq (ν, t)) = q (ν, t) if ẑ (ν, t) > 0, (16)

which takes into account the fact that by spending an amount q (ν, t), the entrant generates

a flow rate of innovation of η (ẑ), and if this innovation is successful (flow rate η (ẑ (ν, t))),

then the entrant will end up with a machine of quality κq, thus earning the (net present

discounted) value V (ν, t|κq). The free entry condition is written in complementary-slackness
form, since it is possible that in equilibrium there will be no innovation by entrants.

Finally, maximization by the representative household implies the familiar Euler equation,
.

C (t)

C (t)
=
r (t)− ρ

θ
, (17)

and the transversality condition takes the form

lim
t→∞

e−
∫ t
0 r(s)ds

[∫ 1

0

V (ν, t|q) dν
]

= 0. (18)

This transversality condition follows because the total value of corporate assets is
∫ 1

0
V (ν, t|q) dν.

Even though the evolution of the quality of each machine is line is stochastic, the value of

a machine of type ν of quality q at time t, V (ν, t|q) is non-stochastic. Either q is not the
highest quality in this machine line, in which case the value function of the firm with a

machine of quality q is 0, or alternatively, V (ν, t|q) is given by (14).
We summarize the conditions for an equilibrium as follows:

19The fact that the incumbent has zero value from then on follows from the assumption that, after being
replaced, a previous incumbent has no advantage relative to other entrants (see footnote 16).

20Since there is a continuum of machines ν ∈ [0, 1], all optimality conditions should be more formally
stated as “for all ν ∈ [0, 1] except subsets of [0, 1] of zero Lebesgue measure”or as “almost everywhere”. We
will not add this qualification to simplify the notation and the exposition.
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Definition 1 An equilibrium is given by time paths of {C (t) , X (t) , Z (t)}∞t=0 that sat-

isfy (1), (5), (12) and (18); time paths for R&D expenditure by incumbents and entrants,

{z (ν, t) , ẑ (ν, t)}∞v∈[0,1],t=0 that satisfy (15) and (16); time paths of prices and quantities of

each machine and the net present discounted value of profits, {px (ν, t|q) , x (ν, t|q) , V (ν, t|q)}∞t=0

given by (7), (8) and (15); and time paths of wage and interest rates, {w (t) , r (t)}∞t=0 that

satisfy (13) and (17).

In addition, we define a BGP (balanced growth path) as an equilibrium path in which

innovation, output and consumption grow at a constant rate. Notice that in such a BGP,

aggregates grow at the constant rate, but there will be firm deaths and births, and the firm

size distribution may change. We will discuss the firm size distribution in Section 3 and will

refer to a BGP equilibrium with a stationary (constant) distribution of normalized firm sizes

as “a stationary BGP equilibrium”. For now, we refer to an allocation as a BGP regardless

of whether the distribution of (normalized) firm sizes is stationary.

Definition 2 A balanced growth path (hereafter BGP) is an equilibrium path in which in-

novation, output and consumption grow at a constant rate.

In what follows, we will focus on linear BGP, where the value function of a firm with

quality q is linear in q, and often refer to it simply as the “BGP”. In particular:21

Definition 3 A linear BGP is a BGP where V (ν, t|q) = vq for all ν, t (for some v > 0).

2.3 Existence and Characterization

While a (linear) BGP always exists, because innovation by incumbents may increase the de-

mand for the inputs of other incumbents (through what is sometimes referred to as “aggregate

demand externalities”), there is a force pushing towards multiple BGPs. Counteracting this,

greater innovation, by increasing the growth rate, also increases the interest rate and thus

makes further innovation less profitable. In the remainder of the analysis, we focus on the

case where the BGP is unique. The following is a suffi cient condition for this.

Assumption 2 The intertemporal elasticity of substitution of the representative household,

θ, is suffi ciently high, i.e.,

θ ≥ 1

1 + minz≥0

{
(φ′(z))2

−φ′′(z)φ(z)

} .
21We conjecture that all BGPs are in fact linear, but we are unable to prove this except when φ is linear.
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Intuitively, when the intertemporal elasticity of substitution is higher, from the Euler

equation, (17), an increase in growth rate generated by an increase in innovation leads to

a greater rise in interest rate. This makes innovation by other incumbents less profitable,

ensuring that the second force mentioned above dominates the first one.

Assumption 2 is not very restrictive. For example, if φ (·) is linear, this assumption
simply requires θ ≥ 0, which is of course always satisfied. If, on the other hand, φ (·) has the
functional form in (3), this assumption requires θ ≥ α.

The requirement that consumption grows at a constant rate in the BGP implies that

r (t) = r, from (17). Now focusing on linear BGP, where V (q) = vq, we have that
.

V (ν, t|q) =

0. Hence the functional equation that determines the value of incumbent firms (15) can be

written as

rv = βL+ max
z≥0
{φ (z) (λ− 1) v − z} − ẑη (ẑ) v (19)

and assuming positive entry rate, the free-entry condition (16) can be written as

η (ẑ)κv = 1. (20)

Let z (v) ≡ arg maxz≥0 φ (z) (λ− 1) v − z and ẑ (v) ≡ η−1
(

1
κv

)
. Then clearly z (v) is

strictly increasing in v (recall that φ (z) is strictly concave) and ẑ (v) is strictly increas-

ing in v (recall that η (z) is decreasing in z). Moreover, since zη (z) is strictly increasing

in z, ẑ (v) η (ẑ (v)) is strictly increasing in v. From the Euler equation (17), we also have
.

C (t) /C (t) = (r − ρ) /θ = g, where g is the growth rate of consumption and output.

From (10), the growth rate of output can be expressed as
.

Y (t)

Y (t)
=

.

Q (t)

Q (t)
.

From (19) and (20), in a linear BGP, for all machines, incumbents and entrants will undertake

constant R&D z (v) and ẑ (v), respectively. Consequently, the growth rate of Q (t) is22

g =

.

Q (t)

Q (t)
= φ (z (v)) (λ− 1) + ẑ (v) η (ẑ (v)) (κ− 1) .

22In a small interval of time ∆t, there will be φ (z (v)) ∆t sectors that experience one innovation by the
incumbent (increasing their productivity by λ) and ẑ (v) η (ẑ (v)) ∆t sectors that experience replacement
by new entrants (increasing productivity by factor of κ). The probability that there will be two or more
innovations of any kind within an interval of time ∆t is o (∆t). Therefore, we have

Q (t+ ∆t) = (λφ (z (v)) ∆t)Q (t) + (κẑ (v) η (ẑ (v)) ∆t)Q (t)

+ (1− φ (z (v)) ∆t− ẑ (v) η (ẑ (v)) ∆t)Q (t) + o (∆t) .

Now substracting Q (t) from both sides, dividing ∆t and taking the limit as ∆t→ 0, we obtain the formula
for the growth rate of Q (t).
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Combining this equation with equations (17), (19) gives us a single equation that deter-

mines v and thus the key value function V (ν, t|q) in (15):

βL = ρv + (θ − 1)φ (z (v)) (λ− 1) v + z (v) + (θ (κ− 1) + 1) ẑ (v) η (ẑ (v)) v (21)

The right-hand side of this equation is equal to 0 at v = 0 and goes to +∞ as v goes to

+∞. Thus, a value of v∗ > 0 satisfying this equation, and thus a linear BGP, always exists.

Moreover, Assumption 2 implies that the right-hand side is strictly increasing, so that this

v∗ > 0, and thus the BGP, is unique. Given v∗, the other equilibrium objects are easy to

compute. The R&D rates of incumbents and entrants are simply given by z∗ = z (v∗) and

ẑ∗ = ẑ (v∗) .The GDP growth rate is

g∗ = φ (z∗) (λ− 1) + ẑ∗η (ẑ∗) (κ− 1) . (22)

The BGP interest rate, again from the Euler equation (17), is obtained as

r∗ = ρ+ θg∗. (23)

Notice that equation (22) shows the decomposition of the aggregate growth rate, g∗, into

two components on the right hand side. The first term, φ (z∗) (λ− 1), comes from innovation

by incumbents. The second term, ẑ∗η (ẑ∗) (κ− 1), comes from the innovation of the entrants.

The final step is to verify that the transversality condition of the representative household,

(18) is satisfied. The condition for this is r∗ > g∗ which is also satisfied if θ ≥ 1 (or less

stringently, if ρ > (1− θ) g∗). This discussion thus establishes the following proposition
(proof in the text).

Proposition 1 Suppose that Assumption 2 holds and ρ > (1− θ) g∗, then there exists a
unique linear BGP with the value function of an incumbent with quality q given by V (q) =

v∗q, where v∗ is the unique solution to (21), the aggregate growth rate g∗ is given by (22),

and the interest rate r∗ is given by (23). Starting with any initial condition, the economy

immediately jumps to this BGP (i.e., always grows at the rate g∗).

It is useful to consider two special cases of our economy to understand the forces driving

growth in this proposition. In the first case, we can shut off radical innovations (e.g., by

shutting down entry by setting η(·) = 0). In this case, though the model would lose its

Schumpeterian character, there would still be linear growth because of the AK structure of

the model coming from incumbent innovation. This growth rate can be obtained by removing

the terms with ẑ (v) in (21) and (22). In the second case, we can shut off incremental
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innovations by incumbents (e.g., by setting φ(·) = 0). This case would of course correspond

to the baseline quality ladder model (e.g., Chapter 14.1 in Acemoglu (2008)), and can be

obtained from by removing the terms with z (v) in (21) and (22) to determine the unique

linear BGP. In the general case considered in Proposition 1, both of these sources of growth

are present and contribute to (but also compete in the determination of) overall growth of

the economy.

These two sources create competing effects on growth. In particular, if the contribution

of entry to growth increases, then, in response, the contribution of incumbent innovations

decreases (because greater entry reduces the value of an incumbent and in particular the

value v∗, discouraging incremental innovations). In fact, these competing effects imply that,

contrary to standard Schumpeterian models, the effect of policies that discourage entry are

ambiguous on the BGP growth rate of the economy. It can be shown that such policies (e.g.,

a tax on entrants) will reduce growth if |φ′′ (ẑ∗)| > (κ− 1) (λ− 1) (βL)2 /ρ, and increase it

otherwise.

The assumptions leading to sustain endogenous growth in this model are also familiar

from the literature. First, the final good production function, equation (2), exhibits con-

stant returns to scale in product quality. Second, the R&D production function (innovation

possibilities frontier) uses the final good as in the baseline Schumpeterian model considered

in Acemoglu (2008) (and this contrasts with the use of labor in Grossman and Helpman

(1991a), for example), but does not have major implications for our results.23

Equation (22) also shows that the BGP growth rate of the economy can be decomposed

into growth emanating from incremental innovations of incumbents, the first term on the

RHS, and growth coming from the radical innovations of entrants, given by the second term

on the RHS. We return to this decomposition and explore its quantitative implications in

Section 4.

Another interesting implication of our model concerns firm size dynamics. The size of a

firm can be measured by its sales, which is equal to x (ν, t | q) = qL for all ν and t. We have

seen that the quality of an incumbent firm increases at the flow rate φ (z∗), while the firm

is replaced at the flow rate ẑ∗η (ẑ∗). Hence, for ∆t suffi ciently small, the stochastic process

23As a result of these features, as equation (21) shows, our economy exhibits scale effect: a higher
population leads to a higher value for the intermediate-good producers, and thus to more innovation and
growth.
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for the size of a particular firm is given by

x (ν, t+ ∆t | q) =


λx (ν, t | q) with probability φ (z∗) ∆t+ o (∆t)

0 with probability ẑ∗η (ẑ∗) ∆t+ o (∆t)
x (ν, t | q) with probability (1− φ (z∗) ∆t− ẑ∗η (ẑ∗) ∆t) + o (∆t)

(24)

for all ν and t. Firms therefore have random growth, and surviving firms expand on average.

However, firms also face a probability of bankruptcy (extinction). In particular, denoting

the probability that a particular incumbent firm that started production in machine line ν

at time s will be bankrupt by time t ≥ s by P (t | s, ν), we clearly have limt→∞ P (t | s, ν) =

1, so that each firm will necessarily die eventually. Equation (24) satisfies Gibrat’s Law,

which postulates that firm growth is independent of size (e.g., Sutton 1997, Gabaix 1999).24

This random process of firm growth also leads to non-degenerate distribution of firm sizes

as measured by firm size (sales) normalized by average size (sales). In particular, letting

X1 (t) ≡ X (t) / (1− β) =
∫ 1

0
x (ν, t | q) dν, with X (t) defined in (4),25 we have

x̃ (ν, t | q) ≡ x (ν, t | q)
X1 (t)

= x̃ (t) = q̃ (t) ≡ q (t)

Q (t)
,

where the first equality defines the variable, the last one defines q̃ (t). The law of motion

of normalized firm size is similar to (24) introduced above, except that we are now keeping

track of the (leading) firm producing in a given sector rather than a given firm. Hence, after

entry (the second line), the relevant firm size is not zero, but is equal to the size of the new

entrant. Noting that in BGP, Ẋ1 (t) /X1 (t) = g∗ > 0, for ∆t small, the law of motion of

normalized firm sizes can be written as

x̃ (t+ ∆t) =


λ

1+g∗∆t x̃ (t) with probability φ (z∗) ∆t
κ

1+g∗∆t x̃ (t) with probability ẑ∗η (ẑ∗) ∆t
1

1+g∗∆t x̃ (t) with probability 1− φ (z∗) ∆t− ẑ∗η (ẑ∗) ∆t.

.

The growth decomposition (22) implies that x̃ (t) is a random walk, i.e., Et [x̃ (t+ ∆t)] =

x̃ (t).26 Moreover, x̃ (t) is positive, so by martingale convergence theorem, x̃ (t) converges to

a random variable. However, x̃ (t) must have finite mean - by definition E0 [x̃ (t)] = 1, so

the limiting random variable only take either zero or infinity values.27 In other words, the
24The most common form of Gibrat’s Law involves firm sizes evolving according to the stochastic process

St+1 = γtSt + εt, where γt is a random variable with mean 1 and εt is a random variable with mean zero.
Both variables are orthogonal to St. The law of motion (24) is a special case of this general form.

25Sales normalized by the equilibrium wage rate, w (t), have exactly the same behavior, since the equilib-
rium wage rate also scales with average quality, Q (t).

26We thank an anonymous referee for suggesting this result.
27We show this result by contradiction. Suppose that the limiting random variable has positive mass

between zero and infinity, then similar to Lemma 11, we can show that its density function, f (q), sat-
isfies f (q) ≥ B

q log(q) for some B > 0 and for all q ≥ q. This inequality implies infinite mean because∫∞
q0

B
q log(q)qdq =∞.
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distribution of normalized firm sizes will continuously expand and a stationary distribution

does not exist in a linear BGP. This is because as time goes infinity, a vanishingly small

fraction of firms become arbitrarily large, making the remaining firms arbitrarily small rel-

ative to average firm size in the economy.28 In the next section, we show that by adding

another type of (imitative) entrants, which act as a reflecting-lower barrier on firm sizes, we

obtain a stationary distribution of firm sizes in a BGP. This firm size distribution resembles

the one observed in the data. The stationary firm size distribution has a Pareto tail with a

shape parameter approximately equal to one (i.e., the so-called “Zipf distribution,”which,

as discussed above, appears to be a good approximation to US data).

3 FirmDynamics and Growth with Knowledge Spillovers

The model so far and the growth decomposition provided in equation (22) assume only one

type of new entrants which are entrants with radical innovations. In reality, some entrants

committing not with radical innovations but by building on the knowledge spillovers created

by existing firms (e.g., see Luttmer (2007) and Acemoglu et al. (2013)). In this section, we

extend the model to include knowledge spillovers that allow imitation for (some) entrants,

and show that an extended model of this type maintains the qualitative features of the

simpler model presented so far but also generates a rich stationary firm size distribution

along the BGP.

More specifically, we allow for costly (“imitative”) entry building on knowledge spillovers.

Potential entrants can pay some cost to obtain a technology with quality proportional to the

current average quality in the economy. This implies that when a sector falls significantly

below average quality, imitative entry becomes profitable. We then show that the economy

incorporating this type of initiative entry has a well-defined equilibrium. Moreover, when

the technology of entry by imitation is not very productive, then the BGP equilibrium is

arbitrarily close to the one that is characterized in Proposition 1. We also derive a general

analog to the growth decomposition in equation (22), now consisting of three components:

innovation by incumbents, by radical entrants, and by entrants by knowledge spillover.

28The nature of the “limiting distribution”is therefore similar to the “immiserization”result for income
distribution in Atkeson and Lucas (1992) economy with dynamic hidden information; in the limit, all firms
have approximately zero size relative to the average X1 (t) and a vanishingly small fraction of firms become
arbitrarily large (so that average firm size X1 (t) remains large and continues to grow).
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3.1 The Economy with Imitative Entry

We consider a third type of innovation based on imitation relying on knowledge spillovers

from the current knowledge base of the economy. A new firm can enter in any sector ν ∈ [0, 1]

with a technology qe (ν, t) = ωQ (t), where ω ≥ 0 and Q (t) is average quality of machines in

the economy given by (11).29 The cost of this type of innovation is assumed to be µeωQ (t).

The fact that the cost should be proportional to average quality is in line with the structure

of the model so far.30

Firm value is again given in (14) except that T (ν, t) is now the stopping time where

either an entrant or an imitator enters and replaces the monopolist. Put differently, all firms

solve the maximization problem as in (15), but they also take into account the possibility of

entry by imitation as well. It is then straightforward that there will exist some ε > 0 such

that entry by imitation is profitable if

q (ν, t) ≤ εQ (t) ,

and thus there will be no sectors with quality less than ε times average quality (clearly,

ε is a function of ω, and of course, ε = 0 when ω = 0). The baseline model is then the

special case where ω = ε = 0, i.e., where there is no imitation. We will show that a BGP

equilibrium and the stationary distribution in this economy with imitation are well-defined,

and as ω → 0, the value function, the innovation decisions and the growth rate converge to

those characterized in the baseline economy (cfr. Proposition 1). Moreover, for ω > 0 but

small, the stationary firm size distribution has a Pareto tail.31

In order to prove the existence of a stationary BGP in the economy with imitation, we

need a slightly stronger condition on the inverse of the intertemporal elasticity of substitution,

θ, than in Assumption 2

Assumption 2b θ ≥ 1.

We also impose the following technical condition.

29For tractablity we assume that ω is constant as opposed to a random variables realized after entry
as in Luttmer (2007) and Acemoglu et al. (2013), but this is without any important consequences for the
implications of the model.

30There are also alternative ways of introducing entrants by knowledge-spillover. An alternative, which
leads to very similar results, is an environment where firms have to pay a fixed cost in terms of labor to
operate and existing firms are replaced by entrants by knowlege spillover. See also Luttmer (2007, 2010b)
and Atkeson and Burstein (2010, 2013).

31Note that because this type of imitative entry is costly, and the cost would be the same for incumbents vs.
entrants, by a similar reasoning to Arrow’s replacement effect,incumbents that become very low productivity
would still not find it profitable to use this technology (i.e., before the incumbents do so, entrants would do
it).
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Assumption 3 Let εη (z) ≡ −zη′ (z) /η (z) be the elasticity of the entry function η (z).

Then

max
z>0

εη (z) ≤ 1− 1

κθ
.

Under functional form (3) for η, Assumption 3 is equivalent to γ ≤ 1− κ−θ, and implies
that the entry function is not too “elastic”. This assumption is used in Lemma 4 in the

Appendix to ensure the boundedness of the value function of incumbent firms when both

types of entry are present. When there is no entry by creative destruction, i.e., the economy

with only the incumbents and the imitators, the same description of the stationary BGP

goes through without Assumption 3. We also note for future reference that the Pareto

distribution takes the form

Pr [x̃ ≤ y] = 1− Γy−χ

with Γ > 0 and y ≥ Γ; χ is the shape parameter (exponent) of the Pareto distribution. We

say that a distribution has a Pareto tail if its behavior for y large can be approximated by

Pr [x̃ ≥ y] ∝ Γy−χ.

Proposition 2 Suppose the BGP equilibrium in the baseline economy is described by Propo-

sition 1, in particular with v∗, g∗ and r∗as given by to (21), (22) and (23), and Assumptions

1b and 3 are satisfied. Then there exist 0 < µ < µ, ∆ > 0 and ω > 0 such that for any

µe ∈
(
µ, µ

)
and ω ∈ (0, ω) , there exists a BGP with the following properties:

1. There is imitative entry whenever q (ν, t) ≤ ε (ω)Q (t), where 0 < ε (ω) ≤ ω (1− β)
1−β
β .

2. The equilibrium growth rate is g (ω) ∈ (g∗, g∗ + ∆) and satisfies

lim
ω→0

g (ω) = g∗.

3. The value function of the incumbents above the exit threshold ε (ω)Q (t) in this econ-

omy, normalized by quality, Vω (q) /q, converges uniformly to the value function in the

baseline economy normalized by quality, V (q) /q = v∗. Formally, for any δ > 0

lim
ω→0

sup
q≥δQ

∣∣∣∣Vω (q)− V (q)

q

∣∣∣∣ = 0.

This proposition ensures that the growth rate of the economy with imitation is well

behaved and it is “close”to the equilibrium of the baseline economy when ω is small. Note

also that our requirement µe ≥ µ (together with ω ≤ ω) ensures that entry by imitation is not

profitable when the entrants charge a limit price in the competition against the incumbent.
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As a result, entrants use imitation to enter in a sector only when the quality of the sector

falls suffi ciently below the average quality so that these entrants can charge the monopoly

price after entry. The condition µe < µ ensures that this type of entry is not too costly so

that there will be some imitation in equilibrium.

The next proposition provides a simple growth decomposition between incumbents, rad-

ical entrants, and imitative entrants generalizing the one provided in equation (22) above.

Proposition 3 In a stationary BGP, the growth rate of the economy has the following de-

composition:

g = (λ− 1)EF [φ (z (q̃)) q̃]︸ ︷︷ ︸
Innovation from incumbents

+(κ− 1)EF [ẑ (q̃) η (ẑ (q̃)) q̃]︸ ︷︷ ︸
Innovation from radical entrants

+ εgf (ε) (ω − ε)︸ ︷︷ ︸
Innovation from imitative entrants

(25)

Proof. This follows from the proof of Proposition 2. In particular, Step 3 in the sketch of

proof for Proposition 2, we show that the implied growth rate g′ (g) satisfies the decompo-

sition (25). In a stationary BGP, g′ (g) = g, thus g also satisfies the growth decomposition.

We next show that, as ω becomes small, this economy admits a stationary distribution

of normalized firm sizes with a Pareto tail with the shape parameter approaching 1.

Proposition 4 The stationary equilibrium distribution of firm sizes in the economy with

imitation (characterized in Proposition 2) exists and has a Pareto tail with the shape para-

meter χ = χ (ω) > 1 in the sense that for any ξ > 0 there exist B, B and x̃0 such that the

density function of the firm size distribution, f (x̃), satisfies

f (x̃) < 2Bx̃−(χ−1−ξ), for all x̃ ≥ x̃0, and

f (x̃) >
1

2
Bx̃−(χ−1+ξ), for all x̃ ≥ x̃0.

In other words, f (x̃) = x̃−χ−1ϕ (x̃), where ϕ (x̃) is a slow-varying function. Moreover

lim
ω→0

χ (ω) = 1.
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Proof. The detail of the proof in the Appendix and follows from the proof of Proposition

2.

This result on the stationary firm size distribution has several parallels with existing

results in the literature, for example, Gabaix (1999) and Luttmer (2007, 2010a,b). In partic-

ular, as in these papers, the stationary firm size distribution is obtained by combining firm

growth following Gibrat’s Law with a lower bound on (relative) firm size. These papers also

have limiting results such that when the lower bound becomes negligible the size distribution

converges to Zipf’s law, i.e., the tail index converges to 1 as in our proposition.32 There are

also important differences, however. First, Gibrat’s Law is derived endogenously here from

the innovation decisions of continuing firms and entrants, and in fact, the growth rate of

output in the aggregate is endogenously determined.33 Second, the equilibrium is obtained

from the optimization problem of firms that recognize the possibility that there will be entry

by imitation if their quality falls significantly relative to the average.

We next provide a sketch of the proof of Proposition 2.

3.2 Sketch of the Proof of Proposition 2

The proof consists of showing that for each µe ∈
(
µ, µ

)
and ω ∈ (0, ω), there exists a

BGP with the growth rate given by g (ω). The first step proves the existence of the value

function of the incumbents under the threat of entry by imitation. In this step we show

that the relevant state variable is the relative quality of the incumbents q (ν, t) /Q (t). The

second step establishes the existence of and characterizes the form of the stationary firm size

distribution when the incumbents and the entrants follow the strategies determined using

the value function in the first step. Finally, the last step establishes the existence of a BGP

with the value and investment functions derived from the first step and the stationary firm

size distribution derived in the second step. Luttmer (2007, 2010b) follow similar steps in

proving the existence of a BGP for an economy with heterogeneous firms, but relying on

a specific closed-form of the value function and the stationary distribution. These closed-

forms in turn exploit the fact that growth is exogenous, whereas the growth rate is determined

32The gamma distribution used in Luttmer (2007) has a Pareto tail according to the definition in Propo-
sition 4.

33Footnote 24 in Atkeson and Burstein (2010) provides a heuristic derivation of the relationship between
the endogenous investment of incumbents and the endogeous tail index of the stationary distribution of firm
sizes. However, a crucial step in this heuristic derivation is that innovation rates are invariant across firms in
the presence of fixed cost. This property only holds approximately in the limit when firm size is suffi ciently
large. Similarly, the threat of imitative entry in our model makes the incumbent firms’innovation rate a
function of firm size. Thus a full derivation needs to take this dependence into account, which is what our
rigorous approach accomplishes.
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endogenously in our economy.34

There are two diffi culties we must overcome in the first step. The first one is that the

value functions are given by a differential equation with deviating (advanced) arguments

because the right-hand side involves V evaluated at λq and κq. As a result, we cannot

apply standard existence proofs from the theory of ordinary differential equations. Instead,

we use techniques developed in the context of monotone iterative solution methods, see, for

example, Jankowski (2005). The second diffi culty arises because we need to show that the

value function satisfies some properties at infinity. This non-standard boundary problem is

solved following the approach in Staikos and Tsamatos (1985).

Step 1: For each g ∈ (g∗, g∗ + ∆), we show the existence of a value function of an

incumbent in sector ν at time t which takes the form

Vg (ν, t|q) = Q (t) V̂g

(
q (ν, t)

Q (t)

)
, (26)

and a threshold εg (ω) such that an imitator will pay the cost µeωQ (t) to imitate and enter

with quality ωQ (t) into sector ν at time t and replace an incumbent if q (ν, t) ≤ εg (ω)Q (t).

The value of the incumbent depends only on the current average quality, Q (t) , and the gap

between its current quality and the average quality, q (ν, t) /Q (t). Plugging (26) in (15), and

using the fact that

.

V g (ν, t|q) = gQ (t) V̂g

(
q (ν, t)

Q (t)

)
− gQ (t)

q (ν, t)

Q (t)
V̂ ′g

(
q (ν, t)

Q (t)

)
,

we obtain that

(r − g) V̂g (q̃) + gq̃V̂ ′g (q̃) = βLq̃ + max
z(ν,t)≥0

{
φ (z (ν, t))

(
V̂g (λq̃)− V̂g (q̃)

)
− z (ν, t) q̃

}
−ẑ (ν, t) η (ẑ (ν, t)) V̂g (q̃) , (27)

where r = ρ+θg and q̃ (ν, t) = q (ν, t) /Q (t). The free-entry condition for radical innovation,

(16), can then be written as

η (ẑ (ν, t)) V̂g (κq̃ (ν, t)) = q̃ (ν, t) .

34Atkeson and Burstein (2010, 2013) also present models with endogenous innovation and firm heterogene-
ity. However, in these models, growth is either exogenous or given as the equilibrium of a semi-endogenous
growth model, making it essentially exogenous. This ensures a block-recursive structure in which interest
rate and growth rates are independent of firm size distribution. The general equilibrium interactions present
in our model arise whenever equilibrium objects, in particular the interest and the growth rates, depend on
the endogenous firm size distribution.
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Moreover, the free-entry condition for imitation implies

V̂g (ω) = µeω. (28)

Since imitators will replace the incumbent in sector ν at time t if q (ν, t) ≤ εgQ (t), we also

have the following boundary condition

V̂g (εg) = 0. (29)

In the Appendix, we show that when µe ∈
(
µ, µ

)
, there is imitation in equilibrium but only

when imitators can charge monopoly price after entry. Equilibrium innovation rates, zg (q̃)

and ẑg (q̃), can then be derived from the solution to (27).

To establish the existence of a solution V̂g (q̃) to the functional equation (27), we first

construct functional bounds, V g and V g, such that V g (q̃) ≤ V̂g (q̃) ≤ V g (q̃). The result on

uniform convergence of V̂g (q̃) then follows by establishing that V g and V g converge uniformly

to V (q) as g goes to g∗.

Step 2: The innovation rates, zg (q̃) and ẑg (q̃), together with the entry rule of the

imitators and the growth rate g (ω) of the average quality yields a stationary distribution

over the normalized sizes q̃ with distribution function F (·) satisfying the following conditions:
If y ≥ ω, then

0 = F ′ (y) yg −
∫ y

y
λ

φ (z (q̃)) dF (q̃)−
∫ y

y
κ

ẑ (q̃) η (ẑ (q̃)) dF (q̃) . (30)

If y < ω, then

0 = F ′ (y) yg − F ′ (ε) εg −
∫ y

y
λ

φ (z (q̃)) dF (q̃)−
∫ y

y
κ

ẑ (q̃) η (ẑ (q̃)) dF (q̃) (31)

and

F (y) = 0 for y ≤ ε.

We will derive these expressions formally in the Appendix, and to make the dependence

on the growth rate of average quality explicit, we will write the solution as Fg. Intu-

itively, given y > 0, the mass of firms with size moving out of the interval (ε, y) consists

of firms (sectors) with size between
(
y
λ
, y
)
that are successful in incremental innovation,∫ y

y
λ
φ (z (q̃)) dF (q̃), and firms (sectors) with size between

(
y
κ
, y
)
, where there is a radical in-

novation,
∫ y
y
κ
ẑ (q̃) η (ẑ (q̃)) dF (q̃). When y < ω, we must also add the mass of firms being

replaced by imitators with relative quality ω. This mass consists of firms that are in the

neighborhood of ε, do not experience any innovation, and are therefore drifted to below ε

due to the growth rate g of the average quality Q; it is equal to F ′ (ε) εg. By definition of
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a stationary distribution, the total mass of firms moving out of the interval (ε, y) must be

equal to the mass of firms moving into the interval. This mass consists of firms around y

that do not experience any innovation and thus drift into this interval due to growth at the

rate g (given by F ′ (y) yg).

Step 3: This analysis gives an implied growth rate of the average product quality g′ =
.

Q/Q as a function of the current growth rate g, the innovation rates, zg (q̃), and ẑg (q̃), the

imitation threshold εg, and the equilibrium stationary distribution Fg. In particular,

g′ (g) =
(λ− 1)EFg [φ (z (q̃)) q̃] + (κ− 1)EFg [ẑg (q̃) η (ẑg (q̃)) q̃]

1− εgF ′g (εg) (ω − εg) .
. (32)

This formula, derived formally in the Appendix, is similar to the decomposition of growth in

(22). The numerator combines the innovation rates of incumbents and entrants, respectively

(λ− 1)EFg [φ (z (q̃)) q̃] and (κ− 1)EFg [ẑg (q̃) η (ẑg (q̃)) q̃], where EFg is used as a shorthand
for the integrals using the density dFg (q̃) as in (30) and (31). The denominator, on the other

hand, is the contribution of imitation to growth. The higher is the gap ω − εg, the more

important is this component. Finally the equilibrium growth rate g∗ (ω) is a solution to the

equation

D (g) ≡ g′ (g)− g = 0,

where g′ (g) is given by (32). In the Appendix, we establish the existence of a solution g∗ (ω)

to this equation.

4 Some Suggestive Numbers and Simulations

In this section, we present the quantitative implications of the growth decomposition in

equation (22) and use simulations to compute the implied stationary firm size distribution.

4.1 Baseline Parameters

The explicit characterization of equilibrium enables us to obtain simple expressions for how

much of productivity growth is driven by innovation by entrants (creative destruction) and

how much of it comes from productivity improvements by incumbents. In particular, we can

use equation (22), which decomposes growth into the component coming from incumbent

firms (the first term in that equation) and that coming from new entrants (the second term).

Our purpose is not to undertake a systematic estimation of the parameters of the model

or calibration, but to provide some illustrative numbers. We normalize population to L = 1

and choose the following standard numbers:

g∗ = 0.02, ρ = 0.01, r∗ = 0.05 and θ = 2,
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where θ, the intertemporal elasticity of substitution, is pinned down by the choice of the other

three numbers. The first three numbers refer to annual rates (implicitly defining ∆t = 1

as one year). The remaining variables will be chosen so as to ensure that the equilibrium

growth rate is indeed g∗ = 0.02. As a benchmark, let us take β = 2/3, which implies

that two thirds of national income accrues to labor and one third to profits. Assumption

1 then requires that κ > 1.7. We will use the benchmark value of κ = 3 so that entry by

new firms is suffi ciently “radical” as suggested by some of the qualitative accounts of the

innovation process (e.g., Freeman 1982, Scherer 1984). Innovation by incumbents is taken to

be correspondingly smaller, in particular λ = 1.2, so that productivity gains from a radical

innovation is about ten times that of a standard “incremental” innovation by incumbents

(i.e., (κ− 1) / (λ− 1) = 10). For the functions φ (z) and η (z), we adopt the functional

form in (3) and choose the benchmark values of α = 0.9 and γ = 0.5. The remaining

two parameters A and B will be chosen to ensure g∗ = 0.02 with two third coming from

the innovation of the incumbents and one third coming from the entrants, i.e., the firm

term in (22) φ (z∗) (λ− 1) equals 0.0133 and the second term ẑ∗η (ẑ∗) (κ− 1) equals 0.0067.

Given the value of κ, we obtain ẑ∗η (ẑ∗) equals 0.0033. Given the interest rate of r∗, this

corresponds to radical innovation on average once every 15 years ( r∗/ẑ∗η (ẑ∗)). Similarly,

the rate of incremental innovation is once very nine months.

Varying these baseline parameters shows that the model can lead to quite different de-

compositions of productivity growth between incumbents and entrants, and a more careful

empirical investigation of the fit of the model is necessary (though the parameters that would

be required for this need to be estimated).

Table 1 shows how these numbers change as we vary the parameters β, κ, λ and α. The

first five columns of the table give the choices of parameters. The value of B is chosen so

that the equilibrium growth rate g∗ = 0.02. The next two columns report the innovation

rate by the entrants,r∗/ ẑ∗η (ẑ∗), and by the incumbents, r∗/φ (z∗). The final column reports

the fraction of total productivity growth accounted for by entrants, i.e., (κ− 1) ẑ∗η (ẑ∗) /g∗.
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Table 1

Parameter Values r∗/η (ẑ∗) ẑ∗ r∗/φ (z∗) (κ− 1) η (ẑ∗) ẑ∗/g∗

1. κ = 3 λ = 1.2 β = 2/3 A = 0.0977 α = 0.9 14.96 0.75 0.333
2. κ = 2 λ = 1.2 β = 2/3 A = 0.0977 α = 0.9 7.34 0.75 0.340
3. κ = 4 λ = 1.2 β = 2/3 A = 0.0977 α = 0.9 22.58 0.75 0.332
4. κ = 3 λ = 1.1 β = 2/3 A = 0.0977 α = 0.9 7.15 0.83 0.699
5. κ = 2 λ = 1.1 β = 2/3 A = 0.0977 α = 0.9 3.55 0.84 0.703
6. κ = 3 λ = 1.2 β = 2/3 A = 0.0488 α = 0.9 7.15 1.66 0.699
7. κ = 3 λ = 1.2 β = 1/2 A = 0.0977 α = 0.9 14.03 0.77 0.356
8. κ = 3 λ = 1.2 β = 2/3 A = 0.0977 α = 0.8 9.48 1.05 0.527

Note. This table reports flow rates of innovation by entrants (r∗/η (ẑ∗) ẑ∗), incumbents (r∗/φ (z∗)),
and the fraction of productivity growth accounted for by entrants ((κ− 1) η (ẑ∗) ẑ∗/g∗). In each
case, L = 1, θ = 2, ρ = 0.01, and B and A are chosen such that r∗ = 0.05 and g∗ = 0.02.

The first row reports the benchmark we have just discussed. The second row reduces κ

to 2 so that productivity gain from a radical innovation is now five times that of incremental

innovation ((κ− 1) / (λ− 1) = 5). This changes the rate of innovation of entrants to once

every 7 years, and leaves the incremental innovation rate unchanged. The contribution of

entrants to productivity growth is slightly higher, 34%. The third row increases κ to 4.

In this case, again the only number that changes significantly is the rate of innovation of

entrants.

The fourth and fifth row reduces the size of innovations by incumbents to λ = 1.1, and

the sixth row reduces the R&D productivity of the incumbent by half. In these cases the

contribution of entrants increase to more than two thirds. The remaining rows vary the

values of β and α. When β is set to 1/2, the contribution of entrants does not change

significantly. However, when α is set to 0.8, the contribution of entrants increases to above

one half.

These results therefore show that, in contrast to basic Schumpeterian models, the contri-

bution of incumbents to productivity growth is often quite substantial. Nevertheless, Table 1

also shows that the model can lead to quite different decompositions of productivity growth

between incumbents and entrants, and a more careful empirical investigation of the fit of

the model is necessary (though the parameters that would be required for this need to be

estimated).
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4.2 Simulations

We next examine the growth decomposition under the presence of imitative entrance, (25),

as well as the stationary distribution of firm size. Starting from the baseline parameters

in subsection 4.1, we choose the cost of (imitative) entry based on knowledge spillovers to

µe = 15. The next table show how this decomposition, as well as the stationary firm size

distribution change, as we vary ω. At ω = 0, we converge to the baseline economy without

knowledge spillover as shown in Proposition 2. As we increase ω, the contribution of imitative

entrants to aggregate growth increases and the tail index of the stationary distribution of

firm size increases as well, i.e., the distribution has thinner tails as we increase ω.

ω g % by incumbents % by radical entrants % by imitative entrants tail index

0 2% 66.7% 33.3% 0% 1
0.1 2.02% 65.7% 32.7% 1.6% 1.05
0.3 2.07% 64.14% 31.23% 4.63% 1.17
0.5 2.11% 62.53% 29.97% 7.50% 1.26

For the case ω = 0.1, Figure 1 shows the distribution of firm size, i.e., log rank as a

function of log size. The distribution is close to Zipf’s law with Pareto index of the tail around

1.05. Figure 2 shows the rate of innovation of incumbents and entrants (normalized by the

innovation size and the aggregate growth rate). The investment in R&D by incumbents is

non-linear and exhibit the “escape competition effect”(Aghion et al. (2001)). In particular,

close to the threshold where imitative entry takes place, the incumbents invest more into

incremental R&D.

5 Conclusion

A large fraction of US industry-level productivity growth is accounted for by existing firms

and continuing establishments. Standard growth models either predict that most growth

should be driven by new innovations brought about by entrants (and creative destruction)

or do not provide a framework for decomposing the contribution of incumbents and entrants

to productivity growth. In this paper, we proposed a simple modification of the basic Schum-

peterian endogenous growth models that can address these questions. The main departure

from the standard models is that incumbents have access to a technology for incremental

innovations and can improve their existing machines (products). A different technology can

then be used to generate more radical innovations. Arrow’s replacement effect implies that
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only entrants will undertake R&D for radical innovations, while incumbents will invest in

incremental innovations. This general pattern is in line with qualitative and quantitative

evidence on the nature of innovation.

The model is not only consistent with the broad evidence but also provides a tractable

framework for the analysis of productivity growth and of the entry of new firms and the

expansion of existing firms. It yields a simple equation that decomposes productivity growth

between continuing establishments and new entrants. Although the parameters to compute

the exact contribution of different types of establishments to productivity growth have not

yet been estimated, the use of plausible parameter values suggests that, in contrast to basic

endogenous technological change models and consistent with the US data, a large fraction–

but not all– of productivity growth is accounted by continuing establishments.

The comparative static results of this model are also potentially different from those of

existing growth models, because innovation by incumbents also responds to changes in para-

meters and policy. For example, despite the presence of entry and creative destruction, the

model shows that entry barriers or taxes on potential entrants may increase the equilibrium

growth rate of the economy. This is because, in addition to their direct negative effects, such

taxes create a positive impact on productivity growth by making innovation by incumbents

more profitable.

Finally, because the model features entry by new firms and expansion and exit of exist-

ing firms, it also generates an equilibrium firm size distribution. The resulting stationary

distribution of firm sizes approximates the Pareto distribution with an exponent of one (the

so-called “Zipf distribution”) observed in US data (e.g., Axtell 2001).

The model presented in this paper should be viewed as a first step in developing tractable

models with endogenous productivity processes for incumbents and entrants (which take

place via innovation and other productivity-increasing investments). It contributes to the

literature on endogenous technological change by incorporating additional industrial organi-

zation elements in the study of economic growth. An important advantage of the approach

developed here is that it generates predictions not only about the decomposition of produc-

tivity growth between incumbents and entrants, but also about the process of firm growth,

entry and exit, and the equilibrium distribution of firm sizes. The resulting stochastic process

for firm size is rather simple and does not incorporate rich firm dynamics that have been

emphasized by other work, for example, by Klette and Kortum (2004), who allow firms

to operate multiple products, or by Hopenhayn (1992), Melitz (2003) and Luttmer (2007),
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who introduce a nontrivial exit decision (due to the presence of fixed costs of operation)

and also allow firms to learn about their productivity as they operate. Combining these

rich aspects of firm entry and exit dynamics with innovation decisions that endogenize the

stochastic processes of productivity growth of incumbents and entrants appears to be an

important area for future theoretical research. A more important line of research, would be

a more detailed empirical analysis of the predictions of these various approaches using data

on productivity growth, exit and entry of firms. The relatively simple structure of the model

presented in this paper should facilitate these types of empirical exercises. For example, a

version of the current model, enriched with additional heterogeneity in firm growth, can be

estimated using firm-level data on innovation (patents), sales, entry and exit.
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Appendix
Derivation of the Growth Equation. The growth of the average product quality Q (t)
comes from three sources: innovation from the incumbent firms, from the innovative entrants and
from the imitators. Recall that Q (t) ≡

∫ 1
0 q (v, t) dv, where q (v, t) is the highest quality in sector

v. We suppose that the investment of the incumbents in each sector is z (q̃) and of the entrants is
ẑ (q̃), where q̃ is the quality relative to the average quality that grows at the rate g from time t to
t+ ∆t. Then we have

Q (t+ ∆t) =

∫ 1

0
q (v, t+ ∆t) dv

=

∫ 1

0,q(v,t)≥εQ(t)(1+g∆t)

 φ
(
z
(
q(v,t)
Q(t)

))
∆tλq (v, t) + ẑ

(
q(v,t)
Q(t)

)
η
(
ẑ
(
q(v,t)
Q(t)

))
∆tκq (v, t)

+
(

1− φ
(
z
(
q(v,t)
Q(t)

))
∆t− ẑ

(
q(v,t)
Q(t)

)
η
(
ẑ
(
q(v,t)
Q(t)

))
∆t
)
q (v, t)

 dv

+

∫ 1

0,εQ(t)<q(v,t)<εQ(t)(1+g∆t)

 φ
(
z
(
q(v,t)
Q(t)

))
∆tλq (v, t) + ẑ

(
q(v,t)
Q(t)

)
η
(
ẑ
(
q(v,t)
Q(t)

))
∆tκq (v, t)

+
(

1− φ
(
z
(
q(v,t)
Q(t)

))
∆t− ẑ

(
q(v,t)
Q(t)

)
η
(
ẑ
(
q(v,t)
Q(t)

))
∆t
)
ωQ (t)

 dv.

Expanding the right hand side around ∆t = 0, we have

Q (t+ ∆t) = λQ (t) ∆t

∫ 1

0
φ

(
z

(
q (v, t)

Q (t)

))
q (v, t)

Q (t)
dv + κQ (t) ∆t

∫ 1

0
ẑ

(
q (v, t)

Q (t)

)
η

(
ẑ

(
q (v, t)

Q (t)

))
q (v, t)

Q (t)
dv

+

∫ 1

0,q(v,t)≥εQ(t)(1+g∆t)

(
1− φ

(
z

(
q (v, t)

Q (t)

))
∆t− ẑ

(
q (v, t)

Q (t)

)
η

(
ẑ

(
q (v, t)

Q (t)

))
∆t

)
q (v, t) dv

+

∫ 1

0,εQ(t)<q(v,t)<εQ(t)(1+g∆t)

(
1− φ

(
z

(
q (v, t)

Q (t)

))
∆t− ẑ

(
q (v, t)

Q (t)

)
η

(
ẑ

(
q (v, t)

Q (t)

))
∆t

)
ωQ (t) dv.

We can rearrange to decompose the growth of average quality into three different components:
innovation from incumbents, from entrants, and from imitators:

Q (t+ ∆t) = Q (t) + (λ− 1)Q (t) ∆t

∫ 1

0
φ

(
z

(
q (v, t)

Q (t)

))
q (v, t)

Q (t)
dv︸ ︷︷ ︸

Innovation from Incumbents

+ (κ− 1)Q (t) ∆t

∫ 1

0
ẑ

(
q (v, t)

Q (t)

)
η

(
ẑ

(
q (v, t)

Q (t)

))
q (v, t)

Q (t)
dv︸ ︷︷ ︸

Innovation from Entrants

+

∫ 1

0,εQ(t)<q(v,t)<εQ(t)(1+g∆t)

 1− φ
(
z
(
q(v,t)
Q(t)

))
∆t

−ẑ
(
q(v,t)
Q(t)

)
η
(
ẑ
(
q(v,t)
Q(t)

))
∆t

 (ωQ (t)− q (v, t)) dv.

︸ ︷︷ ︸
Innovation from Imitators

We rewrite this growth accounting in term of stationary distribution with cumulative distribution
function F (·) over q̂ = q

Q > ε and probability density function f (·)

Q (t+ ∆t) = Q (t) + (λ− 1)Q (t)

∫
φ (z (q̃)) q̃dF (q̃) ∆t

+ (κ− 1)Q (t)

∫
ẑ (q̃) η (ẑ (q̃)) q̃dF (q̃) ∆t

+ F (ε (1 + g∆t)) (ω − ε)Q (t) .
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So
g = (λ− 1)EF [φ (z (q̃)) q̃] + (κ− 1)EF [ẑ (q̃) η (ẑ (q̃)) q̃] + εgf (ε) (ω − ε) .

Equivalently

g =
(λ− 1)EF [φ (z (q̃)) q̃] + (κ− 1)EF [ẑ (q̃) η (ẑ (q̃)) q̃]

1− εf (ε) (ω − ε)
as in (32). When ω = 0 we have

g = (λ− 1)EF [φ (z (q̃)) q̃] + (κ− 1)EF [ẑ (q̃) η (ẑ (q̃)) q̃] ,

and when z (q̃) ≡ z∗ and ẑ (q̃) ≡ ẑ∗

g = (λ− 1)φ (z∗) + (κ− 1) ẑ∗η (ẑ∗)

as in (22), given that E[q̃] = 1.

Proof of Proposition 2:
Let us first define Ii (ṽ) ≡ maxz≥0 φ (z) ṽ − z and Ie (u) ≡ 1

κuη
−1
(

1
κu

)
. Intuitively, Ii (ṽ) , for

ṽ = (λ− 1) v, is the value (or proportional to the value) of incumbent firms from undertaking
incremental innovation. Ie (u) is the rate of entry by entrants with radical innovations. There are
one-to-one mappings from the investment technologies φ and η to the functions Ii and Ie. Using
these notations we can also define vg as a solution of the equation

v =
βL+ Ii ((λ− 1) v)

r + Ie (v)
, (33)

in which r = ρ+ θg. The following lemma establishes some properties of vg around the equilibrium

values (v∗, g∗). We can easily see that vgq is the value function of an incumbent with product quality

q, given the interest rate r, the entry behavior of entrants and without imitators, i.e., functional

equation (19).

Lemma 1 Suppose Assumption 1b is satisfied. There exists ∆ > 0 such that for each g ∈

(g∗ −∆, g∗ + ∆) , there exists a unique vg ∈ (v∗ −∆, v∗ + ∆) that satisfies equation (33). Moreover

vg is strictly decreasing in g.

Proof. We rewrite equation (33) as Φ (v, g) = 0 where

Φ (v, g) = v (ρ+ θg + Ie (v))− βL− Ii ((λ− 1) v) .

As we show below, ∂Φ (v∗, g∗) /∂v > 0, so the implicit function theorem guarantees the existence
and uniqueness of (g, vg) in the neighborhood of (g∗, v∗), establishing the first part of the lemma.
The second part follows immediately given that ∂Φ (v∗, g∗) /∂g = v∗θ > 0 and also by the implicit
function theorem

dvg
dg

= −∂Φ (v∗, g∗) /∂g

∂Φ (v∗, g∗) /∂v
.

We use direct calculation to show ∂Φ (v∗, g∗) /∂v > 0. Indeed, we have

∂Φ (v∗, g∗)

∂v
= ρ+ θg∗ +

∂(v∗Ie (v∗))

∂v
− I ′i ((λ− 1) v∗) (λ− 1) .
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First of all, by definition of Ie, v∗Ie (v∗) = 1
κη
−1
(

1
κv

)
, strictly increasing in v, so ∂(v∗Ie(v∗))

∂v > 0.
Second of all, applying the envelope theorem to Ii (ṽ) implies I ′i ((λ− 1) v) = φ (z (v)). From the
definition of g∗ in (22) and Assumption 1b, we have

θg∗ ≥ g∗

> φ (z∗) (λ− 1)

= I ′i ((λ− 1) v∗) (λ− 1) .

These two inequalities ∂(v∗Ie(v∗))
∂v > 0 and θg∗ > I ′i ((λ− 1) v∗) (λ− 1) imply

∂Φ (v∗, g∗)

∂v
> ρ > 0.

We prove Proposition 2 in three steps sketched in the body of the paper:

Step 1: We state the existence of a value function V̂g (q̃) in the following lemma

Lemma 2 (Existence of Value Function) Suppose the BGP equilibrium in the baseline econ-

omy is described by Proposition 1, in particular with v∗, g∗ and r∗as given by (21), (22) and (23),

and Assumption 1b and Assumption 3 are satisfied. Then there exist 0 < µ < µ and ∆ > 0 such

that for any µe ∈
(
µ, µ

)
, g ∈ [g∗, g∗ + ∆] and ω > 0, we can find εg ≤ ω (1− β)

1−β
β and a value

function V̂g (q̃) that satisfies (27), (28) and (29).

Below, we show that V̂g (q̃) = q̃Ug (ln (q̃)− ln εg), where Ug is shown to exist using Schauder’s

fixed point theorem, satisfies these properties. The following lemma shows the existence of Ug.

Lemma 3 Suppose Assumptions 1b and 3 are satisfied. Let ∆ ∈ (0, g∗) small enough to apply
Lemma 1. Then for each g ∈ [g∗ −∆, g∗ + ∆] , there is a solution Ug ≥ 0 to the functional equation

rU (p) + gU ′ (p)

= βL+ max
z≥0
{φ (z) (λU (p+ lnλ)− U (p))− z} − ẑ (p) η (ẑ (p))U (p) , (34)

where r = ρ+ θg, η (ẑ (p))κU (p+ lnκ) = 1, and U satisfies the boundary conditions

U (0) = 0 and lim
p→∞

U (p) = vg, (35)

where vg is defined in Lemma 1. Moreover, Ug is equicontinuous in g over any finite interval.

Notice that the conditions (27) and (29) on V̂g translate into the conditions (34) and the first

part of (35) on U . In order to apply Schauder’s fixed point theorem, we need to find a subset z

of continuous functions U : [g∗ −∆, g∗ + ∆]× R+ → R that satisfy the boundary conditions (35),

and a continuous mapping T that summarizes the functional equation (34). We need T (z) to be

a compact subset of z. z and T are constructed in Definitions 5 and 6. Lemmas 4 and 5 show

that T (z) is a compact subset of z. Lemma 6 shows that the mapping T is continuous. Together

with the Schauder’s fixed point theorem, these properties ensure the existence of U.
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Definition 4 C0 ([g∗ −∆, g∗ + ∆]× R+,R) denotes the Banach space of continuous functions
U : [g∗ −∆, g∗ + ∆]× R+ → R and U (g, 0) = 0 for all g ∈ [g∗ −∆, g∗ + ∆] with the norm

‖U‖ = sup
g∗−∆≤g≤g∗+∆

sup
0≤p≤∞

|U (g, p)| .

Definition 5 Let z denote the subset of continuous functions U ∈ C0 ([g∗ −∆, g∗ + ∆]× R+,R)
with U (g, 0) = 0 and

vg − vge−θp ≤ U (g, p) ≤ vg + vge
−θp for all p ≥ 0. (36)

Definition 6 For each function u = U (g, .) ∈ C0 (R+,R) consider the operator Tg

Tgu ∈ C0
(
R+,R

)
satisfies the following ordinary differential equation35

g (Tgu)′ (p) + (rg + Ie (u (p+ lnκ))) (Tgu) (p)

= βL+ Ii (λu (p+ lnλ)− Tgu (p)) . (37)

with the initial condition Tgu (0) = 0. Notice that

rg = ρ+ θg. (38)

Here ẑ (p) is defined such that η (ẑ (p))κu (p+ lnκ) = 1. The operator T is defined by

TU (g, p) = TgU (g, p) .

Lemma 4 Suppose Assumptions 1b and 3 are satisfied, then T (z) ⊂ z.

Proof. Let kg (p) = vg + vge
−θp and kg (p) = vg − vge−θp. By definition, for each U ∈ z, we have

kg (p) ≤ U (g, p) ≤ kg (p) .

Let kg (p) = TgU (g, p) then, also by definition (37) implies that

gk′g (p) = βL− Ii (λu (p+ lnλ)− kg (p))− (rg + Ie (u (p+ lnκ))) kg (p)

≤ βL− Ii
(
λkg (p+ lnλ)− kg (p)

)
−
(
rg + Ie

(
kg (p+ lnκ)

))
kg (p) .

So if
gk
′
g (p) > βL− Ii

(
λkg (p+ lnλ)− kg (p)

)
−
(
rg + Ie

(
kg (p+ lnκ)

))
kg (p) , (39)

then kg (p) < kg (p) for all p > 0 given that kg (0) = 0 < kg (0). Similarly, if

gk′g (p) < βL− Ii
(
λkg (p+ lnλ)− kg (p)

)
−
(
rg + Ie

(
kg (p+ lnκ)

))
kg (p) (40)

35Standard results from the theory of ordinary differential equations ensure the existence and
uniqueness of Tgu (p) if u ∈ z defined below.
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then kg (p) > kg (p) for all p > 0 given that kg (0) = 0 = kg (0).
Below we will use Assumption 3 to show (39) and (40). Indeed, the two inequalities can be re-
written as (for all 0 < x ≤ vg):

−gθx > βL+ Ii

(
(λ− 1) vg +

(
λ1−θ − 1

)
x
)
−
(
rg + Ie

(
vg − κ−θx

))
(vg + x) , (41)

and
gθx < βL+ Ii

(
(λ− 1) vg −

(
λ1−θ − 1

)
x
)
−
(
rg + Ie

(
vg + κ−θx

))
(vg − x) . (42)

By definition of vg in (1), we have equalities at x = 0. It is suffi cient to show that the derivative of
the left hand side of (41) is strictly greater than the derivative of its right hand side. Or equivalently,

−gθ > I ′i

(
(λ− 1) vg +

(
λ1−θ − 1

)
x
)(

λ1−θ − 1
)
− rg − Ie

(
vg − κ−θx

)
+ I ′e

(
vg − κ−θx

)
κ−θvg.

Equation (38) now implies that rg > gθ and, from Assumption 1b, θ ≥ 1, yields

I ′i

(
(λ− 1) vg +

(
λ1−θ − 1

)
x
)(

λ1−θ − 1
)
≤ 0.

It remains to show that
Ie

(
vg − κ−θx

)
vg ≥ I ′e

(
vg − κ−θx

)
κ−θ,

or (
vg − κ−θx

)
≥ 1

min εIe
κ−θvg.

or
min εIe

min εIe + 1
≥ κ−θ (43)

Similarly, it is suffi cient to show that the derivative of the left hand side of (42) is strictly greater
than the derivative of its right hand side. Or equivalently,

gθ < I ′i

(
(λ− 1) vg −

(
λ1−θ − 1

)
x
)(

1− λ1−θ
)

+ rg + Ie

(
vg + κ−θx

)
− I ′e

(
vg + κ−θx

)
κ−θvg.

This is true if
(
vg + κ−θx

)
≥ 1

min εIe
κ−θvg, or equivalently, if

min εIe ≥ κ−θ. (44)

Since
εIe =

1

εη
− 1,

Assumption 3 implies both (43) and (44).

Lemma 5 T (z) is a compact subset of C0 ([g∗ −∆, g∗ + ∆]× R+,R).

Proof. Suppose {fn}∞n=1 ⊂ z, we will show that we can extract a subsequence from {Tfn}
∞
n=1

that converges to f∗ ∈ z. First, there exists a constant K > 0 such that ‖U‖ ≤ K for all U ∈ z.
So (for all g and p):∣∣∣∣ ∂∂pTfn

∣∣∣∣ =

∣∣∣∣ ddpTgfn (g, p)

∣∣∣∣ ≤ βL+ Ii ((λ+ 1)K) + (ρ+ θ (g∗ + ∆) + Ie (K))K

g∗ −∆
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Second, Dg (p) = ∂
∂g (Tfn (p)) is the solution of

gD′g (p) + Tfn (p) +

(
drg
dg

+ Ie (fn (p+ lnκ))

)
Tfn (p)

=
(
I ′i (λfn (p+ lnλ)− Tfn (p))− (rg + Ie (fn (p+ lnκ)))

)
Dg (p)

So Dg (p) is uniformly bounded over [g∗ −∆, g∗ + ∆]× [0,M ] for any M > 0. Therefore, for each
M = 1, 2, ...., we have {Tfn (g, p)}∞n=1 is equicontinuous over

C0 ([g∗ −∆, g∗ + ∆]× [0,M ] ,R) .

We construct subsequences
(
{TfMk

}k≥1

)
M≥1

of {Tfn}n≥1 as follows:

• M = 1: Since {Tfn}n≥1 is equicontinuous over [g∗ −∆, g∗ + ∆] × [0,M ], there exists a

subsequence {Tf1k}
∞
k=1 that converges uniformly to f

∗
M ∈ C0 ([g∗ −∆, g∗ + ∆]× [0,M ] ,R)

over [g∗ −∆, g∗ + ∆]× [0,M ].

• M =⇒M+1: Since {TfMk
}∞k=1 is equicontinuous over [g∗ −∆, g∗ + ∆]×[0,M + 1], there ex-

ists a subsequence
{
Tf(M+1)k

}∞
k=1

that converges uniformly to f∗M+1 over [g∗ −∆, g∗ + ∆]×

[0,M + 1]. Because of the subsequence property: f∗M+1

∣∣
[g∗−∆,g∗+∆]×[0,M ]

= f∗M .

Let f∗ : [g∗ −∆, g∗ + ∆]×R+ → R be defined by f∗|[g∗−∆,g∗+∆]×[0,M ] = f∗M for allM ∈ Z+. By
definition of f∗ we have for each p ≥ 0 and g ∈ [g∗ −∆, g∗ + ∆] , limM→∞ TfMM

(g, p) = f∗ (g, p)
so f∗ ∈ z.
We now show that the subsequence {TfMM

}∞M=1 converges to f
∗, i.e.,

lim
M→∞

‖TfMM
− f∗‖C0([g∗−∆,g∗+∆]×R+,R) = 0.

Indeed, for any ε > 0, given (36) in the definition ofz, there exists a p1 > 0 such that |TfMM
(g, p)− vg| <

ε
2 and |f

∗ (g, p)− vg| < ε
2 for all p ≥ p1. So for all p ≥ p1 and g ∈ [g∗ −∆, g∗ + ∆], we have

|TfMM
(g, p)− f∗ (g, p)| < ε. Given p1, there exists an M1 such that |TfMM

(g, p)− f∗ (g, p)| < ε

for all p1 ≥ p ≥ 0,g ∈ [g∗ −∆, g∗ + ∆] and M ≥M1 . Therefore, for all p ≥ 0, g ∈ [g∗ −∆, g∗ + ∆]

and M ≥M1, we have |TfMM
(g, p)− f∗ (g, p)| < ε.

Lemma 6 The mapping T is continuous over z.

Proof. Suppose fn → f , by the Lebesgue dominated convergence theorem, we have Tfn converges
pointwise toward Tf . We next prove that

lim
n→∞

‖Tfn − Tf‖C0([g∗−∆,g∗+∆]×R+,R) = 0.
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First, notice that {Tfn} is a Cauchy sequence: Because, for any ε > 0 {Tfn} it is a Cauchy sequence
over any restricted interval [0, p1] so we can find M such that

‖Tfm − Tfn‖C0([g∗−∆,g∗+∆]×[0,p1],R) < ε for all m,n ≥M

and by definition of z we can choose p1 such that

‖Tfm (p, g)− Tfn (p, g)‖ < ‖Tfm (p, g)− vg‖+ ‖Tfn (p, g)− vg‖
<

ε

2
+
ε

2
= ε for all p ≥ p1.

Second, by the relative compactness of T (z), from any subsequence of {Tfn} there is subsequence
{hM} of {Tfn} that converges to h over C0 ([g∗ −∆, g∗ + ∆]× R+,R). Since {hM} also converges
pointwise to Tf we have h = Tf . Therefore

lim
M→∞

‖hM − Tf‖C0([g∗−∆,g∗+∆]×R+,R) = 0.

Thus
lim
n→∞

‖Tfn − Tf‖C0([g∗−∆,g∗+∆]×R+,R) = 0.

Proof of Lemma 3. Given Lemma 4, 5, 6 we can apply the Schauder’s fixed point the-

orem to show that T admits a fixed point U in z: TU = U . Or equivalently for each g ∈

[g∗ −∆, g∗ + ∆], u (·) = U (g, .) satisfies u (0) = 0 and (34). The limit at infinity in (35) fol-

lows directly from the definition of z. Finally, equicontinuity is a consequence of the fact that

U (·) ∈ C0 ([g∗ −∆, g∗ + ∆]× R+,R).

Now, we find εg such that the value function V̂g (q̃) = q̃Ug (ln (q̃)− ln εg) satisfies (27), (28) and

(29).
Proof of Lemma 2 (Existence of the Value Function). Let us choose µ < µ such that

µ > Ug∗

(
1− β
β

log

(
1

1− β

))
and

µ < Ug∗

(
1− β
β

log

(
1

1− β

)
+ δ

)
,

where δ > 0. Given that U (g, p) is equicontinuous in g ∈ [g∗, g∗ + ∆], we can choose ∆ suffi -

ciently small such that we can apply Lemma 3 and moreover Ug
(

1−β
β log

(
1

1−β

))
< µ < µ <

Ug

(
1−β
β log

(
1

1−β

)
+ δ
)
for all g ∈ [g∗, g∗ + ∆]. Therefore, for any µe ∈

(
µ, µ

)
there exists an

ωg ∈
(

1−β
β log

(
1

1−β

)
, 1−β

β log
(

1
1−β

)
+ δ
)
such that µe = Ug (ωg). For each ω, let

εg = ω/ exp (ωg) < ω (1− β)
1−β
β . (45)

and let V̂g (q̃) = q̃Ug (ln (q̃)− ln εg). Then V̂g satisfies (27), (28) and (29).
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Given the existence of U (g, p), for each g ∈ [g∗, g∗ + ∆], we define

zg (p) = arg max
z≥0

(λUg (p+ λ)− Ug (p))φ (z)− z

and

ẑg (p) = η−1

(
Ug (p+ lnκ)

κ

)
Since limp→∞ Ug (p) = vg, we have

lim
p→∞

zg (p) = z (vg) and lim
p→∞

ẑg (p) = ẑ (vg) .

Armed with the existence of the value function and the corresponding investment decisions, we are

ready to prove the second step

Step 2: In Lemma 7, we show the existence of the stationary distribution under the form

F ′g (q̃) = fg (q̃) =
hg(ln q̃−ln εg)

q̃ . Moreover, in Lemma 10, we show that fg satisfies the asymptotic

Pareto property in Proposition 4. And lastly, for the purpose of the last step in proving the existence

of a stationary BGP, in Lemma 12 we show that the mean firm size goes to infinity as g approaches

g∗, i.e., limg↓g∗
∫∞

0 q̃dFg (q̃) =∞.

We look for a stationary distribution Fg (y) that solves equations (30) and (31) with z (q̃) =

zg (ln q̃ − ln εg) and ẑ (q̃) = ẑg (ln q̃ − ln εg). Let hg (p) = εge
pF ′g (εge

p), the equations (30) and (31)

become:
If p > lnωg

0 = hg (p) g −
∫ p

p−lnλ
φ (zg (p̃))hg (p̃) dp̃−

∫ p

p−lnκ
ẑg (p̃) η (ẑg (p̃))hg (p̃) dp̃. (46)

If p ≤ lnωg

0 = hg (p) g − hg (0) g −
∫ p

p−lnλ
φ (zg (p̃))hg (p̃) dp̃−

∫ p

p−lnκ
ẑg (p̃) η (ẑg (p̃))hg (p̃) dp̃. (47)

We also have hg (p) = 0 for all p ≤ 0. The conditions for Fg to be a well-defined distribution is∫
hg (p) dp = 1.

The following lemma shows the existence and uniqueness of the stationary distribution.

Lemma 7 Given the investment strategies zg (p) , ẑg (p), the stationary distribution hg (p) exists

and is unique.

Proof. Differentiate both side of the integral equations on hg, we have

gh′g (p) = φ (zg (p))hg (p)− φ (zg (p− lnλ))hg (p− lnλ)

+ ẑg (p) η (ẑg (p))hg (p)− ẑg (p− lnκ) η (ẑg (p− lnκ))hg (p− lnκ) .
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We rewrite this equation as

gh′g (p)− (φ (zg (p)) + ẑg (p) η (ẑg (p)))hg (p) = −φ (zg (p− lnλ))hg (p− lnλ)

− ẑg (p− lnκ) η (ẑg (p− lnκ))hg (p− lnκ) .

Using the variation of constant formula, this equation yields a unique equation for 0 ≤ p < ωg
given hg (0). For p ≥ ωg the equation also yields a unique solution, however the initial condition is
now

hg (ωg) =
1

g

∫ ωg

ωg−lnλ
φ (zg (p̃))hg (p̃) dp̃+

1

g

∫ ωg

ωg−lnκ
ẑg (p̃) η (ẑg (p̃))hg (p̃) dp̃.

Since the system is linear in the initial condition hg (0), therefore, there exists a unique hg (0) such

that
∫∞

0 hg (p) dp = 1. Notice that Lemma 10 below implies that
∫∞

0 hg (p) dp <∞.

Having established the existence and uniqueness of the stationary distribution hg, we now

characterize some of its properties. In particular, Lemma 3 suggests that the investment policies

zg (p) , ẑg (p) are approximately constant as p goes to infinity. So the evolution of firm (sector) size

assembles Gibrat’s law for large firms. As a result, the stationary distribution hg should have a tail

distribution close to Pareto. The following lemmas prove that conjecture.
Let z∗g = z (vg) and ẑ∗g = ẑg (vg). Then for each g > g∗, define the χ (g) as the unique number

χ satisfying

g = φ
(
z∗g
) λχ − 1

χ
+ ẑ∗g∗η

(
ẑ∗g
) κχ − 1

χ
,

because the right hand side is strictly increasing in χ. We will show below that χ (g) is the Pareto

index of the Pareto tail of the stationary distribution hg.

Lemma 8 χ (g∗) = 1 and χ (g) > 1 for all g > g∗ and in the neighborhood of g∗.

Proof. By definition of g∗ we have g∗ = φ
(
z∗g∗
)

(λ− 1) + ẑ∗η
(
ẑ∗g∗
)

(κ− 1), therefore χ (g∗) = 1.
For g > g∗

g > φ
(
z∗g
)

(λ− 1) + ẑ∗gη
(
ẑ∗g
)

(κ− 1) .

Thus χ (g) > 1. To show the previous inequality, notice that the left hand side is strictly increasing

in g and the right hand side is strictly increasing in vg. However, Lemma 1 shows that vg is strictly

decreasing in g, so the right hand side is strictly decreasing in g. Combining this fact with the fact

that at g = g∗ the two sides are equal, we obtain the desired inequality.

Lemma 9 For each ξ > 0, there exists a δ > 0 such that(
1

g
φ
(
z∗g
)

+ δ

)
λχ−ξ − 1

χ− ξ +

(
1

g
ẑ∗gη

(
ẑ∗g
)

+ δ

)
κχ−ξ − 1

χ− ξ < 1

and (
1

g
φ
(
z∗g
)
− δ
)
λχ+ξ − 1

χ+ ξ
+

(
1

g
ẑ∗gη

(
ẑ∗g
)
− δ
)
κχ+ξ − 1

χ+ ξ
> 1.
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Proof. This is true given 1
gφ
(
z∗g
)
λχ−1
χ + 1

g ẑ
∗
gη
(
ẑ∗g
)
κχ−1
χ = 1 and the functions

λχ−ξ − 1

χ− ξ ,
κχ−ξ − 1

χ− ξ

are strictly increasing in χ− ξ.
For each ξ > 0 let δ > 0 be such a δ. Given the limit result in Lemma 3, there exists a

p0 = p0 (δ) ≥ ωg such that, for all p ≥ p0∣∣∣∣(1

g
φ (zg (p)) +

1

g
ẑg (p) η (ẑg (p))

)
−
(

1

g
φ
(
z∗g
)

+
1

g
ẑ∗gη

(
ẑ∗g
))∣∣∣∣ < δ

and ∣∣∣∣1gφ (zg (p− lnλ))− 1

g
φ
(
z∗g
)∣∣∣∣ < δ∣∣∣∣1g ẑg (p− lnκ) η (ẑg (p− lnκ))− 1

g
ẑ∗gη

(
ẑ∗g
)∣∣∣∣ < δ.

We will now state and prove a key lemma. Proposition 4 then follows as a corollary of this

lemma.

Lemma 10 (Tail Index) For any ξ > 0, there exist B, B and p0 such that

hg (p) < 2Be−(χ(g)−ξ)p, for all p ≥ p0

and
hg (p) >

1

2
Be−(χ(g)+ξ)p, for all p ≥ p0,

In other words, hg (p) = e−χ(g)pϕg (p), where ϕg (p) is a slow-varying function.

Proof of the Tail Index Lemma. Let us define B (δ) ≡ maxp0≤p≤p0+lnκ hg (p) e(χ−ξ)p and
B (δ) ≡ minp0≤p≤p0+lnκ hg (p) e(χ+ξ)p. We will show that

hg (p) < 2B (δ) e−(χ−ξ)p, for all p ≥ p0

and
hg (p) >

1

2
B (δ) e−(χ+ξ)p, for all p ≥ p0.

These inequalities hold for p0 ≤ p ≤ p0 + lnκ by definition. We will next show that they also
hold for all p ≥ p0. To obtain a contradiction, suppose that there is p > p0 + lnκ such that
hg (p) ≥ 2B (δ) e−(χ−ξ)p. Consider the infimum of those p, then

hg (p) = 2B (δ) e−(χ−ξ)p.
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In the other hand, the equation determining hg implies

hg (p) =
1

g

∫ p

p−lnλ
φ (zg (p̃))hg (p̃) dp̃+

1

g

∫ p

p−lnκ
ẑg (p̃) η (ẑg (p̃))hg (p̃) dp̃

<

∫ p

p−lnλ

(
1

g
φ
(
z∗g
)

+ δ

)
2B (δ) e−(χ−ξ)p̃dp̃+

∫ p

p−lnκ

(
1

g
ẑ∗gη

(
ẑ∗g
)

+ δ

)
2B (δ) e−(χ−ξ)p̃dp̃

= 2B (δ)

(
1

g
φ
(
z∗g
)

+ δ

)
λχ−ξ − 1

χ− ξ e−(χ−ξ)p + 2B (δ)

(
1

g
ẑ∗gη

(
ẑ∗g
)

+ δ

)
κχ−ξ − 1

χ− ξ e−(χ−ξ)p

< 2B (δ) e−(χ−ξ)p.

This yields a contraction. Therefore

hg (p) < 2B (δ) e−(χ−ξ)p, for all p ≥ p0.

Similarly, we can show that

hg (p) >
1

2
B (δ) e−(χ+ξ)p, for all p ≥ p0.

As a consequence, if g > g∗, then χ (g) > 1, Lemma 10 for ξ = χ(g)−1
2 implies∫

hg (p) dp < C

∫
e−

1+χ(g)
2

pdp <∞.

In order to proceed to step 3, we need to show that the mean of firm size converges to infinity

as g approaches g∗ from above, i.e., limg−→g∗
∫∞

0 hg (p) epdp = ∞. This is intuitively true using

Lemma 4, because hg∗ (p) ∝ e−p so
∫∞

0 hg∗ (p) epdp ∝
∫∞

0 1dp = ∞. Unfortunately, this does not

work formally because Lemma 4 only provides e−(1−ξ)p as a lower bound. So, the following lemma

gives a better lower bound of hg∗ in order to prove the limiting result.

Lemma 11 (Tail Index at the Limit) There exists B and p0 such that

hg∗ (p) >
1

2
B
e−p

p
, for all p ≥ p0.

Proof. Let us choose B > 0 such that the inequality holds for p0 ≤ p ≤ p0 + lnκ. We will show
that they also hold for all p ≥ p0 using contradiction.
First, we choose p0 such that, using Lemma 4 there exists a constant C > 0 that satisfies

φ (zg∗ (p̃)) > φ
(
z∗g∗
)
− g∗Ce−θp̃

ẑg∗ (p̃) η (ẑg∗ (p̃)) > ẑ∗g∗η
(
ẑ∗g∗
)
− g∗Ce−θp̃

∀p̃ ≥ p0.

Suppose that there is p > p0 + lnκ such that

hg∗ (p) <
1

2
B
e−p

p
.
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Consider the infimum of those p, then

hg∗ (p) =
1

2
B
e−p

p
.

In the other hand, the equation determining hg∗ implies

hg∗ (p) =
1

g∗

∫ p

p−lnλ
φ (zg∗ (p̃))hg∗ (p̃) dp̃+

1

g∗

∫ p

p−lnκ
ẑg∗ (p̃) η (ẑg∗ (p̃))hg∗ (p̃) dp̃

>

∫ p

p−lnλ

(
1

g∗
φ
(
z∗g∗
)
− Ce−θp̃

)
1

2
B
e−p̃

p̃
dp̃+

∫ p

p−lnκ

(
1

g∗
ẑ∗g∗η

(
ẑ∗g∗
)
− Ce−θp̃

)
1

2
B
e−p̃

p̃
dp̃

=
1

2
B

1

g∗
φ
(
z∗g∗
)

(λ− 1)
e−p

p
+

1

2
B

1

g∗
ẑ∗g∗η

(
ẑ∗g∗
)

(κ− 1)
e−p

p

+
1

2
BC ′

e−p

p2
− 1

2
BC ′′e−(1+ θ

2)p

>
1

2
B
e−p

p
.

(We also choose p0 such that C ′ e
−p

p2 − 1
2C
′′e−(1+ θ

2)p > 0 for all p ≥ p0). This yields a contraction.
Therefore

hg∗ (p) >
1

2
B
e−p

p
, ∀ p ≥ p0.

So, a direct consequence of this lemma is∫ ∞
0

hg∗ (p) epdp >

∫ ∞
p0

1

2
B

1

p
dp =∞.

We can use the results above to prove the following property of hg, which will be crucial to

show the existence of the equilibrium growth rate of the economy with imitation, i.e., the last step

in proving Proposition 2.

Lemma 12 hg is uniformly continuous in g. And for g > g∗

Φ (g) =

∫ ∞
0

hg (p) epdp <∞

is continuous in g. Moreover limg↓g∗ Φ (g) = +∞.

Proof. The fact that hg is uniformly continuous in g is a result of uniform continuity of {Ug}, thus

of zg (·) and ẑg (·) as well. Φ (g) is finite given Proposition 4. Φ (g) is continuous by the Lebesgue

dominated convergence theorem. Finally, as we show above Φ (g∗) = +∞ and by the uniform

continuity of hg, we have limg↓g∗ Φ (g) = +∞.
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For any ω > 0, εg is defined as in (45). The corresponding stationary distribution is fg (q̃) =
hg(ln q̃−ln εg)

q̃ and policy functions are z (q̃) = zg (ln q̃ − ln εg) and ẑ (q̃) = ẑg (ln q̃ − ln εg)for all q̃ ≥ εg.
Given g, g′ as defined in (32) can be written using hg and the change of variable q̃ = εge

p:

g′ =
(λ− 1)

∫∞
εg
q̃φ (z (q̃)) fg (q̃) dq̃ + (κ− 1)

∫∞
εg
q̃ẑ (q̃) η (ẑ (q̃)) fg (q̃) dq̃

1− εgfg (εg) (ω − εg)

= εg
(λ− 1)

∫∞
0 epφ (zg (p))hg (p) dp+ (κ− 1)

∫∞
0 epẑg (p) η (ẑg (p))hg (p) dp

1− hg (0) (ω − εg)
We obtain an BGP if g′ = g.

Step 3: We next show that there exists g (ω) such that

D (g (ω)) ≡ g′ (g (ω))− g (ω) = 0.

Let µ, µ and ∆ be chosen as in Lemma 2 and such that Lemma 8 for g ∈ [g∗, g∗ + ∆]. Consider
ω > 0 suffi ciently small such that for all 0 < ω < ω, ε = ω

ωg∗+∆
satisfies

ε
(λ− 1)

∫∞
0 epφ (zg∗+∆ (p))hg∗+∆ (p) dp+ (κ− 1)

∫∞
0 epẑg∗+∆ (p) η (ẑg∗+∆ (p))hg∗+∆ (p) dp

1− hg∗+∆ (0) (ω − ε)
< g∗ + ∆. (48)

We will show that, for each ω such that 0 < ω < ω, there exists a g = g (ω) ∈ (g∗, g∗ + ∆) such
that g′ = g and that

lim
ω→0

g (ω) = g∗.

Indeed, as in the proof of Lemma 2 there exists a ωg such that ωg ∈
(

1−β
β log

(
1

1−β

)
, 1−β

β log
(

1
1−β

)
+ δ
)

and Ug (ωg) = µe. Set εg = ω/ exp (ωg) and define

D (g) = εg
(λ− 1)

∫∞
0 epφ (zg (p))hg (p) dp+ (κ− 1)

∫∞
0 epẑg (p) η (ẑg (p))hg (p) dp

1− hg (0) (ω − εg)
− g.

Using Lemma 12, we can show that D (g) is continuous in g. Moreover, by (48), we have

D (g∗ + ∆) < 0,

and, Lemma 12 implies
lim
g→g∗

D (g) = +∞.

Therefore, by the intermediate value theorem, there exists a g (ω) such that D (g) = 0. Moreover
if g (ω) > g∗ +$ as ω → 0, we also have

εg
(λ− 1)

∫∞
0 epφ (zg (p))hg (p) dp+ (κ− 1)

∫∞
0 epẑg (p) η (ẑg (p))hg (p) dp

1− hg (0) (ω − εg)
→ 0

(because εg → 0). This implies D (g (ω)) < − (g∗ +$) < 0, yielding a contradiction with the fact
that D (g (ω)) = 0. Thus

lim
ω→0

g (ω) = g∗.

The uniform convergences of the value and policy functions are obtained immediately given the

bounds on the value function in (36), which themselves converge uniformly. �
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