Notes on Models with Calvo Price and Wage Setting

M. Canzoneri, R. Cumby and B. Diba

Georgetown University, March 28, 2005

This evolving set of notes documents some models we have been using recently, and the way we solve them using dynare. All of the models have NNS preferences, and Calvo wage and/or price setting. Model 1 has multiple sectors, and no capital; it comes in three versions: “nominal”, “real”, and “wage & price inflation”. As explained below, we moved from one version to another as problems with dynare seemed to dictate. Model 2 has only one sector, but it adds capital and habit, and shows how to add “rule of thumb” agents if desired. Model 3 is a two country model of a monetary union.

Model 1: the Multi Sector Model.

The Basic Multi-sector Framework:

Sectors are characterized by their productivity shock and by the type (wage/price) and degree of their nominal inertia. There is no labor mobility across sectors. Each household is allocated to a sector, and works at all of the firms in that sector. In the flexible wage version of the model, all households in a given sector the identical (despite the fact that firms may charge different prices); so, we can easily aggregate utility in the end. In the sticky wage version of the model, the households in a given sector are different (since they require different wages), and aggregation is more difficult. Workers are allocated across sectors in such a way that sectoral wages equalize in the steady state; there is no incentive for labor to move across sectors in the steady state, and our “no labor mobility” assumption does not create steady state welfare losses. More specifically –

1. There are S sectors indexed by $s \in [1, \ldots, S]$. Households are indexed by $h \in [0, 1]$; they are monopolistic suppliers of labor within their sector. H_s – with measure n_s – is the set of households working in sector s; $\sum_{s=1}^{S} n_s = 1$.

1These notes compliment Canzoneri, Cumby and Diba (2003), and the accompanying “Notes on: Monopolistic Competition and Nominal Inertia”, which discuss fundamental aspects of this literature within the simpler framework of one period nominal wage/price “contracts”.
2. Firms are indexed by \(f \in [0, 1] \); they are monopolistic suppliers of consumption goods. \(F_s \) – with measure \(f_s \) – is the set of firms in sector \(s \); \(\sum_{s=1}^{S} f_s = 1 \).

3. Each firm’s production is linear in a composite labor input of all the households working in the sector. Sectoral goods are a composite of the output of firms in the sector. And, the final consumption good is a composite of the \(S \) sectoral goods.

4. Here, we use Chari, Kehoe and McGrattan’s (2000) artifice of a “bundler” to describe the algebra of composite goods. For a more detailed discussion of composite goods, see Canzoneri, Cumby, and Diba, “Notes on Monopolistic Competition and Nominal Inertia”, which are available on Canzoneri’s webpage.

The composite labor input, and production, in sector \(s \):

(1) \(N_{s,\tau}(f) = \left[n_s^{-1/\phi} \int H_s L_{s,\tau}(h, f)^{(\phi-1)/\phi} dh \right]^{\phi/(\phi-1)}, \phi > 1 \) (think of a bundler for each firm \(f \))
\[
W_{s,\tau} = \left[n_s^{-1} \int H_s W_{s,\tau}(h)^{1-\phi} dh \right]^{1/(1-\phi)} \quad \text{(household wage does not depend on firm)}
\]
\(Y_{s,\tau}(f) = Z_{s,\tau} N_{s,\tau}(f) \quad \text{(firm’s production function)}
\]
\(L_{s,\tau}(h) = \int_{F_s} L_{s,\tau}(h, f) df \) and \(N_{s,\tau} = \int_{F_s} N_{s,\tau}(f) df \) (aggregate hours worked and labor input)
\[
L_{s,\tau}^d(h, f) = (W_{s,\tau}/W_{s,\tau}(h))^{\Phi}(N_{s,\tau}(f)/n_s) \quad \text{(demand of bundler for firm \(f \))}
\]
\(L_{s,\tau}^d(h) = (W_{s,\tau}/W_{s,\tau}(h))^{\Phi}(N_{s,\tau}/n_s) \quad \text{(integrating demands over \(f \))}
\]
where, \(W_{s,\tau}(h) \) is the household’s wage, \(L_{s,\tau}(h, f) \) is hours worked at firm \(f \), \(L_{s,\tau}(h) \) is total hours worked, \(L_{s,\tau}^d(h) = \int_{F_s} L_{s,\tau}^d(h, f) df \) is total demand for the hours of household \(h \), similar definitions hold for composite inputs (the \(N \)’s), and \(Z_{s,\tau} \) is a stochastic sectoral productivity.

The composite sectoral good, \(Y_{s,\tau} \), is given by:

(2) \(Y_{s,\tau} = \left[\int_{S=1}^{S} Y_{s,\tau}(n_s^{-1/\eta})^{\eta/(\eta-1)} d\eta \right]^{\eta/(\eta-1)}, \eta > 1 \)
\[
P_{s,\tau} = \left[\int_{S=1}^{S} P_{s,\tau}(f)^{(1-\alpha)/\alpha} df \right]^{1/(1-\alpha)} \quad \text{(firm’s production function)}
\]
\(Y_{s,\tau}^d(f) = (P_{s,\tau}/P_{s,\tau}(f))^{\alpha}(Y_{s,\tau}/f_s) \)

The composite final good, \(Y_{\tau} \), is given by:

(3) \(Y_{\tau} = \left[\sum_{s=1}^{S} Y_{s,\tau}^{(\eta-1)/\eta} \right]^{\eta/(\eta-1)}, \eta > 1 \)
\[
P_{\tau} = \left[\sum_{s=1}^{S} P_{s,\tau}^{(1-\eta)/\eta} \right]^{1/(1-\eta)},
\]
\(Y_{s,\tau}^d = (P_{\tau}/P_{s,\tau})^{\Phi}(Y_{s,\tau}^d/\gamma_{s,\tau}) \quad \text{[or equivalently \(Y_{s,\tau}^d = (P_{\tau}/P_{s,\tau})^{\Phi}(Y_{s,\tau}^d/\gamma_{s,\tau}) \])} \)
Remarks:

1. For the Cobb-Douglass case, set η very close to one. Dynare has no difficulty with this.

2. Our notation makes a distinction between hours worked by the household (L) and the composite labor input (N). We have not found it necessary to make similar distinctions for the composite consumption goods.

3. The algebra of “bundlers” – leading to the results asserted above – is discussed next.

The algebra of competitive bundlers:

The “bundler” for (say) the sector s composite good is a competitive (zero profit) agent who buys the firm’s $Y_{s,t}(f)$ at the price $P_{s,t}(f)$, bundles them into the composite good $Y_{s,t} = \left[f_s^{-1/\alpha} \int F_s Y_{s,t}(f)(\alpha-1) df \right]^{\alpha/(\alpha-1)}$, and sells it at the price $P_{s,t}$.

The bundler’s cost minimization problem for CES aggregators:

$$\min_{Y_{s,t}(f)} \int F_s P_{s,t}(f) Y_{s,t}(f) df \quad \text{s.t.} \quad \bar{Y}_{s,t} = \left[f_s^{-1/\alpha} \int F_s Y_{s,t}(f)(\alpha-1) df \right]^{\alpha/(\alpha-1)}$$

$$\mu \left(\bar{Y}_{s,t} - \left[f_s^{-1/\alpha} \int F_s Y_{s,t}(f)(\alpha-1) df \right]^{\alpha/(\alpha-1)} \right) = 0$$

Note: Lagrangian multiplier $\mu = MC = P_{s,t}$, since bundler is competitive

First Order condition –

$$P_{s,t}(f) = P_{s,t} \left[f_s^{-1/\alpha} \int F_s Y_{s,t}(f)(\alpha-1) df \right]^{\alpha/(\alpha-1)}$$

$$f_s = \left(\frac{Y_{s,t}}{P_{s,t}/f_s} \right)^{1/\alpha}$$

To find $P_{s,t}$, use FOC to eliminate $Y_{s,t}(f)$ in $Y_{s,t} = \left[f_s^{-1/\alpha} \int F_s Y_{s,t}(f)(\alpha-1) df \right]^{\alpha/(\alpha-1)}$

$$Y_{s,t} = \frac{Y_{s,t}}{P_{s,t}/f_s} \left[f_s^{-1/\alpha} \int F_s P_{s,t}(f)(\alpha-1) df \right]^{\alpha/(\alpha-1)} = \left(\frac{Y_{s,t}}{P_{s,t}/f_s} \right)^{1/\alpha}$$

Collecting results:

$$Y_{s,t} = \left[f_s^{-1/\alpha} \int F_s Y_{s,t}(f)(\alpha-1) df \right]^{\alpha/(\alpha-1)} \quad \text{CES aggregator for the sectoral good } s$$

$$P_{s,t} = \left[f_s^{-1} \int F_s P_{s,t}(f)(\alpha-1) df \right]^{1/(\alpha-1)} \quad \text{Price of sectoral good } Y_{s,t}$$

$$Y_{d,t}(f) = \left(\frac{P_{s,t}/f_s}{f_s} \right) \left(Y_{s,t}/f_s \right) \quad \text{Demand for product of firm } f$$
Remarks:

1. Similar algebra applies to the labor aggregator and the final goods aggregator.

2. In equilibrium, all households in sector s will look alike in the flexible wage version of the model, but since $n_s ≠ 1$, we can not make both sectoral wages and sectoral work efforts equal to their household values. We define units of the composite labor input so that $W_{s,t} = W_{s,t}(h)$ in equilibrium, but then $N_{s,t} = n_s L_{s,t}(h)$ in equilibrium.

The Household’s Intertemporal Maximization Problem:

Utility of household h working in sector s:

$$U_t(h) = E_t \sum_{\tau=0}^{\infty} \beta^\tau [(1-\rho)^{1-\rho} - \kappa(1+\chi)^{1+\chi} + \nu \cdot v((M_t(h)/P_t))]$$

Budget constraint of household h working in sector s:

$$M_t(h) + E_t[\delta_{t+1} B_{t+1}(h)] + P_t C_t(h) + P_t T_t = S_w W_{s,t}(h) L_{s,t}(h) + S_m M_{t-1}(h) + B_t(h) + D_t(h)$$

where $B_{t+1}(h)$ is a state contingent claim, δ_{t+1} is the stochastic discount factor; $D_t(h)$ are dividends, T_t is a lump sum tax (used to balance it’s budget each period), S_w is a wage subsidy, and S_m is a subsidy on money holdings.

Remarks:

1. Monopolistic wage setting implies an inefficiently low level of work effort; fiscal policy can eliminate this inefficiency with a wage subsidy. See Canzoneri, Cumby & Diba (2002).

2. We will generally be considering interest rate rules; in that case, the way money enters U_t and the determination of real balances is not of much interest to us.

3. The parsimonious notation for contingent claims in comes from Woodford (1997). Cochrane (2001, Ch. 3) introduces contingent claims in the following way: let $p(B) = \sum_{\xi} p(\xi) B(\xi)$ be the price of a portfolio B of contingent claims; the ξ’s denote states of nature, $p(\xi)$ is the price of a claim on one dollar received in $\tau + 1$ contingent on the state ξ occurring, and $B(\xi)$ is the number of such claims in portfolio B. Letting $\pi(\xi)$ be the probability of state ξ, $p(B) = \sum_{\xi} \pi(\xi)[p(\xi) / \pi(\xi)] B(\xi) = E[\delta(\xi) B(\xi)]$, where $\delta(\xi) = p(\xi) / \pi(\xi)$ is the “stochastic discount factor”. $B_{t+1}(h,f)$ and δ_{t+1} in (5) correspond to $B(\xi)$ and $\delta(\xi)$. All households face the same asset prices and have the same subjective probabilities; so, all households face the same discount factor, δ_{t+1}, in (5). This means that the λ_t defined below will
equalize across households.

4. The “risk free” rate of return: Consider a bond that costs 1 dollar in t and pays I dollars in all states in t+1. From remark 2: 1 = \(E_t[\delta_{t+1} I_t] = I_t^{-1} E_t[\delta_{t+1}] \)

5. We may assume that each household owns a representative share in all of the firms. We have suppressed the buying and selling of shares since, as explained below, state contingent claims make the distribution of dividends irrelevant in this model.

Household's problem: choose \(B_{t+1}(h), C_t(h), M_t(h), \) and \(W_{s,t}(h) \) to maximize (4) subject to (3) and (5).

FOC include:

\((6a) C_t(h): \lambda_t P_t = C_t(h)^\phi \)

\((7a) B_{t+1}(h): \delta_{t+1} = \beta \lambda_{t+1}/\lambda_t \Rightarrow I_t^{-1} = E_t[\delta_{t+1}] = \beta E_t[\lambda_{t+1}/\lambda_t] \)

\((7b) M_t(h): v v(\cdot)/P_t = \lambda_t - \beta S_m E_t(\lambda_{t+1}) = \lambda_t[1 - \beta S_m E_t(\lambda_{t+1}/\lambda_t)] \Rightarrow v v(\cdot) = C_t(h)^\phi (1 - S_m I_t^{-1}) \)

\((8) W_{s,t}(h): W_{s,t}(h) = \kappa (M_t(h)/P_t)(\mu_w/S_w) L_{s,t}(h)^\phi /\lambda_t \) in equilibrium, where \(\mu_w = \phi/(\phi - 1) > 1 \), and \(\lambda_t \) is the marginal utility of nominal wealth.

Remarks:

1. Derivation of the FOC for \(W_{s,t}(h) \):

\[\phi \sum_{t=0}^{\infty} \beta^t \{ \ldots - \kappa (1+\chi)^{-1} [(W_{s,t}(h)/W_{s,t})^\phi N_{s,t}/n_s]^{1+\chi} + \ldots \} + \lambda_t [S_w W_{s,t}(h)[(W_{s,t}(h)/W_{s,t})^\phi N_{s,t}/n_s + \ldots]] \]

\[= \sum_{t=0}^{\infty} \beta^t \{ \ldots - \kappa (1+\chi)^{-1} [(W_{s,t}(h)/W_{s,t})^\phi N_{s,t}/n_s]^{1+\chi} + \ldots \} + \lambda_t [S_w W_{s,t}(h)]^{1-\phi}(1/W_{s,t})^\phi N_{s,t}/n_s + \ldots \}

\[W_{s,t}(h) = -\kappa L_{s,t}(h)^\phi (W_{s,t}(h)/W_{s,t})^\phi (N_{s,t}/n_s) W_{s,t}(h)^{-1} + \lambda_t S_w (1-\phi) W_{s,t}(h)^{\phi}(1/W_{s,t})^\phi N_{s,t}/n_s = 0 \]

\[\kappa L_{s,t}(h)^\phi L_{s,t}(h) W_{s,t}(h)^{-1} + \lambda_t S_w (1-\phi) L_{s,t}(h) = 0 \] and dividing by \(L_{s,t}(h) \)

\[\kappa L_{s,t}(h)^\phi W_{s,t}(h)^{-1} + \lambda_t S_w (1-\phi) = 0 \Rightarrow W_{s,t}(h) = \kappa (\mu_w/S_w) L_{s,t}(h)^\phi /\lambda_t \]

2. All households face the same \(\delta_{t+1} \), so \(\lambda \)'s and C’s equalize across households.

3. In equilibrium, \(C_t = \int_0^\infty C_t(h) \text{d}h = C_t(h) \).

4. Setting \(S_w = \mu_w \) eliminates the monopolistic distortion; see Canzoneri, Cumby & Diba (2002).
Note (from (3)) that: $C_{s,t} = (P_t / P_{s,t})^\eta (C_t / Y_t^\eta)$ \Rightarrow $P_t / P_{s,t} = (C_{s,t} / C_t)^{1/\eta} / Y_{s,t} \Rightarrow C^\rho = \lambda_s P_t = \lambda_s P_{s,t} (C_{s,t} / C_t)^{1/\eta} / Y_{s,t}$

So, in equilibrium the Euler equation (6a) can be written as a sectoral Euler Equation:

(6b) $\lambda_s P_{s,t} = \gamma_s C_t^{(1/\eta)^{-\rho}} C_{s,t}^{-1/\eta}$

The Firm’s Calvo Pricing Behavior:

1. Firm-f in F_s gets to set a new price with probability $1-\alpha_s$.

2. The expected length of the “contract” is: $(1-\alpha_s)\cdot 1 + (1-\alpha_s)\cdot 2 + ... + (1-\alpha_s)\cdot \alpha_s^{n-1} \cdot n + ... = (1-\alpha_s)^{-1}$.

 For example, if $1-\alpha_s = \frac{1}{4}$, then a quarter of the firms adjust each quarter, and the average length of “contracts” is a year; this is the benchmark value in King and Wolman (1996).

3. The fraction of firms with “contracts” set j periods ago is: $(1-\alpha_s)\alpha_s^j$.

In this section, we lighten the notation by dropping the sector subscripts “s” where possible.

Optimal price setting in period t –

Firm-f seeks to maximize its market value:

$MV_t = E_t \sum_{j=t}^{\infty} \beta^j \lambda_{s,t} [\underline{S}_p P_j(f) Y_j(f) - TC_j(Y_j(f))]$, where TC is total cost and \underline{S}_p is a price subsidy.

With probability α_{t-j}, the new price $P_{t-j}^*(f)$ will be in effect in period j; so, firm-f sets $P_{t-j}^*(f)$ to maximize:

$MV_t = E_t \sum_{j=t}^{\infty} (\alpha \beta)^{j-1} \lambda_{s,t} [\underline{S}_p P_{t-j}^*(f) Y_j(f) - TC_j(Y_j(f))]$, where $Y_j(f) = (P_{t-j}^*(f)/P_{t-j})^{-\rho}(Y_{j-f})$

$= E_t \sum_{j=t}^{\infty} (\alpha \beta)^{j-1} \lambda_{s,t} [\underline{S}_p P_{t-j}^*(f) (1/P_{t-j})^{-\rho}(Y_{j-f}) - TC_j(P_{t-j}^*(f) (1/P_{t-j})^{-\rho}(Y_{j-f}))]

FOC:

$0 = E_t \sum_{j=t}^{\infty} (\alpha \beta)^{j-1} \lambda_{s,t} [\underline{S}_p (1-\sigma)P_{t-j}^*(f))^{-\rho}(Y_{j-f}) + \sigma MC_j(\cdot) P_{t-j}^*(f) (1/P_{t-j})^{-\rho}(Y_{j-f})]$

(dividing by $P_{t-j}^*(f)^{\rho} f_{t-j}$, which is a constant, and noting that $MC = W/Z$)

$= E_t \sum_{j=t}^{\infty} (\alpha \beta)^{j-1} \lambda_{s,t} [\underline{S}_p (1-\sigma) P_{t-j}^* Y_j + \sigma (W_{t-j} Z_{t-j}) P_{t-j}^* Y_j / P_{t-j}^*(f)]$

So,

$P_{t-j}^*(f) E_t \sum_{j=t}^{\infty} (\alpha \beta)^{j-1} \lambda_{s,t} P_{t-j}^* Y_j = (\mu_p / \underline{S}_p) E_t \sum_{j=t}^{\infty} (\alpha \beta)^{j-1} \lambda_{s,t} (W_{t-j} Z_{t-j}) P_{t-j}^* Y_j$ where $\mu_p = \sigma / (\sigma - 1) > 1$

Remark: Setting the subsidy $\underline{S}_p = \mu_p$ eliminates the monopolistic distortion, see CC&D (2002).

Reintroducing the sectoral subscripts, we have:
(9) $P_{s,t}^* = (\mu_p/S \rho)(PB_{s,t}/PA_{s,t})$

where

$$PB_{s,t} = E_t \sum_{\tau=t}^{\infty} (\alpha \beta)^{\tau-t} (W_{s,\tau}/Z_{s,\tau}) P_{s,\tau}^a Y_{s,\tau} = \alpha_s \beta E_t PB_{s,t+1} + \lambda_s (W_{s,t}/Z_{s,t}) P_{s,t}^a Y_{s,t}$$

$$PA_{s,t} = E_t \sum_{\tau=t}^{\infty} (\alpha \beta)^{\tau-t} P_{s,\tau}^a Y_{s,\tau} = \alpha_s \beta E_t PA_{s,t+1} + \lambda_s P_{s,t}^a Y_{s,t}$$

The aggregate sectoral price level –

$$P_{s,t} = [\int_{P_s} P_{s,t}(f)^{1-\sigma} df]^{1/(1-\sigma)} = [\sum_{j=0}^{\infty} (1-\alpha_s) \alpha_s^j (P_{s,t-j}^s(f))^{1-\sigma}]^{1/(1-\sigma)}$$

Lagging $P_{s,t}$ in the equation above, it is straightforward to show that:

(10) $P_{s,t-1}^t = (1-\alpha_s)P_{s,t-1}^{s-t} + \alpha_t (P_{s,t-1})^{1-\sigma}$

Remarks: (9) and (10) give new and aggregate prices in “nominal” terms. This seems to give us problems in dynare with some interest rate policies. So, we converted to “real” prices in some programs.

Converting to the “real” model – Here we normalize nominal variables on $P_t (=1)$.

Let $\partial U_t/\partial C_{s,t} = P_{s,t} \lambda_t = p_{s,t} \Lambda_t$

where $p_{s,t} = P_{s,t}/P_t$ and $\Lambda_t = P_t \lambda_t$ is the marginal utility of the final consumption good, C_t.

In equilibrium, the Euler equation (7) becomes:

(7)$_{real}$ $I_t^{-1} = \beta E_t [\lambda_{t+1}/\lambda_t] = \beta E_t [(\Lambda_{t+1}/\Lambda_t)(P_t/P_{t+1})]$

In equilibrium, the flexible wage setting equation (8) becomes:

(8)$_{real}$ $w_{s,t} = \kappa (\mu_w/S_w)(L_{s,t}/n_t)^{\gamma} / \Lambda_t$ where $w_{s,t} = W_{s,t}/P_t$
The new price setting equation (9) becomes:

\[
(9) \quad p_{st}^* = \left(\frac{1}{P_t}\right) \left(\frac{p}{S_p}\right) \sum_{t=1}^{\infty} \left(\alpha_\beta t\right)^{\frac{1}{2}} \lambda_t \left(\frac{W_{st}}{Z_{st}}\right) P_{st}^\circ Y_{st} = E_t \sum_{t=1}^{\infty} \left(\alpha_\beta t\right)^{\frac{1}{2}} \Lambda_t \left(\frac{W_{st}}{Z_{st}}\right) \left(\frac{P_t}{P_t}\right)^{\circ} Y_{st}
\]

where \(p_{st}^* = P_{st}^* / P_t\) and

\[
\begin{align*}
pb_{st} = & \frac{PA_{st}}{P_t} = P_t \left(\frac{p}{S_p}\right) \sum_{t=1}^{\infty} \left(\alpha_\beta t\right)^{\frac{1}{2}} \lambda_t \left(\frac{W_{st}}{Z_{st}}\right) P_{st}^\circ Y_{st} = E_t \sum_{t=1}^{\infty} \left(\alpha_\beta t\right)^{\frac{1}{2}} \Lambda_t \left(\frac{W_{st}}{Z_{st}}\right) \left(\frac{P_t}{P_t}\right)^{\circ} Y_{st} \\
& = \alpha_\beta E_t \left[\left(\frac{P_{t+1}}{P_t}\right)^{\circ} pb_{st+1}\right] + \Lambda_t \left(\frac{W_{st}}{Z_{st}}\right) p_{st}^\circ Y_{st}
\end{align*}
\]

\[
pa_{st} = (P) PA_{st} / P_t \circ = P_t \left(\frac{p}{S_p}\right) E_t \sum_{t=1}^{\infty} \left(\alpha_\beta t\right)^{\frac{1}{2}} \lambda_t P_{st}^\circ Y_{st} = E_t \sum_{t=1}^{\infty} \left(\alpha_\beta t\right)^{\frac{1}{2}} \Lambda_t \left(\frac{P_t}{P_t}\right) \left(\frac{P_t}{P_t}\right)^{\circ} Y_{st} \\
& = \alpha_\beta E_t \left[\left(\frac{P_{t+1}}{P_t}\right)^{\circ-1} pa_{st+1}\right] + \Lambda_t p_{st}^\circ Y_{st}
\]

And finally, the aggregate sectoral price (10) becomes:

\[
(10) \quad P_{st}^{1-\alpha} = (1-\alpha_\beta) p_{st}^{1-\alpha} + \alpha_\beta P_{st-1}^{1-\alpha} (P_{t+1} / P_t)^{1-\alpha}
\]

A computable expression for aggregate sectoral output (or employment) –

Recall:

\[
\begin{align*}
(11a) \quad L_{st}(h) &= \int_{F_s} L_{st}(h,f) df \\
(11b) \quad Y_{st}(f) &= Z_{st} N_{st}(f) \\
(11c) \quad N_{st}(f) &= \left[\left(\frac{1}{2}\right)^{\frac{1}{\alpha}} \int_{f_s}^{f} Y_{st}(f)^{\circ} df\right]^{(\alpha-1)/\alpha} \\
(11d) \quad Y_{st}(f) &= (P(f)_{st} / P_{st})^{\circ} Y_{st}(f) \\
(11e) \quad Y_d = (P(f)_{st} / P_{st})^{\circ} Y_{st}(f)
\end{align*}
\]

So, the aggregate sectoral demand for the composite labor input is:

\[
(12a) \quad N_{st} = \int_{F_s} N_{st}(f) df = \left(\frac{1}{Z_{st}}\right) \int_{F_s} Y_{st}(f) df = \left(\frac{1}{Z_{st}}\right) \int_{F_s} (P_{st}(f) / P_{st})Y_{st}(f) df = \left(\frac{1}{Z_{st}}\right) Y_{st} DP_{st}
\]

where \(DP_{st} = (1/f_s) \int_{F_s} (P_{st}(f) / P_{st})^{\circ} df\)

Or equivalently, the aggregate sectoral output is:

\[
(12b) \quad Y_{st} = Z_{st} N_{st} / DP_{st}
\]

Recall: \(\int_{F_s} P_{st}(f)^{\circ} df = f_s \sum_{j=0}^{\infty} (1-\alpha_\beta) \alpha_\beta \sum_{j=1}^{\alpha_\beta} (h)^s\) for any power x.

So, \(DP_{st} = (1/f_s) \int_{F_s} (P_{st}(f) / P_{st})^{\circ} df = (1/f_s) P_{st}^{\circ} \int_{F_s} (P_{st}(f)^{\circ} df = (1/f_s) P_{st}^{\circ} \left[f_s \sum_{j=0}^{\infty} (1-\alpha_\beta) \alpha_\beta \sum_{j=1}^{\alpha_\beta} P_{st}^{\circ} (f)^s\right]
\]

\[
= P_{st}^{\circ} (1-\alpha_\beta) \sum_{j=0}^{\alpha_\beta} (h)^s
\]

\[
= P_{st}^{\circ} (1-\alpha_\beta) \sum_{j=0}^{\alpha_\beta} (h)^s + P_{st}^{\circ} (1-\alpha_\beta) \sum_{j=1}^{\alpha_\beta} (F_{st}^{\circ} (f)^s)
\]

\[
= P_{st}^{\circ} (1-\alpha_\beta) P_{st}^{\circ} (f)^s + (P_{st} / P_{st})^{\circ} P_{st}^{\circ} (1-\alpha_\beta) \sum_{j=0}^{\alpha_\beta} (h)^s
\]

\[
= P_{st}^{\circ} (1-\alpha_\beta) P_{st}^{\circ} (f)^s + (P_{st} / P_{st})^{\circ} P_{st}^{\circ} (1-\alpha_\beta) \sum_{j=0}^{\alpha_\beta} (h)^s
\]

\[
= P_{st}^{\circ} (1-\alpha_\beta) P_{st}^{\circ} (f)^s + (P_{st} / P_{st})^{\circ} P_{st}^{\circ} (1-\alpha_\beta) \sum_{j=0}^{\alpha_\beta} (h)^s
\]

\[
= P_{st}^{\circ} (1-\alpha_\beta) P_{st}^{\circ} (f)^s + (P_{st} / P_{st})^{\circ} P_{st}^{\circ} (1-\alpha_\beta) \sum_{j=0}^{\alpha_\beta} (h)^s
\]
And finally,

$$\text{(13)}_{\text{nominal}} \quad \text{DP}_{s,t} = (1-\alpha_s)(P_{s,t}/P_{s,t-1})^\alpha \alpha_s \text{DP}_{s,t-1}$$

Converting to the “real” model – Here we normalize nominal variables on P_t.

$$\text{(13)}_{\text{real}} \quad \text{DP}_{s,t} = (1-\alpha_s)(p_{s,t}/p_{s,t-1})^\alpha + (p_{s,t}/p_{s,t-1})^\alpha (P_t/P_{t-1})^\alpha \alpha_s \text{DP}_{s,t-1}$$

where $p_{s,t} = P_{s,t}/P_t$.

Remarks:

1. Total hours worked by household h are divided across all firms in the sector (equation (11a)); each firm f uses a composite labor input (equations (11b) and (11c)); the sectoral good is a composite of the firms outputs (equation (11d)). Since firms charge different prices, outputs and work efforts may differ across firms; this dispersion is determined by the firms’ demand functions (equation (11e), and summarized by $\text{DP}_{s,t}$).

2. Inefficiency of firms’ price dispersion in the flexible wage version of the model:

Since $N_{s,t}(f) = n_{L_{s,t}}(h,f)$, $Y_{s,t}(f) = Z_{s,t} N_{s,t}(f) = Z_{s,t} n_{L_{s,t}}(h,f)$. So, sectoral output becomes $Y_{s,t} = \int_{\mathcal{F}_s} Y_{s,t}(f) (\alpha-1)^{\alpha} df (\alpha-1)^{\alpha} = Z_{s,t} \int_{\mathcal{F}_s} L_{s,t}(h,f) (\alpha-1)^{\alpha} df (\alpha-1)^{\alpha}$. The linear resource constraint (11a) says that an extra hour’s work at any firm f incurs the same utility cost. To maximize $Y_{s,t}$ for a given amount of $L_{s,t}(h)$, the social planner would demand equal amounts of output and labor from each firm; but our sectoral output bundler will not do that if the firms charge different prices. Output will not be maximized for a given labor utility cost. This inefficiency is measured by the price dispersion term, $\text{DP}_{s,t}$, in (12b); $\text{DP}_{s,t} = 1$ when there is no price dispersion.

3. We can use dynare to compute second order approximations to (12b) and (13). Earlier work (following Woodford (????)) calculated first order approximations by brute force.
Model with Calvo price setting and flexible wages –

“Nominal” model:

1. \(C_t = \left[\sum_{s=1}^{S} \gamma_s C_{s,t}^\eta \right]^{\eta/(\eta-1)} \)
2. \(\lambda_t P_{s,t} = \gamma_s C_t^{(1-\eta)/\eta} C_{s,t}^{-1/\eta} \)
3. \(P_t = \left[\sum_{s=1}^{S} \gamma_s P_{s,t}^{1-\eta} \right]^{1/(1-\eta)} \)
4. \(P_{s,t}^* = (\mu_p/S_p)(PB_{s,t}/PA_{s,t}) \)
5. \(PB_{s,t} = \alpha_s \beta E_t [PB_{s,t+1} + \lambda_t (W_{s,t}/Z_{s,t})P_{s,t}^0 C_{s,t}] \)
6. \(PA_{s,t} = \alpha_s \beta E_t [PA_{s,t+1} + \lambda_t P_{s,t}^0 C_{s,t}] \)
7. \(P_{s,t}^{1-\sigma} = (1-\alpha_s) P_{s,t}^{1-\sigma} + \alpha_s P_{s,t-1}^{1-\sigma} \)
8. \(C_{s,t} = Y_{s,t} = Z_{s,t} N_{s,t} / DP_{s,t} \)
9. \(DP_{s,t} = (1-\alpha_s) (P_{s,t}^0 / P_{s,t-1}) \)
10. \(w_{s,t} = \kappa (\mu_w / S_w) (N_{s,t}/n) \) \(\lambda_t \)
11. \(I_t^{-1} = \beta E_t [\Lambda_{t+1}/\Lambda_t] \)

where \(s = 1, \mu_p = \sigma/(\sigma-1), \mu_w = \phi/(\phi-1) \) and \(\Lambda_t = P_t \lambda_t \).

Steady State Equations:

1. \(C = \left[\sum_{s=1}^{S} \gamma_s C_s^\eta \right]^{\eta/(\eta-1)} \)
2. \(\lambda P_s = \gamma_s C_s^{(1-\eta)/\eta} C_s^{-1/\eta} \)
3. \(P = \left[\sum_{s=1}^{S} \gamma_s P_s^{1-\eta} \right]^{1/(1-\eta)} \)
4. \(P_s^* = (\mu_p/S_p)(PB_s/PA_s) \)
5. \(PB_s = (1-\beta \alpha_s)^{-1} \lambda_t (W_s/Z_s) P_s^0 C_s \)
6. \(PA_s = (1-\beta \alpha_s)^{-1} \lambda_t P_s^0 C_s \)
7. \(P_s = P_s^* \)
8. \(C_s = Y_{s,t} = N_{s,t} \)
9. \(DP_{s,t} = 1 \)
10. \(w_s = \kappa (\mu_w / S_w) (N_s/n) \)
11. \(I_t^{-1} = \beta \)

where \(s = 1, \mu_p = \sigma/(\sigma-1), \mu_w = \phi/(\phi-1) \) and \(\Lambda_t = P_t \lambda_t \).
Steady State properties: Choose \(n_s \) and \(\gamma_s \) so that employment and wages equalize across sectors.

Consider the CES aggregator (Cobb-Douglas is exactly analogous) –

\[
(4), (5) \, & \, (6) \Rightarrow P_s = P_s^* = \mu_s W_s \quad \text{for all} \quad s
\]

From (2b),

\[
\lambda P_s = \gamma_s C_s^{(1/\eta)} C_s^{-1/\eta} \Rightarrow \gamma_s / \gamma_s = (P_s / P_s) (C_s / C_s)^{1/\eta} = (W_s / W_s) (L_s / L_s)^{1/\eta}
\]

From (10),

\[
W_s = \kappa \mu_n (N_s / n_s)^{1/\lambda} \Rightarrow (N_s / n_s) / (N_s / n_s) = (W_s / W_s)^{1/\lambda}
\]

So,

\[
\gamma_s / \gamma_s = (W_s / W_s) (N_s / N_s)^{1/\eta} = (n_s / n_s) (W_s / W_s)^{1/(1/\eta)}
\]

So, for any \(\alpha \), \([\gamma_s^\eta = \alpha n_s \quad \text{and} \quad \gamma_s^\eta = \alpha n_s] \Rightarrow W_s = W_s.
\]

What is the proportionality factor \(\alpha \)? \(\gamma_s^\eta = \alpha n_s \) for all \(s \Rightarrow \sum_{s=1}^{S} \gamma_s^\eta = \alpha \sum_{s=1}^{S} n_s = \alpha \cdot 1
\]

And, \(W_s = \kappa \mu_n (N_s / n_s)^{1/\lambda} = \kappa \mu_n (L_s(h))^{1/\lambda} \Rightarrow L_s(h) = L_s(h)
\]

So, finally, \(n_s = \gamma_s^\eta / \sum_{s=1}^{S} \gamma_s^\eta \) for all \(s \Rightarrow \) wages & employment levels equalize across sectors.

Note: for \(\eta = 1 \), this reduces to \(\gamma_s = n_s \) (since \(\sum_{s=1}^{S} \gamma_s = 1 \)).

Social Utility (with Calvo pricing and flexible wages) –

In equilibrium, household utility (for a household working in sector \(s \)) is given by:

\[
U_t(h) = E_t \sum_{s=1}^{S} \beta^\epsilon [(1-\rho)^i C_t^{-\rho} - \kappa(1+\chi)^i L_t^\epsilon + v(M_t/P_t)]
\]

\[
= E_t \sum_{s=1}^{S} \beta^\epsilon [(1-\rho)^i C_t^{-\rho} - (1+\chi)^i (N_s / n_s)^{1/\lambda} + v(M_t/P_t)]
\]

Remarks:

1. Recall: each household works at all of the firms in the sector to which it has been allocated. Household work efforts may differ across sectors, but they equalize within a given sector (since the households’ flexible wage rates equalize within a given sector). We aggregate by summing over sectors (weighted by \(n_s \)). This could be interpreted as ex-ante welfare (before knowing which sector the household is placed in).

2. Following the literature, we generally ignore the \(v(\cdot) \) term. Justification: it is thought to be small in developed countries. Attractiveness: it allows us to ignore questions of seigniorage, including the time consistency aspect. But note, the monopolistic markups still imply a temptation to expand.

Social Welfare:

\[
(11) \quad U_t = E_t \sum_{s=1}^{S} \beta^\epsilon [(1-\rho)^i C_t^{-\rho} - \kappa(1+\chi)^i (N_s / n_s)^{1/\lambda}]
\]

where \(n_s = \gamma_s \) for \(\eta = 1 \), and \(n_s = \gamma_s^\eta / \sum_{s=1}^{S} \gamma_s^\eta \) for \(\eta > 1 \).
Adding “Calvo” wage setting:

1. We continue to assume each household in sector s works at all of the firms in sector s. So, firms continue to use the composite labor input. However, the flexible wages, described by equation (9), are replaced by “Calvo” wage setting.

2. Each household in sector s gets to set a new wage with probability \(1 - \omega_s\). The basic structure is analogous to the firms’ Calvo price setting. The fraction wages set j periods: \((1 - \omega_s)\omega_s^j\).

Optimal wage setting in period t –

In this section, we lighten the notation by dropping the sector subscripts “s” where possible.

With probability \(\omega^t\), the new wage will be in effect in period j; so, household h (which gets to reset it’s wage) sets \(W^*_t(h)\) to maximize:

\[
U(h)_t = E[\sum_{j=t}^{\infty}[u(\cdot) - \kappa(1+\chi)^{-1}L_j(h)^{1+\chi} + v(\cdot)]
\]

subject to:

\[
M_j(h) + E[\delta_{j+1}B_{j+1}(h)] + P_jC_j(h) + \sum_{s}S_sW_{s,j}^*(h)L_j(h) + M_{j-1}(h) + B_j(h) + D_j(h) = S_sW_s^*(h)(1-\phi)W^*_jL_j/n +
\]

FOC:

\[
0 = E[\sum_{j=t}^{\infty}\phi^{j-t}[u(\cdot) - \kappa(1+\chi)^{-1}[W_s^*(h)\phi W_j^*L_j/n]^{1+\chi} + v(\cdot)]
\]

So, dividing by \((\phi-1)/S_s\) and rearranging,

\[
W^*_t(h)^{1+\chi}\kappa = [\phi/(\phi-1)/S_s](1/n)^2E[\sum_{j=t}^{\infty}\phi^{j-t}[W_s^*(h)\phi W_j^*L_j/n]^{1+\chi} - \lambda_jS_s(\phi-1)W_j^*N_j/n] = E[\sum_{j=t}^{\infty}\phi^{j-t}[\phi W_s^*(h)^{1+\chi}W_j^*L_j/n]^{1+\chi} - \lambda_jS_s(\phi-1)W_j^*N_j/n]
\]

Reintroducing the sectoral subscripts, we have:

(12) \(W^*_{s,t}^{1+\chi} = (\mu_w/S_s)(\kappa/n_s^2)(WB_{s,t}/WA_{s,t})\)

where \(\mu_w = \phi/(\phi-1)\)

\[
 WB_{s,t} = E[\sum_{j=t}^{\infty}(\omega_{s,j})^{1+\chi}W_{s,j}^{(1+\chi)} = \omega_{s,t}E[WB_{s,t+1} + N_{s,t}^{1+\chi}W_{s,t}^{(1+\chi)}]
\]

\[
 WA_{s,t} = E[\sum_{j=t}^{\infty}(\omega_{s,j})^{1+\chi}W_{s,j}^{(1+\chi)} = \omega_{s,t}E[WA_{s,t+1} + \lambda_{s,t}N_{s,t}W_{s,t}^{(1+\chi)}]
\]
The aggregate sectoral wage level –

\[W_{s,t} = \left[\int_{Ns}^{w_s} W_s(h)^{1-\phi} dh \right]^{1/(1-\phi)} = \left[\sum_{j=0}^{\infty} (1-\omega_s)\omega_s^j (W_{s,t-j}^*(h))^{1-\phi} \right]^{1/(1-\phi)} \]

Lagging \(W_{s,t} \) in the equation above, it is straightforward to show that:

(13) \[W_{s,t}^{1-\phi} = (1-\omega_s)W_{s,t}^{*1-\phi} + \omega_s(W_{s,t-1})^{1-\phi} \]

Converting to the “real” model – Here we normalize nominal variables on \(P_t \).

As before, let \(\partial U_t/\partial C_{s,t} = P_{s,t}^*\lambda_t = p_{s,t}\Lambda_t \)

where \(p_{s,t} = P_{s,t}/P_t \) and \(\Lambda_t = P_t^*\lambda_t \) is the marginal utility of the final consumption good, \(C_t \).

The new wage setting equation (12) becomes:

(12) real \[W_{s,t}^{*1-\phi}\chi = \mu_{s,t}^*/S_{s,t}((\kappa/n_t^*)^*\delta_{s,t}^*/WA_{s,t}) = ((\mu_{s,t}^*/S_{s,t}((\kappa/n_t^*)^*\delta_{s,t}^*/WA_{s,t})) \]

where \(W_{s,t}^* = W_{s,t}^*/P_t \) and

\[wb_{s,t} = WB_{s,t}/P_t^{\phi(1+\chi)} = \left[E_t \sum_{j=-\infty}^{\infty} (j\omega_s\beta)^{j}\lambda_t^{j}N_{s,t}^{j}W_{s,t}^{\phi(1+\chi)}P_t^{\phi(1+\chi)} \right] / P_t^{\phi(1+\chi)} = \left[E_t \sum_{j=-\infty}^{\infty} (j\omega_s\beta)^{j}\lambda_t^{j}N_{s,t}^{j}W_{s,t}^{\phi(1+\chi)}(P_t/P_t)^{\phi(1+\chi)} \right] \]

\[wa_{s,t} = P_t^{1+\phi}\chi WA_{s,t}/P_t^{\phi(1+\chi)} = P_t^{1+\phi}\chi E_t \sum_{j=-\infty}^{\infty} (j\omega_s\beta)^{j}\lambda_t^{j}N_{s,t}^{j}W_{s,t}^{\phi(1+\chi)} / P_t^{\phi(1+\chi)} = P_t^{1+\phi}\chi E_t \sum_{j=-\infty}^{\infty} (j\omega_s\beta)^{j}\lambda_t^{j}N_{s,t}^{j}W_{s,t}^{\phi(1+\chi)}(P_t/P_t)^{\phi(1+\chi)} \]

Finally, the aggregate “real” wage is given by:

(13) real \[W_{s,t}^{1-\phi} = (1-\omega_s)W_{s,t}^{*1-\phi} + \omega_s(W_{s,t-1})^{1-\phi}(P_{t-1}/P_t)^{1-\phi} \]

Remarks:

1. Here again, setting the wage subsidy \(S_w = \mu_w \) eliminates the monopolistic distortion.
Model with Calvo price and wage setting –

“Nominal” model:

1. \(C_t = \left[\sum_{s=1}^{S} Y_t C_s^{(n-1)|\eta|^{(n-1)}} \right] \)
2. \(\Lambda_t \rho_t = \gamma_t C_t^{(1-\eta)} C_s^{-1/\eta} \)
3. \(P_t = \left[\sum_{s=1}^{S} Y_t P_t^{n-1} \right]^{(1-\eta)/n} \)
4. \(P_t^* = (\mu_t/S_t)(PB_t/PAs_t) \)
5. \(PB_s = (1-\beta_s)\lambda_s(W_s/Z_s)P_s^a C_{s,t} \)
6. \(PA_s = (1-\beta_s)\lambda_s P_s^a C_{s,t} \)
7. \(P_t^1 = (1-\alpha_s)P_t^1 - (1-\alpha_s)P_t^1 \)
8. \(C_s = Y_s = Z_s + N_s/C_{s,t} \)
9. \(D \rho_s = (1-\alpha_s)(P_s/P_{s,t}^a) + \alpha_s(P_s/P_{s,t-1})^a D \rho_s \)
10. \(W_s^{1+\phi} = (\mu_t/S_{t})(w/\kappa_s)\phi(W_b_s/W_A_s) \)
11. \(W_B_s = \omega \beta_t E_t W_b_s + N_s(1+\gamma)W_s^{\phi(1+\gamma)} \)
12. \(W_A_s = \omega \beta_t E_t W_a_s + N_s(1+\gamma)W_s^{\phi} \)
13. \(W_s^{1+\phi} = (1-\gamma)(W_s^{1+\phi} + \omega W_s^{1+\phi}) \)
14. \(I_t^1 = \beta E_t[\Lambda_t^1/(\Lambda_t)(P_t/P_{t^1})] \)

“Real” model:

1. \(C_t = \left[\sum_{s=1}^{S} Y_t C_s^{(n-1)|\eta|^{(n-1)}} \right] \)
2. \(\Lambda_t \rho_t = \gamma_t C_t^{(1-\eta)} C_s^{-1/\eta} \)
3. \(I_t = \left[\sum_{s=1}^{S} Y_t I_s^{n-1} \right]^{(1-\eta)/n} \)
4. \(P_t^* = (\mu_t/S_t)(P_{b,s}^a/P_{s,t}) \)
5. \(P_{b,s} = (1-\alpha_s)(P_{s,t}^{a-1}P_{s,t}^a) + \alpha_s(P_{s,t}^{a-1}P_{s,t}^a) \)
6. \(P_{s,t}^{a-1} = (1-\alpha_s)P_{s,t}^{a-1} + \alpha_s(P_{s,t}^{a-1}P_{s,t}^a) \)
7. \(C_s = Y_s = Z_s + N_s/C_{s,t} \)
8. \(D \rho_s = (1-\alpha_s)(P_{s,t}^{a-1}P_{s,t}^a) + \alpha_s(P_{s,t}^{a-1}P_{s,t}^a) D \rho_s \)
9. \(W_s^{1+\phi} = (\mu_t/S_{t})(w/\kappa_s)\phi(W_b_s/W_A_s) \)
10. \(W_B_s = (1-\gamma)(W_s^{1+\phi} + \omega W_s^{1+\phi}) \)
11. \(W_A_s = (1-\gamma)(W_s^{1+\phi} + \omega W_s^{1+\phi}) \)
12. \(I_t^1 = \beta E_t[\Lambda_t^1/(\Lambda_t)(P_t/P_{t^1})] \)

Steady State Equations:

- Nominal model:
 \(C = \left[\sum_{s=1}^{S} Y_s C_s^{(n-1)|\eta|^{(n-1)}} \right] \)
 \(\Lambda \rho_s = \gamma_s C_s^{(1-\eta)} C_s^{-1/\eta} \)
 \(P = \left[\sum_{s=1}^{S} Y_s P_s^{n-1} \right]^{(1-\eta)/n} \)
 \(P^* = (\mu_t/S_t)(PB_t/PAs_t) \)
 \(PB_s = (1-\beta_s)\lambda_s(W_s/Z_s)P_s^a C_s \)
 \(PA_s = (1-\beta_s)\lambda_s P_s^a C_s \)
 \(P_s = P^* \)
 \(C_s = Y_s = N_s \)

- Real model:
 \(D \rho_s = 1 \)
 \(W_s^{1+\phi} = (\mu_t/S_{t})(w/\kappa_s)\phi(W_b_s/W_A_s) \)
 \(W_B_s = (1-\gamma)(W_s^{1+\phi} + \omega W_s^{1+\phi}) \)
 \(W_A_s = (1-\gamma)(W_s^{1+\phi} + \omega W_s^{1+\phi}) \)
 \(I_t^1 = \beta \)

where \(\sum_{s=1}^{S} Y_s = 1, \mu_p = \sigma/(\sigma-1), \mu_w = \phi/(\phi-1), \) and \(\Lambda_t = P_t \lambda_t \)
Social Utility (with Calvo wage and price setting) –

In equilibrium, household utility is given by:

\[U_t(h) = E_t \sum_{t=0}^\infty \beta^t [(1-\rho)^{1-r} C_t(h)^{\frac{1-\rho}{\rho} - \kappa(1+\chi)^{1-L_t(h)^{1-\kappa}} + v(M_t(h)/P_t)] \]

Remarks:

1. Recall: each household works at all of the firms in the sector to which it has been allocated. As before, household work efforts differ across sectors. But now, they may also differ within a given sector (since households may have different wage rates). As before, we will aggregate by summing over households and sectors.

2. As before, we generally ignore the \(v(\cdot) \) term.

3. Inefficiencies due to nominal inertia –

 A. Intertemporal inefficiencies:

 Fluctuations in \(C \) and \(L \) decrease welfare. These losses presumably increase in \(\rho \) and \(\chi \).

 In the fixed wage case, we have different \(L_{s,t}(h) \) within a given sector, and calculating the social disutility of work is more difficult. We return to this below.

 B. Intratemporal inefficiencies:

 i. As discussed earlier, price dispersion implies different levels of production (and work) across firms in a given sector, and therefore an inefficient allocation of labor across firms. Less output is gotten from a given amount of work. This inefficiency is captured in our DP term (see (12b) on page 8). Loss should decrease with substitutability parameter, \(\theta \).

 ii. With sticky wages, wage dispersion implies different levels of work for households in the labor bundle for firm \(f \), and therefore less a smaller \(N_{s,t}(f) \) than could be had for the same total work effort. I think this inefficiency is captured by the appearance of \(w_{s,t} \) in the price setting equations. (Bob and Behzad: is this right?) This loss should decrease with substitutability parameter, \(\phi \).
Social Welfare:

(15) $U_t = E_t \sum_{s=1}^{\infty} \beta^s [(1-\rho)^1 C_t^{1-\rho} - \kappa(1+\chi)^1 \sum_{s=1}^{\infty} DW_{s,t}]$

where $DW_{s,t} = \int_{N_t} L_{s,t}^{(h)}(h)^{1+\gamma} dh$, $n_s = \gamma_s$ for $\eta = 1$, and $n_s = \gamma_s^{\eta}/\sum_{s=1}^{\infty} \gamma_s^{\eta}$ for $\eta > 1$.

How to calculate $DW_{s,t} = \int_{N_t} L_{s,t}^{(h)}(h)^{1+\gamma} dh$

Recall: 1. $L_{s,t}^d(h) = (W_{s,t}(h)/W_{s,t})^{\phi(N_{s,t}/n_s)}$

2. $\int_{N_t} W_{s,t}(h)^{x} dh = n_s \sum_{j=0}^{\infty} (1-\omega_s)\omega_s^j W_{s,t-j}^{\phi(h)}$ for any power x

$DW_{s,t} = \int_{N_t} L_{s,t}(h)^{1+\gamma} dh = (N_{s,t}/n_s)^{1+\gamma} \int_{N_t} (W_{s,t}(h)/W_{s,t})^{\phi(h)} dh$

$= (N_{s,t}/n_s)^{1+\gamma} \left\{ n_s \sum_{j=0}^{\infty} (1-\omega_s)\omega_s^j (W_{s,t-j}^{\phi(h)}/W_{s,t})^{\phi(1+\gamma)} \right\} = \Theta_s \sum_{j=0}^{\infty} \omega_s^j (W_{s,t-j}^{\phi(h)}/W_{s,t})^{\phi(1+\gamma)}$

where $\Theta_s = (1-\omega_s)(N_{s,t}/n_s)^{1+\gamma} \sum_{s=1}^{\infty} w_s^{\gamma}$ and small w’s will represent real wages

$D_{s,t} = \sum_{j=0}^{\infty} \omega_s^j (W_{s,t-j}^{\phi(h)}/W_{s,t})^{\phi(1+\gamma)} = (w_{s,t}^{\phi(h)}/w_{s,t})^{\phi(1+\gamma)} + \sum_{j=0}^{\infty} \omega_s^j (W_{s,t-j}^{(h)}/W_{s,t})^{\phi(1+\gamma)}$

$= (w_{s,t}^{\phi(h)}/w_{s,t})^{\phi(1+\gamma)} + (w_{s,t-1}/w_{s,t})^{\phi(1+\gamma)} \sum_{j=0}^{\infty} \omega_s^j (W_{s,t-j}^{(h)}/W_{s,t-1})^{\phi(1+\gamma)}$

$= (w_{s,t}^{\phi(h)}/w_{s,t})^{\phi(1+\gamma)} + [(w_{s,t-1}/w_{s,t})(P_{t+1}/P_t)]^{\phi(1+\gamma)} \sum_{j=0}^{\infty} \omega_s^{j+1} (W_{s,t-j}^{(h)}/W_{s,t-1})^{\phi(1+\gamma)}$

$= (w_{s,t}^{\phi(h)}/w_{s,t})^{\phi(1+\gamma)} + \omega_s [(w_{s,t-1}/w_{s,t})(P_{t+1}/P_t)]^{\phi(1+\gamma)} D_{s,t-1}$

So finally:

(16) $DW_{s,t} = (1-\omega_s)N_{s,t}^{1+\gamma} n_s^{-2} D_{s,t}$

where $D_{s,t} = (w_{s,t}^{\phi(h)}/w_{s,t})^{\phi(1+\gamma)} + \omega_s [(w_{s,t-1}/w_{s,t})(P_{t+1}/P_t)]^{\phi(1+\gamma)} D_{s,t-1}$

Note: as $\omega_s \rightarrow 0$ (that is, as wages become flexible), (16) is consistent with (11).

Remarks:

1. In the ‘nominal’ model, dynare seemed to have trouble pinning down the price level for interest rules. So, on the advice of Martin Uribe and others, we went to the ‘real’ model.

2. In the ‘real’ model, dynare had some problems solving for a steady state. The problem seemed to reside in the exponential terms in the real wage nexus. So, we went to the ‘wage and price inflation’ model, in which $w_{s,t}^{*}$ is measured relative to the aggregate wage rate.
“Wage & Price Inflation” model:

(1), ..., (9) are the same as in the “real” model.

(10) \(w_{s,t}^{1+\phi x} = \left(\mu_w/S_w(\kappa/n_s^x) \right) \left(\frac{wb_{s,t}}{wa_{s,t}} \right) \)

(11) \(wb_{s,t} = \omega_s \beta E_t [(W_{s,t+1}/W_{s,t})^{\phi(1+\gamma)} wb_{s,t+1}] + N_{s,t}^{1+\chi} \)

(12) \(wa_{s,t} = \omega_s \beta E_t [(W_{s,t+1}/W_{s,t})^{\phi(1+\gamma)} wa_{s,t+1}] + \Lambda_t N_{s,t} w_{s,t} \)

(13) \(1 = (1-\omega_s) w_{s,t}^{1+\phi} + \omega_s (W_{s,b}/W_{s,t})^{1+\phi} \)

(14) \(w_{s,t}/w_{s,t-1} = (W_{s,t}/W_{s,t-1})/(P_t/P_{t-1}) \)

(15) \(I_{t}^{-1} = \beta E_t[(\Lambda_{t+1}/\Lambda_t)(P_t/P_{t+1})] \quad I_t^{-1} = \beta \)

where \(w_{s,t} \) is still the real wage, but \(w_{s,t}^* = W_{s,t}/W_{s,t} \), \(wa_{s,t} = WA_{s,t}/W_{s,t} \), and \(wb_{s,t} = WB_{s,t}/W_{s,t}^{1+\gamma} \), as before, \(\sum s=1 g_s = 1 \), \(\mu_p = \alpha/\sigma(1-\gamma) \), \(\mu_w = \phi/(\phi-1) \), and \(\Lambda_t = P_t \lambda_t \)

Remarks:

1. We have divided (10) in the “nominal” model by \(W_{s,t}^{1+\phi x} \).
2. Since we add a new variable, wage inflation = \(W_{s,t+1}/W_{s,t} \), we need a new equation, (14).
3. The calculation of DW is also modified:

\[
DW_{s,t} = \int_{N_s}^{L_{s-1}} (h)^{1+\gamma} dh = (N_s/n_s)^{1+\gamma} \int_{N_s}^{L_{s-1}} (W_{s,t}(h)/W_{s,t})^{\phi(1+\gamma)} dh
\]

where \(\theta_t^{1+\gamma} = (1-\omega_s) N_s^{1+\gamma} n_s \)

\[
D_{s,t} = \sum_{j=0}^{n_s} \omega_s^j (W_{s,j}/W_{s,t})^{\phi(1+\gamma)} = w_{s,t}^*(h)^{\phi(1+\gamma)} + \sum_{j=0}^{n_s} \omega_s^j (W_{s,t-j}^*(h)/W_{s,t})^{\phi(1+\gamma)}
\]

Parameterization:

Intertemporal elasticity: \(\rho \)

RBC typically takes \(\rho = 1 \), GG&LS do 1, and then 5.

We use \(\rho = 1 \).
Weight on disutility of labor: κ

With NNS preferences, we can’t calibrate it to average hours worked.

CEE (AER, RBC with real rigidity) have a similar problem; choose their version of κ to make employment $= 1$ in SS.

Bayoumi, Laxton and Pesenti (pg. 10): no discussion that I saw, set $\kappa = 1$.
We use $\kappa = 1$. Do robustness.

Labor Supply elasticity: $1/\chi$

King & Rebelo: in their RBC model, they used an elasticity of 4; dropped it to 1, and could not explain output and (especially) employment variation.

Gali, Gertler and L-S (pg. 6, ft. 8): Frisch elasticity (λ, held constant) estimates range from 0.05 - 0.3; they use $\chi = 5$. Cite several recent papers leading to 0.2.

Bayoumi, Laxton and Pesenti: Say Frisch elasticity estimates vary from .05 - .35; use .33 as baseline case, but also .15 ($\chi = 6.7$) as an alternative, saying it is closer to mean estimate.
We split difference between GG&LS and BL&P and use $\chi = 6$ (or an elasticity of .17) as our baseline case.

Elasticity of substitution in consumption aggregator: σ

Bayoumi, Laxton and Pesenti: say Bradford and Lawrence (2003) $\Rightarrow \mu_p \in [1.15, 1.20]$; but, they use $\mu_p = 1.10$ (or $\sigma = 10$) ????. Pg. 47: they let μ_p and μ_w vary in $[1.055, 1.555]$.

Rotemberg and Woodford (Taylor book): $\sigma = 7.88$ or $\mu_p = 1.145$

G&LS&V (both fiscal policy papers): $\sigma = 6$

EHL: $\mu_p = 1.333 \Rightarrow \sigma = 4$.
We use $\sigma = 6$.

Elasticity of substitution in the labor aggregator: ϕ

Bayoumi, Laxton and Pesenti: say Sebastian & Nicoletti (2002) $\Rightarrow \mu_w = 1.15$ (or $\phi = 7.7$), which they use. Pg. 47: they let μ_p and μ_w vary in $[1.055, 1.555]$.

EHL: $\mu_w = \mu_p = 1.333 \Rightarrow \phi = \sigma = 4$.

Wooders and Smets (via Deltas?):
We use $\phi = \sigma = 6$.

Productivity shocks:

Cooley & Prescott: 0.95 (AR1 coef), 0.007 (std error) for filtered Solow Residual.
King & Rebelo: 0.979 (AR1 coef), 0.0072 (std error) for filtered Solow Residual.
Bob Cumby: 0.72 (AR1 coef), 0.0076 (std error) for filtered hours productivity.

We use: 0.8 (AR1 coef), 0.009 (std error) for filtered worker productivity.

Taylor Rule: (Bob Cumby’s estimate)
this is still now quite right below

For Volcker and Greenspan years (1979.3 - 2003.2) –

\[\text{FFR}_t = 0.824 \text{FFR}_{t-1} + (1 - 0.824) \times 2.020 \times (\pi_t - \pi^*) + (1 - 0.824) \times 0.184 \times \text{gap}_t \]
\[\text{FRR}_t = 0.222 + 0.824 \times \text{FFR}_{t-1} + (1 - 0.824) \times 2.020 \times \pi_t + (1 - 0.824) \times 0.184 \times \text{gap}_t \]

std error = .00245, variance = 0.000006

correlation with worker productivity = .175, cov = .00000267

For Greenspan years (1987.3 - 2003.2) –

\[\text{FFR}_t = 0.238 + 0.884 \times \text{FFR}_{t-1} + (1 - 0.884) \times 1.720 \times \pi_t + (1 - 0.884) \times 0.352 \times \text{gap}_t \]

std error = .00108

Remarks: (we probably don’t want to make much of these)
1. gap = \(y_t - \bar{y} = (y_t - y^*_t) + (y^*_t - \bar{y}) \), where \(\bar{y} \) is SS output and \(y^*_t \) is potential output.
2. Some would want us to use gap* = \(y_t - y^*_t = y_t - \bar{y} + (\bar{y} - y^*_t) = \text{gap} + (\bar{y} - y^*_t) \). In their view, \((\bar{y} - y^*_t) \) would be in the residual of our Taylor Rule. This would induce a negative correlation between the Taylor Rule residual and the productivity shock innovations.
 Empirically, we observe a positive correlation??
3. Bob mentioned real interest rates, but this seems model dependent.
Model 2: a one sector model with capital and habit.

Here we simplify Model 1 to one sector, but we add capital, habit and a laziness shock, and show how to model ‘rule of thumbs’.

Remarks:

1. Capital, K_{t-1}, is owned by the households, supplied to firms at the (nominal) rental rate R_t, and depreciates at the rate δ. Production is now Cobb-Douglas, not linear.

2. We assume capital adjustment costs that are common in the RBC literature.

The Household’s Intertemporal Maximization Problem:

Utility of household h:

\[U_t(h) = E_t \sum_{\tau=t}^{\infty} \beta^{r+\tau}[\log(C_t(h) - bC_{t-1}(h)) - \kappa(1+\chi)^{-1}L_t(h)^{1+\tau} + \nu(\psi((M_t(h)/P_t))]
\]

Budget constraint of household h:

\[M_t(h) + E_t[\Delta_{t+1}B_{t+1}(h)] + P_t[C_t(h)+I_t(h)+T_t] = S_wW_s(t(h)L^d_{s,t}(h) + S_mM_{t-1}(h) + B_t(h) + R_tK_{t-1}(h) + D_t(h)
\]

where (as before) $B_{t+1}(h)$ is a state contingent claim, Δ_{t+1} is the stochastic discount factor; $D_t(h)$ are dividends, T_t is a lump sum tax (used to balance it’s budget each period), S_w is a wage subsidy, and S_m is a subsidy on money holdings. (Notation change: Δ in place of δ.)

What’s new: I_t is investment, κ_t, is a laziness shock, and b (if $b > 0$) introduces “habit”.

Capital constraint for household h:

\[K_t(h) = (1 - \delta)K_{t-1}(h) + I_t(h) - \frac{1}{2}P_t[(I_t(h)/K_{t-1}(h)) - \delta]^2 K_{t-1}(h)
\]

where the last term represents the capital adjustment cost.

Note: K_t is the end of period stock, the capital that will be available for use in period in $t+1$.

Household's problem: choose I_t, K_t, $B_{t+1}(h)$, $C_t(h)$, $M_t(h)$, and $W_{s,t}(h)$ to maximize (1) subject to (2), (3) and the labor demand curve. Only the C_t, I_t and K_{t+1} decisions are new.

Letting λ_t and ξ_t be the multipliers for constraints (2) and (3), the new FOC are:

\[C_t(h): (4a) (C_t(h) - bC_{t-1}(h))^{1} - \beta b(C_{t+1}(h) - bC_t(h))^{1} = \lambda_tP_t
\]

\[I_t(h): (4b) \lambda_tP_t = \xi_t[\psi((I_t(h)/K_{t-1}(h)) - \delta]
\]

\[K_t(h): (4c) \xi_t = \beta E_t[\lambda_{t+1}R_{t+1} + \xi_{t+1}[(1-\delta) - \frac{1}{2}\psi((I_{t+1}(h)/K_t(h))) - \delta]^2 - \psi K_t(h)[(I_{t+1}(h)/K_t(h))-\delta](I_{t+1}(h)/K_t(h))] - \frac{1}{2}\psi((I_{t+1}(h)/K_t(h))) - \delta]^2 + \psi((I_{t+1}(h)/K_t(h)) - \delta)(I_{t+1}(h)/K_t(h))
\]
Remarks:

1. The household’s wage setting equations are the same as in Model 1.
2. The firm’s price setting equations are different because the production function and MC have changed. With the linear production function in Model 1, nominal marginal cost = W/Z.

Here, production is Cobb Douglass, and we have to find an new expression for MC.

Firm f’s cost minimization problem and nominal marginal cost:

Firm f’s production function is:

\((5) \ Y_t(f) = Z_t K_t^{\theta} N_t^{1-\theta} \)

where (as before) \(N_t(f) = \left[\int_0^1 L_t(h, f)^{(\phi-1)\phi} dh \right]^{\phi/(\phi-1)} \) and \(Z_t \) is a productivity shock.

(For the derivations in this section, we drop the firm index, f, and the time subscript, t.)

Firm’s Cost Minimization Problem:

Choose K and N to minimize \(TC = RK + WN \) s.t. \(Y = ZK^\theta N^{1-\theta} \)

FOC are (where *’s denote cost minimizing values):

\[
\begin{align*}
R/P &= MPK = Z\theta(N*/K*)^{1-\theta} = R/W = [\Theta/(1-\Theta)](N*/K*) \\
W/P &= MPL = Z(1-\Theta)(K*/N*)^\theta
\end{align*}
\]

Express \(TC = RK* + WN* \) in terms of \(Y \):

\[
\begin{align*}
Y &= ZK^\theta N^{1-\theta} = ZK^\theta[(R/W)(\Theta-1)/\Theta]^{1-\theta} = ZK^\theta[(R/W)(\Theta-1)/\Theta]^{1-\theta} \\
K* &= (Y/Z)[(W/R)\Theta/(1-\Theta)]^{1-\theta} \\
Y &= ZK^\theta N^{1-\theta} = Z[(W/R)\Theta/(1-\Theta)]^{\theta} N^\theta N^{1-\theta} = ZN^\theta[(W/R)\Theta/(1-\Theta)]^{\theta} \\
N* &= (Y/Z)[(W/R)\Theta/(1-\Theta)]^{\theta} \\
TC &= RK* + WN* = (Y/Z)\{R[(W/R)(\Theta/(1-\Theta))]^{1-\theta} + W[(W/R)\Theta/(1-\Theta)]^{1-\theta}\} \\
&= (Y/Z)\{R^\theta W^{1-\theta}[\Theta/(1-\Theta)]^{1-\theta} + W^\theta R^{1-\theta}[\Theta/(1-\Theta)]^{1-\theta}\} \\
&= (Y/Z)(R^\theta W^{1-\theta})\left\{[\Theta/(1-\Theta)]^{1-\theta} + [\Theta/(1-\Theta)]^{1-\theta}\right\} \\
&= [\Theta/(1-\Theta)]^{1-\theta} + [\Theta/(1-\Theta)]^{1-\theta} = \Theta^\theta(1-\Theta)^{(1-\theta)}[\Theta + (1-\Theta)] = 1/ [\Theta^\theta(1-\Theta)^{(1-\theta)}] \\
TC(Y) &= (Y/Z)(R^\theta W^{1-\theta})/[\Theta^\theta(1-\Theta)^{(1-\theta)}] \quad \text{and} \quad MC_t = R_t^\theta W_t^{1-\theta}/[\Theta^\theta(1-\Theta)^{(1-\theta)}]Z_t
\end{align*}
\]

So, finally, real marginal cost is:

\((6) \ mc_t(f) = r_t^\theta w_t^{1-\theta}/[\Theta^\theta(1-\Theta)^{(1-\theta)}]Z_t \)

where \(r_t = R_t/P_t \) and \(w_t = W_t/P_t \)
A computable expression for aggregate sectoral output (or employment) –

This goes much the same as in Model 1.

Recall:

(8a) \(Y(f)_t = Z_tK(f)_t\theta N(f)_t\varphi^{-1} \)

(8b) \(N(f)_t = [\int h L(h, f)^{(\varphi-1)} dh]^{\varphi(\phi-1)} \)

(8c) \(Y_t = [\int f Y(f)_t^{(\alpha-1)/\alpha} df]^{\alpha(\alpha-1)} \)

(8d) \(Y^{\alpha}(f)_t = (P(f)_t/P_t)^{\alpha}Y_t \)

Recall: \(R/W = [\Theta/(1-\Theta)](N*/K*) \Rightarrow K(f)_{t+1} = (W/R)(\Theta/(1-\Theta))N(f)_t \Rightarrow Y(f)_t = Z_t[(W/R)(\Theta/(1-\Theta)]^\Theta N(f)_t^\Theta N(f)_t^{1-\Theta} = Z_t[(W/R)(\Theta/(1-\Theta)]^\Theta N(f)_t \)

So, the aggregate demand for the composite labor input is:

(9a) \(N_t = \int f N(f)_t df = (1/Z_t)[(R/W)(1-\Theta)/\Theta]^\Theta \int f Y(f) df \)

\[= (1/Z_t)[(R/W)(1-\Theta)/\Theta]^\Theta \int f (P(f)/P_t)^{\alpha}Y df = (1/Z_t)[(R/W)(1-\Theta)/\Theta]^\Theta Y_t DP_t \]

where \(DP_t = \int f (P(f)/P_t)^{\alpha} df \)

Or equivalently, the aggregate output is:

(9b) \(Y_t = [(\Theta/(1-\Theta)]^\Theta Z_t(W/R)N_t^{\alpha}DP_t \)

And, since aggregate capital is:

\(K_{t+1} = \int f K(f)_{t+1} df = (W/R)[(\Theta/(1-\Theta)]\int f N(f)_t = (W/R)[(\Theta/(1-\Theta)]N_t \)

(9b) can be rewritten as: \(Y_t = Z_t[(\Theta/(1-\Theta)](W/R)N_t^{\alpha}N_t^{1-\Theta}/DP_t \) where \(\{\ldots\} = K_{t+1} \)

So, aggregate output can also be written as:

(9c) \(Y_t = Z_tK_{t+1}^{\Theta}N_t^{1-\Theta}/DP_t \)

Finally, \(DP_t \) can be calculated in the same way as in Model 1.
Model 2: (the Wage & Price inflation version)

(1) \(\Lambda_t = (C_t - bC_{t-1})^{-1} - \beta b(C_{t+1} - bC_t)^{-1} \)

(2) \(K_t = (1 - \delta)K_{t+1} + I_t - \frac{1}{2}\psi[(I_t/K_{t+1}) - \delta]^2K_{t+1} \)

(3) \(r_t/w_t = [\Theta/(1-\Theta)](N_t/K_{t+1}) \)

(4) \(m_t = \frac{r_t}{2}[\Theta(1-\Theta)(1-\Theta)]Z_t \)

(5) \(\Lambda_t = \xi_t - \frac{\xi_t[I_t/K_{t+1}] - \delta}{\xi} \)

(6) \(\xi_t = \beta E_t\{\Lambda_t, r_{t+1} + \xi_{t+1}[(1-\delta) - \frac{1}{2}\psi[I_{t+1}/K_{t+1}] - \delta]^2 + \psi[I_{t+1}/K_{t+1}] - \delta[I_{t+1}/K_{t+1}] \} \)

(7) \(p^*_t = (\mu / S^*_p)(pb/pa) \)

(8) \(pb_t = \alpha\beta E_t[(P_t/P_t)^\psi pb_{t+1}] + \Lambda_t mc_tY_t \)

(9) \(pa_t = \alpha\beta E_t[(P_t/P_t)^\psi pa_{t+1}] + \Lambda_t Y_t \)

(10) \(I_t = (1-\alpha)p^*_t + \alpha(P_t/P_t)^\psi \)

(11) \(Y_t = Z_tK_t^{\psi N_t^N/P_t} \)

(12) \(DP_t = (1-\alpha)(1/p^*_t)^\psi + (P_t/P_t)^\psi DP_{t+1} \)

(13) \(C_t + I_t + G_t = Y_t \)

(14) \(w_t^{1+\phi^x} = (\mu / S^*_w)(wb/wa) \)

(15) \(wb_t = \omega\beta E_t[(W_t/W_t)^\phi wb_{t+1}] + N_t^{1+\phi} \)

(16) \(wa_t = \omega\beta E_t[(W_t/W_t)^\phi wa_{t+1}] + \Lambda_t N_t w_t \)

(17) \(I_t = (1-\omega)w_t^{1+\phi^x} + \omega(W_t^{1+\phi}w_{t+1}) + \Lambda_t N_t w_t \)

(18) \(w_t^{1+\phi^x} = (W_t/W_{t+1})(P_t/P_{t+1}) \)

(19) \(I_t^{-1} = \beta E_t[(\Lambda_t/m_t)(P_t/P_{t+1})] \)

where \(\mu = \sigma/(\sigma-1), \ \mu = \phi/(\phi-1), \ \text{and} \ \Lambda_t = P_t\lambda_t. \)
Adding ‘rule of thumb’ or ‘myopic’ or ‘liquidity constrained’ consumers:

Remarks:
1. G impulses lower both C and I in standard models like the one above. Some VAR studies and traditional wisdom suggest this is counterfactual. Many institutional models incorporate ‘rule of thumb’ households to try to overcome this perceived deficiency.
2. ‘Liquidity Constrained’ consumers (denoted by L) do not save or optimize intertemporally; they just work and consume what they earn each period. ‘Optimizing’ consumers (denoted by O) behave as previously modeled households.
3. Framework: There is a unit mass of L households and a unit mass of O households. L households are less productive (and receive lower wages) than O households. For simplicity, we assume that L household wages are proportional to O households wage.

The effective labor input entering the firms’ production functions is:

(1) \(N_t = \left[\zeta N_{O,t}^{(\eta-1)/\eta} + (1 - \zeta) N_{L,t}^{(\eta-1)/\eta} \right]^{\eta/(\eta-1)}, \quad 0.5 < \zeta < 1 \)

where \(N_{O,t} \) is the labor input bundle of O households (the CES aggregate defined above), and \(N_{L,t} \) is the labor input of any given L households.

The bundler’s cost minimization implies:

(2) \(\left[N_{L,t} / N_{O,t} \right]^{1/\eta} = (W_{O,t} / W_{L,t}) \left[(1 - \zeta) / \zeta \right] \)

and the bundlers’ price (or wage) for the aggregate labor input is:

(3) \(W_t = [\zeta^n W_{O,t}^{1-n} + (1 - \zeta)^n W_{L,t}^{1-n}]^{1/(1-n)} \)

L household wages are proportional to O household wages (which are determined as before)

(4) \(W_{L,t} / W_{O,t} = (1 - \zeta) / \zeta \)

Remarks:
1. This implies that hours equalize across L and O households, and coincide with aggregate hours.
2. Given the new definitions of N and W, the firms’ behavior follows the same equation (for marginal cost, etc) as before.
L households consume their entire disposable income (including a transfer (TR_i) each period):

\[C_{L,t} = (1 - \tau_{w,t}) (W_{L,t} / P_t) \cdot N_{L,t} + TR_t \]

Since both groups of households have unit mass, aggregate consumption \(C_t \) is

\[C_t = C_{O,t} + C_{L,t} \]

Remarks:
1. The size of the elasticity \(\eta \) does not matter for ??
2. \(\zeta \) and TR can be used to calibrate the importance of L households’ behavior relative to O households’ behavior.
Model 3a: a Two Country Model of a Monetary Union.

The Basic Framework:
1. We model two (basically) symmetric countries, each with a single sector, and capital formation; model 3b will generalize to traded and non-traded goods.
2. We introduce home bias to be able to discuss inflation differentials.
3. We use distortionary labor and sales taxes (with a European application in mind).
4. Capital is owned in by the households, and is rented to firms within the household’s country.
5. Notation: Home and Foreign goods, and their prices, will be differentiated by subscript H’s and F’s; otherwise F variables will be differentiated by *’s.
6. Many of the derivations can be seen directly from the multi sector Model 1; all that is required is a change of notation.

Aggregators and Price Indexes:
Here, for simplicity, we suppress time subscripts here.

The Home good is a CES aggregate of the home firms’ product:
(1) $Y_H = \left[\int_0^1 Y_H(f)^{(o-1)/o} df \right]^{o/(o-1)}$ Bundler’s aggregate

See earlier bundler’s problem (page 3):
(2) $P_H = \left[\int_0^1 P_H(f)^{1-o} df \right]^{1/(1-o)}$ Bundler’s price for Home good
(3) $Y_H^d(f) = (P_H/P_H(f))^{o} Y_H$ Bundler’s demand for output of home firm f

Similarly, the Foreign good is a CES aggregate of the foreign firms’ product:
(1)* $Y_F = \left[\int_0^1 Y_F(f)^{(o-1)/o} df \right]^{o/(o-1)}$ Bundler’s aggregate
(2)* $P_F = \left[\int_0^1 P_F(f)^{1-o} df \right]^{1/(1-o)}$ Bundler’s price for Home good
(3)* $Y_F^d(f) = (P_F/P_F(f))^{o} Y_F$ Bundler’s demand for output of foreign firm f
Home consumption is a CES aggregate of the home and foreign goods:

(4) \(C = \left[\mu^{1/(1-\eta)} C_H^{(1-\eta)/(1-\eta)} + (1-\mu)^{1/(1-\eta)} C_F^{(1-\eta)/(1-\eta)} \right]^{\eta/(1-\eta)} \)

and similarly, the Foreign consumption is a CES aggregate of home and foreign goods:

(4)* \(C^* = \left[\mu^{1/(1-\eta)} C_F^{(1-\eta)/(1-\eta)} + (1-\mu)^{1/(1-\eta)} C_H^{(1-\eta)/(1-\eta)} \right]^{\eta/(1-\eta)} \)

Note: \(\mu \) and \(\mu^* (> 0.5) \) indicate the degree of home bias.

The Home consumption good bundler’s problem is to:

\[
\min_{Y_H, Y_F} \ P_H Y_H + P_F Y_F \text{ subject to } \left[\mu^{1/(1-\eta)} Y_H^{(1-\eta)/(1-\eta)} + (1-\mu)^{1/(1-\eta)} Y_F^{(1-\eta)/(1-\eta)} \right]^{\eta/(1-\eta)} = Y
\]

FOC for \(Y_H \):

\[
P_H = P_H Y_H + \frac{1}{\eta} \left[\mu^{1/(1-\eta)} Y_H^{(1-\eta)/(1-\eta)} + (1-\mu)^{1/(1-\eta)} Y_F^{(1-\eta)/(1-\eta)} \right]^{\eta/(1-\eta)} - 1
\]

and since \(\left[\ldots \right] = Y^{(\eta-1)/\eta} \), \(\mu Y_H^{(\eta-1)/\eta} = P \mu Y_H^{(\eta-1)/\eta} \)

the Home bundler’s demand for the Home good is:

\(Y_H = \frac{\mu(P/P_H)^\eta}{Y} \)

and similarly, the Home bundler’s demand for the Foreign good is:

\(Y_F = (1-\mu)(P/P_F)^\eta Y \)

to find the bundler’s price:

\[
P = \min P_H Y_H + P_F Y_F \text{ (to produce } Y = 1) = P_H \mu(P/P_H)^\eta + P_F (1-\mu)(P/P_F)^\eta
\]

\(P^1-\eta = \mu P_H^{1-\eta} + (1-\mu) P_F^{1-\eta} \)

\(P = \left[\mu P_H^{1-\eta} + (1-\mu) P_F^{1-\eta} \right]^{1/(1-\eta)} \)

So, the Home consumption bundler’s demands and prices are given by:

(5) \(Y_H = \mu(P/P_H)^\eta Y \) and \(Y_F = (1-\mu)(P/P_F)^\eta Y \Rightarrow C_H/C_F = [\mu/(1-\mu)](P_F/P_H)^\eta \)

(6) \(P = \left[\mu P_H^{1-\eta} + (1-\mu) P_F^{1-\eta} \right]^{1/(1-\eta)} \)

and the Foreign consumption bundler’s demands and price are given by:

(5)* \(Y_H = (1-\mu^*)(P/P_H)^\eta Y \) and \(Y_F = \mu^*(P/P_F)^\eta Y \Rightarrow C_F/C_H = [\mu^*/(1-\mu^*)](P_H/P_F)^\eta \)

(6)* \(P^* = \left[(1-\mu^*) P_H^{1-\eta} + \mu^* P_F^{1-\eta} \right]^{1/(1-\eta)} \)

and note that:

(6a) \(P^*/P = \left[P^{1-\eta}(1-\mu^*)P_H^{1-\eta} + P^{(1-\eta)}(1-\mu) P_F^{1-\eta} \right]^{1/(1-\eta)} = [(1-\mu^*)(P_H/P)^{1-\eta} + \mu^*(P_F/P)^{1-\eta}]^{1/(1-\eta)} \)
Home investment is a CES aggregate of the home and foreign goods:

\[(7) I = [\mu_I^{\eta (1-\eta)} + (1-\mu_I)^{\eta (1-\eta)}]^{\eta/(1-\eta)}\]

and similarly, the Foreign investment is a CES aggregate of home and foreign goods:

\[(7)^* I^* = [\mu_I^{\eta (1-\eta)} I^* + (1-\mu_I)^{\eta (1-\eta)} I^*]^{\eta/(1-\eta)}\]

This is just like the consumption aggregations, but with different bias parameters; so,

\[(8) P_I = [\mu_I P_H^{1-\eta} + (1-\mu_I) P_F^{1-\eta}]^{1/(1-\eta)} \quad \text{and} \quad p_I = [(1-\mu_I) P_H^{1-\eta} + \mu_I P_F^{1-\eta}]^{1/(1-\eta)}\]

where \(p_x = P_x/P\) is a price normalized on the Home CPI.

As before, each Home household \(h\) works at each Home firm \(f\). \(W(h)\) is the household’s wage (which does not depend on the firm \(f\)). Each Home firm \(f\) has a labor bundler:

\[(9) N(f) = [\int_0^1 L(h,f)(N^{-1})^N dh/N]^{N-1}, \quad \phi > 1 \quad \text{(labor input of firm \(f\))}\]

\[(10) L(h,f) = (W/W(h))^N N(f) \quad \text{(labor demand of bundler for firm \(f\))}\]

\[(11) W = [\int_0^1 W(h)^N dh]^{1/(N-1)} \quad \text{(wage charged by bundler to any firm \(f\))}\]

\[(12) L(h) = \int_0^1 L(h,f) df \quad \text{and} \quad N = \int_0^1 N(f) df \quad \text{(aggregate hours worked and labor input)}\]

\[(13) L(h)^d = (W/W(h))^N \quad \text{(integrating demands over \(f\) in (10))}\]

Similar equations hold for the composite labor input in the Foreign country.

Home Household Intertemporal Maximization Problem:

\[(14) U_t(h) = E_t \sum_{\gamma = 0}^{\infty} \beta^\gamma [(1-\Theta)(C_t(h))]^{1-\theta} - (1+\chi)^{-1} L_t(h)^{1+x} + v((M_t(h)/P_t)]\]

Budget constraint of household \(h\):

\[(15) M_t(h) + E_t[\Delta_{t+1} B_{t+1}(h)] + S_t P_t C_t(h) + P_{k_t} I_t(h) + P_t T_t\]

\[= S_w W_t(h)L_t^d + S_m M_t(h) + B_t(h) + R_t K_{t-1}(h) + D_t(h)\]

where (as before) \(B_{t+1}(h)\) is a state contingent claim, \(\Delta_{t+1}\) is the stochastic discount factor; \(D_t(h)\) are dividends, \(T_t\) is a lump sum tax, \(S_c, S_w\) and \(S_m\) are tax/subsidies on consumption, labor and money holdings (eg \(S_w = (1 - \tau_w)\)). \(R_t\) is the rental rate on domestic capital.

Capital constraint for household \(h\):

\[(16) K_t(h) = (1 - \delta) K_{t-1}(h) + I_t(h) - \frac{1}{2}\phi [L_t(h)/K_{t-1}(h)] - \delta^2 K_{t-1}(h)\]

where the last term represents the capital adjustment cost; note: \(K_t\) is the end of period stock.
Home household's problem: choose \(I_t, K_t, B_{t+1}(h), C_t(h), M_t(h), \) and \(W_t(h) \) to maximize (14) subject to (15), (16) and the labor demand curve (13).

\[
\mathcal{L} = E \sum_{t=0}^{\infty} \beta^{t+1} \{ [(1-\Theta)(C_t(h))]^{1-\Theta} - (1+\chi)^t L_t(h)^{1+\chi} + \ldots
- \lambda_t [E_t [\Delta_{t+1} B_{t+1}(h)] + S_{c,t} P_t C_t(h) + P_{t-1} I_t(h) + P_{t-1} T_t] - S_{w,t} W_t(h) L_t^d(h) - B_t(h) - R_t K_{t+1}(h) + \ldots
+ \xi_t [1 - (1 - \delta) K_{c,t}(h) + I_t(h) - \frac{1}{2} \psi [(I_t(h)/K_{c,t}(h))] - \delta t K_{c,t}(h) - K_t(h)] \}
\]

The FOC include:

C_t(h): \(C_t(h) = \lambda_t S_{c,t} P_t \)

I_t(h): \(\lambda_t I_t(h) = \xi_t - \xi_t [I_t(h)/K_{c,t}(h)] - \delta \)

K_t(h): \(\xi_t = \beta E_t \{ \lambda_{t+1} R_{t+1} + \xi_{t+1} [(1-\delta) - \frac{1}{2} \psi [(I_{t+1}(h)/K_{t+1}(h))] - \delta t (I_{t+1}(h)/K_{t+1}(h))^2] \} - \psi [(I_{t+1}(h)/K_{t+1}(h))] - \delta t (I_{t+1}(h)/K_{t+1}(h))^2 \}

B_{t+1}(h): \Delta_{t+1} B_{t+1}(h) = \beta \lambda_{t+1} / \lambda_t = R_{t+1}^{-1} = E_t [\Delta_{t+1}] = \beta E_t [\lambda_{t+1} / \lambda_t] \]

Note: as before, complete markets mean that \(\lambda_t(h) = \lambda_t \) for all \(h \).

\[\text{Converting to the “real” model:}\]

Here we normalize on \(P_t \), the Home CPI. As before, let

\[\partial U_t / \partial C_t = S_{c,t} P_t \lambda_t = S_{c,t} \Lambda_t; \] so, \(\Lambda_t = P_t \lambda_t \) is the marginal utility of the final Home \(C_t \).

Writing the FOC in aggregate values:

(17) \(C_t^{\theta} = S_{c,t} \Lambda_t \)
(18) \(\Delta P_t = \xi_t - \xi_t [I_t(K_{t+1}) - \delta] \)
(19) \(\xi_t = \beta E_t \{ \Delta_{t+1} R_{t+1} + \xi_{t+1} [(1-\delta) - \frac{1}{2} \psi [(I_{t+1}(h)/K_t) - \delta t (I_{t+1}(h)/K_t))^2] \} - \psi [(I_{t+1}(h)/K_t) - \delta t (I_{t+1}(h)/K_t))^2] + \psi [(I_{t+1}(h)/K_t) - \delta t (I_{t+1}(h)/K_t)] \}
(20) \(R_t^{-1} = \beta E_t [\Delta_{t+1} / \Lambda_t] (P_t/P_{t+1}) \]

Further implications of Consumption Risk Sharing:

Since all households in both countries face the same contingent claims prices (and probabilities):

\[\beta \lambda_t(h) / \lambda_t(h) = \Delta_{t+1} = \beta \lambda_{t+1} (h^*) / \lambda_{t+1} (h^*) \] for all \(h \) and \(h^* \).

\[S_{c,t} P_t C_t^{\theta} / S_{c,t} P_{t+1} C_{t+1}^{\theta} = \Delta_{t+1} / \beta = \Gamma \] where \(\Gamma = S_{c,0} P_0 C_0^{\theta} / S_{c,0} P_0 C_0^{\theta} \) (= 1?), or \(\beta \lambda_t(h) / \lambda_t(h) = \Delta_{t+1} = \beta \lambda_{t+1} (h^*) / \lambda_{t+1} (h^*) \)

(18) \((C_t/C_t^*)^{\theta} (S_{c,t}/S_{c,t}^*) \) = \(\Gamma \) \(RER_t \) where \(RER_t = P_t^* / P_t^* \)

Remark: \(S_{c,t}/S_{c,t}^* \) is perhaps worse than the Ireland shock problem in the risk sharing equation!

Note: \(P_t = P_{t^*} / P = (P^*/P)(P_{t^*}/P^*) = \) \(RER_t = P_t^* / P_t^* \) and similarly \(P_F = RER F \)
Note: in the “real” model, price levels are suppressed, and inflation rates appear in the coding.
We need an equation that relates the home and foreign inflation rates.

Converting (or replacing) an Euler equation in the “real” model:
Note: by definition, \(\text{RER}_{t+1}/\text{RER}_t = \Pi_{t+1}/\Pi_{t+1} \), where \(\Pi_t = P_t/P_{t-1} \) and \(\Pi^*_t = P^*_t/P^*_{t-1} \)
So,
\[(20) \ R_t^{-1} = \beta E_t[(\Lambda_t/\Lambda_t)/\Pi_{t+1}] \]
\[(20)^* \ R_t^{-1} = \beta E_t[(\Lambda^*_t/\Lambda^*_t)/\Pi^*_t] \]
can be replaced by:
\[(20) \ R_t^{-1} = \beta E_t[(\Lambda_t/\Lambda_t)/\Pi_{t+1}] \]
\[(20a)^* \ E_t(\text{RER}_{t+1}/\text{RER}_t) = E_t(\Pi^*_t/\Pi_{t+1}) \]
since (20) and (20a)* \(\Rightarrow \) (20)*

To see this, recall (17) \(C_t^{\theta} = S_{c,t} \Lambda_t \) (17)* \(C_t^{*\theta} = S_{c,t}^{*} \Lambda^*_t \) and (18) \((C_t/C_t^{*})^{\theta}(S_{c,t}/S_{c,t}^{*}) = \text{RER}_t \)
These equations \(\Rightarrow \)
\[\text{RER}_t = (C_t/C_t^{*})^{\theta}(S_{c,t}/S_{c,t}^{*}) = \Lambda_t/\Lambda_t \]
So,
\[(\Lambda^*_t/\Lambda_t)/(\Lambda^*_t/\Lambda_t) = \text{RER}_{t+1}/\text{RER}_t = \Pi^*_t/\Pi_{t+1} \) or \((\Lambda^*_t/\Lambda_t)/(\Lambda^*_t/\Lambda_t) = (\Lambda_t/\Lambda_t)/\Pi_{t+1} \)
And,
\[R_t^{-1} = \beta E_t[(\Lambda_t/\Lambda_t)\Pi_{t+1}] = \beta E_t[(\Lambda^*_t/\Lambda_t)\Pi^*_t] \]
Optimal wage setting in period t –

This is the same as above except that $S_{w,t}$ now has a time subscript and must be kept inside the summation sign.

\[W_t^n(h)^{1+\phi_x} = \mu_k(WB_t/WA_t) \]

where $\mu_k = \phi/(\phi-1)$

\[WB_t = E \sum_{j=1}^{\infty} (\omega \beta)^j N_j^{1+\gamma} W_j^{(1+\gamma)} = \omega \beta E_i W_{B_{t+1}} + N_t^{1+\gamma} W_{B_t}^{(1+\gamma)} \]

\[WA_t = E \sum_{j=1}^{\infty} (\omega \beta)^j \lambda S_{w,j} N_j W_j^{\phi} = \omega \beta E_i W_{A_{t+1}} + \lambda S_{w,t} N_t W_t^{\phi} \]

\[W_t^{1-\phi} = (1-\omega) W_t^{n-1-\phi} + \omega (W_{t-1})^{1-\phi} \]

Converting to the “real” model – as before (page 17)

\[w^n_t^{1+\phi_x} = \mu_k(wb/wa) \]

\[\begin{align*}
 wb_t &= \omega \beta E_i [(W_{t+1}/W_t)^{\phi(1+\chi)}] wb_{t+1} + N_t^{1+\chi} \\
 wa_t &= \omega \beta E_i [(W_{t+1}/W_t)^{\phi(1+\chi)}] wa_{t+1} + S_{w,t} \Delta_t w_t
\end{align*} \]

\[(20) \quad 1 = (1-\omega) w^n_t^{1-\phi} + \omega (W_{t-1}/W_t)^{1-\phi} \]

where w_t is the real wage, but $w^n_t = W^n_t/W_t$, $wa_t = WA_t/W_t^{\phi-1}$, and $wb_t = WB_t/W_t^{\phi(1+\chi)}$

and $w^n_t = (W_{t-1}/W_t)/(P_{t-1}/P_t)$

Home firm f’s cost minimization problem and nominal marginal cost:

Here the development is the same; see above.

Firm f’s production function is:

\[(21) \quad Y_{H_t}(f) = Z_t K_{t-1}(f)^{\Theta} N_t(f)^{\Theta-1} \]

where (as before) $N_t(f) = \int_0^t L_t(h,f)^{(1+\phi)} dh$ and Z_t is a productivity shock.

\[(22) \quad r_t/w_t = [\Theta/(1-\Theta)](N_t/K_{t-1}) \]

\[(23) \quad mc_t(f) = r_t w_t^{\Theta} / [\Theta(1-\Theta)(1-\Theta)] Z_t \]

where $r_t = R_t/P_t$ and $w_t = W_t/P_t$

Note: here again, this is real marginal cost in terms of the CPI, and not P_H.
Optimal price setting in period t –

Firm-f seeks to maximize its market value for Home households:

\[\text{MV}_t = E_t \sum_{j=t}^\infty \beta^{j-t} \lambda_j [S_p \cdot P_{H,t}(f) Y_{H,t}(f) - TC_j(Y_{H,t}(f))] \]

where TC is total cost and \(S_p \) is a (constant) price subsidy.

Remark:

Using the Home \(\lambda \) to value the firm is suspicious in a two country setting, especially if the risk sharing assumption is eliminated. There are a host of issues here.

With probability \(\alpha^{j,t} \), the new price \(P_{n,H,t}^n(f) \) will be in effect in period \(j \); so, a Home firm-f (which gets to reset its price) sets \(P_{n,H,t}^n(f) \) to maximize:

\[\text{MV}_t = E_t \sum_{j=t}^\infty \alpha^{j-t} \gamma_j [S_p \cdot P_{n,H,t}(f) Y_{H,t}(f) - TC_j(Y_{H,t}(f))] \]

Remark:

Using the Home \(\lambda \) to value the firm is suspicious in a two country setting, especially if the risk sharing assumption is eliminated. There are a host of issues here.

With probability \(\alpha^{j,t} \), the new price \(P_{n,H,t}^n(f) \) will be in effect in period \(j \); so, a Home firm-f (which gets to reset its price) sets \(P_{n,H,t}^n(f) \) to maximize:

\[\text{MV}_t = E_t \sum_{j=t}^\infty \alpha^{j-t} \gamma_j [S_p \cdot P_{n,H,t}(f) Y_{H,t}(f) - TC_j(Y_{H,t}(f))] \]

As before (see Model 1), we have:

(24) \(P_{n,H,t}^n(f) = (\mu_p / S_p)(PB_t / PA_t) \)

where

\[
\begin{align*}
PB_t &= \alpha_{\mu} \beta E_t PB_{t+1} + \gamma_{\mu} M_{\mu} P_{n,H,t} Y_{H,t}
PA_t &= E_t \sum_{j=t}^\infty (\alpha \beta)^{j-t} \gamma_j P_{n,H,t} Y_{H,t} = \alpha_{\mu} \beta E_t PA_{t+1} + \gamma_{\mu} P_{n,H,t} Y_{H,t}
\end{align*}
\]

(25) \(P_{n,H,t}^{1-\sigma} = (1-\alpha H)P_{n,H,t}^{1-\sigma} + \alpha H P_{n,H,t-1}^{1-\sigma} \)

Converting to the “real” model – Here again we normalize on \(P_t \); let \(p_{ \lambda t} = \Lambda_t \) and \(p_{H,t} = P_{H,t}^n / P_t \)

(24) _real \(P_{n,H,t}^n = (\mu_p / S_p)(pb_t / pa_t) \)

\[
\begin{align*}
pb_t &= \alpha_{\mu} \beta E_t [(P_{t+1} / P_t)^{\sigma} pb_{t+1}] + \Lambda_m c_p P_{n,H,t} Y_{H,t}
pa_{a,t} &= \alpha_{\mu} \beta E_t [(P_{t+1} / P_t)^{\sigma-1} pa_{a,t+1}] + \Lambda p_{H,t} Y_{H,t}
\end{align*}
\]

And finally, the aggregate sectoral price (10) becomes:

(25) _real \(P_{n,H,t}^{1-\sigma} = (1-\alpha H)P_{n,H,t}^{1-\sigma} + \alpha H P_{n,H,t-1}^{1-\sigma} (P_{t+1} / P_t)^{1-\sigma} \)
A computable expression for aggregate sectoral output (or employment) –

This too goes the same as in Model 2; see that development.

Recall:

\[
Y_{H,t}(f) = Z_t K(f)_{t-1}^\Theta N(f)_{t-1}^{1-\Theta}
\]

\[
Y_{H,t} = \left\{\int_0^1 Y_{H,t}(f)(1-\alpha)\phi df\right\}^{\alpha(1-\alpha)}
\]

\[
Y_{H,t} = (P_{H,t}(f)/P_{H,t})^{\alpha}Y_t
\]

The aggregate output can be written as:

(26) \(Y_{H,t} = Z_t K_{t-1}^\Theta N_t^{1-\Theta}/DP_{H,t}\)

Note: in the coding we replace \(\Theta\) with \(v\).

and \(DP_{H,t}\) can be calculated in the same way as in Model 1.

(27) nominal \(DP_{H,t} = (1-\alpha)\left(\frac{P_{H,t}}{P^n_{H,t}}\right)^\alpha + \left(\frac{P_{H,t}}{P^\alpha_{H,t-1}}\right)^\alpha \alpha HDP_{H,t-1}\)

Converting to the “real” model – Here we normalize nominal variables on \(P_t\).

(27) real \(DP_{H,t} = (1-\alpha)\left(\frac{P_{H,t}}{P^n_{H,t}}\right)^\alpha + \left(\frac{P_{H,t}}{P^\alpha_{H,t-1}}\right)^\alpha \alpha HDP_{H,t-1}\)

Market Equilibrium Conditions:

(28) \(Y_{H,t} = C_{H,t} + C^{*}_{H,t} + I_{H,t} + I^{*}_{H,t} + G_t\)

(28) \(Y_{F,t} = C_{F,t} + C^{*}_{F,t} + I_{F,t} + I^{*}_{F,t} + G^{*}_t\)

Government budget constraint and policy:
Equations to code up –

aggregator and price index block:

C = \left[\mu^{1/\eta} \left(C_H^{(n-1)/n} + (1-\mu)^{1/\eta} C_F^{(n-1)/n} \right)^{\eta/(n-1)} \right]

I = \left[\mu p_H^{1-\eta} + (1-\mu) p_F^{1-\eta} \right]^{1/(1-\eta)}

C_H/C_F = \left[\mu / (1-\mu) \right] (p_F/p_H)^n

p_I = \left[\mu p_H^{1-\eta} + (1-\mu) p_F^{1-\eta} \right]^{1/(1-\eta)}

I_H/I_F = \left[\mu / (1-\mu) \right] (p_F/p_H)^n

C* = \left[\mu^{1/\eta} C_* H^{(n-1)/n} + (1-\mu)^{1/\eta} C_* H^{(n-1)/n} \right]^{\eta/(n-1)}

I* = \left[\mu^{1/\eta} I_* H^{(n-1)/n} + (1-\mu)^{1/\eta} I_* H^{(n-1)/n} \right]^{\eta/(n-1)}

p_* = \left[\mu^{1/\eta} p_* H^{(n-1)/n} + (1-\mu)^{1/\eta} p_* H^{(n-1)/n} \right]^{1/(1-\eta)}

Euler equation, risk sharing and investment block:

C* - 1 = \frac{S_c}{S_*} \Lambda

\Delta p_I = \xi - \bar{\xi} \psi[I/K(-1) - \delta]

\xi = \beta \left\{ \Lambda(1+1)r(1+1) + \xi(1) \right\} [(1-\delta) - \frac{1}{2} \psi[(I(1)+K) - \delta]^2 + \psi[(I(1)+K) - \delta](I(1)+K)]

K = (1 - \delta)K(-1) + I - \frac{1}{2} \psi[I(1)/K(-1)] - \delta^2 K(-1)

R^{-1} = \beta(\Lambda(1+1)/\Lambda)(1/\Pi(1+1))

\frac{(C/C^*)^\theta (S_/S_*^*)}{\Gamma} = \Gamma RER \quad \text{where RER = } \frac{P^*/P}{P_H}

p_H = \text{RER} \cdot p_H^*

p_F = \text{RER} \cdot p_F^*

C^* - \theta = \frac{S_*}{S_*^*} \Lambda^*

\Delta^* p_K = \bar{\xi}^* - \bar{\xi}^* \psi[1/K^*(-1) - \delta^*]

\xi^* = \beta \left\{ \Lambda^*(1+1)r^*(1+1) + \xi^*(1) \right\} [(1-\delta^*) - \frac{1}{2} \psi[(I^*(1)+K^*) - \delta^*]^2 + \psi[(I^*(1)+K^*) - \delta^*](I^*(1)+K^*)]

RER_{r\ell}/RER_{r\ell} = \Pi^* \cdot \Pi\ell \quad \text{(replacing the foreign Euler equation, as explained on pg 29)}

K^* = (1 - \delta)K^*(-1) + I^* - \frac{1}{2} \psi[I^*(1)/K^*(-1)] - \delta^2 K^*(-1)
Production function block:

equations for Z and Z* processes

\[Y_H = ZK(-1)^\gamma N^{1-\gamma}/DP_H \]
\[DP_H = (1-\alpha)(p_H/p_H^0) + (p_H/p_H(-1))^{\alpha_0}\alpha_{DP_H}(-1) \]
\[r/w = \frac{[v/(1-v)](N/K(-1))}{DP_H} \]
\[mc = r^{\ast w_{1-v}}[v^{\prime}(1-v)^{(1-v)}]Z \]
\[Y_F = Z^*K^*(-1)^{\gamma N^{1-\gamma}/DP_F} \]
\[DP_F = (1-\alpha^*)(p_F/p_F^0) + (p_F/p_F(-1))^{\alpha_0^*}\alpha_{DP_F}(-1) \]
\[r^*/w^* = \frac{[v/(1-v)](N^*/K^*(-1))}{DP_F} \]
\[mc^* = r^{\ast w^*_{1-v}}[v^{\prime}(1-v)^{(1-v)}]Z^* \]

Calvo price setting block:

\[p_i^n = (\mu_p/S_p)(pb/pa) \]
\[pb = \alpha\beta(\Pi(+1))^{\alpha_0}pb(+1) + \Lambda mc_i^{\alpha_0}Y_H \]
\[pa = \alpha\beta(\Pi(+1))^{\alpha_0-1}pa(+1) + \Lambda p_i^{\alpha_0}Y_H \]
\[p_i^{1-\alpha} = (1-\alpha)p_i^{\alpha-1} + \alpha p_i(-1)^{1-\alpha}(1/\Pi)^{1-\alpha} \]
\[p_F^n = (\mu_p^*/S_p^*)(pb^*/pa^*) \]
\[pb^* = \alpha^*\beta(\Pi^*(+1))^{\alpha_0}pb^*(+1) + \Lambda^* mc_F^{\alpha_0}Y_F \]
\[pa^* = \alpha^*\beta(\Pi^*(+1))^{\alpha_0-1}pa^*(+1) + \Lambda^* p_F^{\alpha_0}Y_F \]
\[p_F^{1-\alpha} = (1-\alpha^*)p_F^{\alpha_0-1} + \alpha p_F(-1)^{1-\alpha}(1/\Pi^*)^{1-\alpha} \]

Calvo wage setting block:

\[w^{n_{1+\phi_x}} = \mu_w\kappa(wb/wa) \]
\[wb = \omega^*\Pi_{w}(+1)^{\phi(1+\gamma)}wb(1) + N^{1+\gamma} \]
\[wa = \omega^*\Pi_{w}(+1)^{\phi-1}wa(1) + S_w\Lambda Nw \]
\[1 = (1-\omega)w^{n_{1+\phi}} + \omega(1/\Pi_w)^{1-\phi} \]
\[w/w(-1) = \Pi_w/\Pi \]
\[w^n_{1+\phi_x} = \mu_w\kappa(wb^*/wa^*) \]
\[wb^* = \omega^*\Pi^n_{w}(+1)^{\phi(1+\gamma)}wb^*(+1) + N^{1+\gamma} \]
\[wa^* = \omega^*\Pi^n_{w}(+1)^{\phi-1}wa^*(+1) + S^*_w\Lambda N^*w^* \]
\[1 = (1-\alpha)w^{n_{1+\phi}} + \omega^*(1/\Pi^n_w)^{1-\phi} \]
\[w^*/w^*(-1) = \Pi^*_w/\Pi \]
fiscal policy block:
 equations for G and G* processes
 \[S_c = S_w = S_c = S_w = 1 \]

monetary policy block:
 \[0.5\Pi + 0.5\Pi^* = 1 \]
References: