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Abstract

Several recent papers use the quantile regression decomposition method

of Machado and Mata (2005) to analyze the gender gap across log wage

distributions. In this paper, we prove that this procedure yields consistent

and asymptotically normal estimates of the quantiles of the counterfactual

distribution that it is designed to simulate. Since employment rates often

differ substantially by gender, sample selection is potentially a serious issue

for such studies. To address this issue, we extend the Machado-Mata

technique to account for selection. We illustrate our approach to adjusting

for sample selection by analyzing the gender log wage gap for full-time

workers in the Netherlands.
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1 Introduction

Several recent papers have used the Machado and Mata (2005) quantile regres-

sion decomposition technique to analyze the gender gap in log wages across the

distribution. This technique allows one to decompose the difference between the

male and female log wage distributions into a component due to the difference

in the distributions of observable characteristics (education, experience, etc.) be-

tween the genders and a component due to the difference in the distributions

of rewards to these characteristics between the genders. Such studies include

Albrecht, Björklund, and Vroman (2003) for Sweden, de la Rica, Dolado, and

Llorens (2008) for Spain, and Arulampalam, Booth, and Bryan (2007) across

several European countries.

In this paper, we do three things. First, we provide proofs for the consistency

and asymptotic normality of the Machado and Mata (2005) procedure; that is,

we establish the large-sample properties of the estimated quantiles of the coun-

terfactual distribution that is generated by the this procedure. This is useful

because it allows us to estimate asymptotic standard errors for the procedure.

These may be less computationally demanding than the bootstrap procedures

previously used. In our application, we compare the standard errors computed

by these two methods and find that they match well.

Second, we extend Machado and Mata (2005) to account for selection. Specifi-

cally, we adapt the Machado-Mata procedure to take advantage of the Buchinsky

(1998a) selection correction method for quantile regression. Male and female

employment rates differ substantially in many countries, so sample selection is

potentially an important issue for this type of analysis. To the extent that there

is positive selection of women into employment, that is, the women who could

get the greatest returns from market work tend to be those who are actually

employed, the observed gender gap across the distribution is likely to understate

the gap that would be observed were male and female employment rates equal.

Similarly, correcting for selection is essential for comparing the gender gap across

the distribution between two countries; for example, it makes no sense to com-

pare the gender gap across the distribution in Sweden to the corresponding gap

in Greece without correcting for selection.1

Finally, we illustrate our approach by analyzing the gender gap across the

distribution for men and women who work full time in the Netherlands. (The rate

of part-time work among women in the Netherlands is relatively high, but the rate

of full-time work among women is low.) We find a strong positive selection effect.

1The gender employment gap in Greece was about 30% in 2000. The corresponding figure

for Sweden was about 4%. See OECD (2002).
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Had all women worked full time in the Netherlands, the gender gap would have

been considerably larger. Our technique also allows us to decompose the selection

effect into a part due to observables (about three quarters in our application)

and a part due to unobservables. Finally, we construct a counterfactual to the

selection-corrected distribution of log wages for women working full time; that

is, we use the Machado-Mata technique to simulate the distribution of log wages

that women would have earned if all women worked full time and had the male

distribution of characteristics. We find that after adjusting for selection and for

gender differences in the distribution of observed characteristics, there is still a

significant positive gender log wage gap across the entire distribution. This gap

is largest at the highest quantiles, suggesting a glass ceiling effect.

The rest of our paper is organized as follows. In the next section, we describe

the Machado-Mata technique and prove consistency and asymptotic normality.

In Section 3, we extend the technique to correct for selection. Section 4 contains

our application to the Netherlands, and Section 5 concludes.

2 Machado - Mata Decompositions: Large-Sample

Properties

In this section, we explain the Machado and Mata (2005) decomposition tech-

nique and discuss our results on the consistency and asymptotic normality of the

estimated quantiles of the counterfactual distribution generated by this method.

Our results allow for the estimation of asymtotic standard errors in a manner

that in many cases is computationally less demanding than bootstrapping.

We start by describing the Machado-Mata (M-M) method. Their procedure

can be viewed as a generalization of the Oaxaca-Blinder decomposition (Oaxaca

1973).2 Consider two groups, A and B, with characteristics given by the stochas-

tic vectors XA for group A and XB for group B. We denote realizations of these

stochastic vectors by xA and xB. Assume that XA and XB both have dimension

k and have distribution functions GXA
and GXB

, respectively. The endogenous

variable is YA for group A and YB for group B with unconditional distribution

functions FYA
and FYB

, respectively. Let the sizes of the two samples be NA and

NB, and suppose that the outcomes as well as the characteristics are observed

for both groups.

2There are other techniques that have the same objective, e.g., Dinardo, Fortin and Lemieux

(1996), Lemieux (2002), and Donald, Green, and Paarsch (2000). Autor, Katz, and Kearney

(2005) discuss the relationship between the Machado-Mata method and the Dinardo, et al.

approach.
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The M-M assumption is that the regression quantiles are βA(u) for group A

and βB(u) for group B for each u ∈ [0, 1]; that is,

Quantu(YA|XA = xA) = xAβA(u) u ∈ [0, 1]

and

Quantu(YB|XB = xB) = xBβB(u) u ∈ [0, 1].

The distribution of YA conditional on XA = xA is completely characterized by

the collection of regression quantiles {βA(u); u ∈ [0, 1]}, and likewise for the

distribution of YB conditional on XB = xB.

Consider a counterfactual random variable YAB with the property that its

quantiles conditional on xA are given by

Quantu(YAB|XA = xA) = xAβB(u) u ∈ [0, 1].

The M-M method generates a sample from the unconditional distribution of YAB

as follows:

1. Sample u from a standard uniform distribution.

2. Compute β̂B(u), i.e., estimate the uth regression quantile of YB on xB.

3. Sample xA from the empirical distribution ĜXA
.

4. Compute ŷAB = xAβ̂B(u).

5. Repeat steps 1 to 4 M times.3

Of course, the sample generated in this way is not a true sample from the

distribution of the stochastic variable YAB since it is based on estimates rather

3Instead of sampling u from a standard uniform distribution and repeating the procedure

M times, some authors estimate β̂B(u) for a grid of u′s, e.g., u = 0.001, ....0.999, and then

repeat steps 3 and 4 many times for each value of u. Examples are Albrecht et al. (2003),

Autor et al. (2005) and Melly (2007). This eliminates the sampling error that is inherent in

Step 1, but in practice this variation yields the same estimates as the original M-M procedure.

Another variation is to sample more than once from the empirical distribution of XA in Step 3.

This can substantially reduce the computational burden since the estimation of βB(u) is time

consuming. Albrecht et al. (2003) was the first to use this idea, sampling 100 times from the

empirical distribution of XA with replacement. Autor et al. (2005) and Melly (2007) sample

the entire dataset. Both of these approaches – estimating β̂B(u) for a grid of u′s and making

multiple draws from the empirical distribution of XA in Step 3 – retain the basic insight from

Machado and Mata (2005). Our proofs of consistency and asymptotic normality are for the

original M-M procedure.
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than on the true parameters of the distribution. This implies that estimators

(like sample means, medians, etc.) based on the sample generated by the method

cannot be interpreted as estimates based on the population YAB. However, as

NA and NB become large, this problem should become unimportant. We now

make this more precise by comparing the population quantiles of YAB with the

corresponding sample quantiles computed using the M-M method.

Let θ0(q) be the qth quantile of the unconditional distribution of YAB, i.e.,

θ0(q) = F−1
YAB

(q)

where FYAB
(y) =

∫
FYAB

(y|XA = xA)dGXA
(xA), and let θ̂(q) be the correspond-

ing estimate obtained using the M-M technique. In Appendix A.1, we state two

theorems; namely, that under suitable assumptions, θ̂(q) is a consistent estimator

for θ0(q) (Theorem 1) and that
√

M(θ̂(q)−θ0(q)) is asymptotically normal (The-

orem 2). In doing this, we hold M/NA and M/NB fixed; that is, as the sample

sizes NA and NB increase, we imagine that the number of simulation steps in the

M-M procedure grows at a commensurate rate. The proofs of these two theorems

are given in Appendix A.1.4

Machado and Mata (2005) use a bootstrap procedure to estimate standard

errors for the quantiles of the counterfactual distribution. So far as we know, no

proof of the consistency of this procedure has been given in the M-M framework.

In addition, bootstrapping can be computationally demanding in this setting.

The result that we present in Theorem 2 therefore has three advantages relative

to the existing literature on the M-M procedure; namely, (i) it provides a rigorous

way to evaluate the precision of quantile-based decompositions, (ii) it offers a

(relatively) computationally less demanding alternative to the bootstrap, and

(iii) it shows that the use of the bootstrap is consistent in this setting (see, for

example, Horowitz 2001, Theorem 2.2). Of course, it is useful to compare the

estimated asymptotic standard errors that can be computed using Theorem 2

with the corresponding bootstrap estimates. We do this in Appendix B in the

context of the application that we present in Section 4. In general, the estimates

generated by the two alternative procedures match well. More details are given

in Section 4. We also note that our results in Theorems 1 and 2 refer to the

pointwise limits in (0, 1) of the quantile process. The same is true of the bootstrap

procedure used in Machado and Mata (2005).

In our application, we are interested in log wage gaps, i.e., differences between

quantiles of two log wage distributions. The quantiles of the distributions of YA

4Melly (2007) proves consistency and asymptotic normality for the case in which the pop-

ulation B regression quantiles are estimated using a grid and the entire sample of observables

from population A is used in Step 3.
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and YAB are correlated. The covariance between a particular quantile of these

two distributions can be shown to be equal to

q(1 − q)

fYA
(θ(q))fYAB

(θ(q))
.

This results in a reduction in the variance of the log wage gap at the qth quantile.

The reduction does not arise when we consider differences in quantiles of the

distributions YB and YAB.5

3 Machado - Mata Decompositions with Sample

Selection Adjustment

In this section, we extend the M-M procedure to allow for selection.6 In our

application, we consider the selection of women into full-time work, so we explain

our selection adjustment procedure in those terms. In the notation of the previous

section, groups A and B could stand for any arbitrary groups so, for example, A

could be women and B could be men. When we adjust for selection of women

into full-time work, however, we let A denote all women and B denote the women

who actually work full time.

5The intuition is as follows. The conditional quantiles of YA given xA are given by YA =

xAβA(u) for u ∈ [0, 1], while those of YAB given xA are given by YAB = xAβB(u) for u ∈
[0, 1]. We can use the M-M method to recover the unconditional distributions of both YA and

YAB . The sample from XA is used in constructing both distributions. This means that the

correlation between the two generated stochastic variables is essentially that between XAβ̂A(u)

and XAβ̂B(u). The correlation between YB and YAB does not have this feature because in that

case, we generate YB and YAB by sampling from XB and XA, respectively. Note that a similar

correlation arises in the Oaxaca decomposition method. Details are available from the authors

on request.
6Considerable attention has been devoted to sample selection in the literature. Much of this

work extends Heckman’s (1979) classic model to allow for non-normality. See, e.g., Gallant and

Nychka (1998), Newey (1988), Das, Newey and Vella (2003), or Vella (1998) for a survey. There

are other techniques we could have used to correct for sample selection across the distribution.

For example, Blundell, Gosling, Ichimura and Meghir (2007) use the approach suggested in

Manski (1994) to bound the possible impact of selection. The idea is simple: even if we know

nothing about the productivity of non-workers, bounds can be obtained by assuming either

that all non-workers are more productive than workers (resulting in the upper bound) or that

all non-workers are less productive than workers (resulting in the lower bound). In contrast to

Blundell et al., our objective is to construct point estimates of a counterfactual distribution.

This, of course, implies that we need to make much stronger identifying assumptions than they

do.
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We thus let YA be the counterfactual random variable representing the log

wage that a randomly selected woman would earn were she to work full time.

The quantiles of YA conditional on xA are given by

Quantu(YA|XA = xA) = xAβA(u) u ∈ [0, 1],

where βA(u) is the true value of the coefficient correcting for selection. We follow

Buchinsky (1998a) by estimating

Quantu(YB|ZB = zB) = xBβA(u) + hu(zBγ) u ∈ [0, 1].

The stochastic vector Z is the set of observable characteristics that influence

the probability that a woman works full time. In our application, these include

the observables that influence her wage for full time work, i.e., the X ′s, but for

identification, Z must also contain at least one variable that is not included in

X. This variable (or variables) should, of course, be uncorrelated with the log

wage. Note that whereas zA is a draw from the distribution of covariates among

all women, zB is a draw from the distribution of the same covariates but now only

among those women who work full time. That is, we can only estimate βA(u)

using observations on the women who actually work full time.

The term hu(zBγ) corrects for selection at the uth quantile. It plays the

role that the Mill’s ratio plays in the usual Heckman (1979) procedure, but it is

quantile-specific and more general so as not to assume normality. Note that we

are making a single-index assumption. In doing so, we are directly following the

argument given on pp. 3-5 in Buchinsky (1998a). This argument compares the

market wage, i.e., the wage a woman would earn in full-time work, with her reser-

vation wage. Of course, both the market wage and the reservation wage depend

in part on unobservables. Buchinsky (1998a) gives conditions (his Assumptions

C and E, p. 4) on the joint distribution of these unobservables, both uncondi-

tionally and conditional on x, that justify the single-index representation.7 These

assumptions, while sufficient for the single-index representation, do not pin down

the form of hu(·). Buchinsky (1998a) therefore suggests a series estimator (see

also Newey 1988), namely,

ĥu(zBγ) = δ0(u) + δ1(u)λ(zBγ) + δ2(u)λ(zBγ)2 + . . . ,

where λ(·) is the inverse Mills ratio. The function ĥu(zBγ) is a power series

approximation of hu(zBγ). For appropriate values of the δ’s, ĥu(zBγ) → hu(zBγ)

7These assumptions are not uncontroversial. It seems difficult to specify a data-generating

process that literally conforms to Assumptions C and E. The core objective, however, is to

allow for a selection effect that varies across quantiles, and terms of the form hu(zBγ) can be

thought of as approximations to achieve this objective.
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as the number of terms goes to infinity. Of course, the use of the inverse Mills

ratio is not necessary. Any function of zBγ, the single index, could be used,

including the single index itself.

Two problems remain before we can present our extension of the M-M proce-

dure to adjust for selection. First, we need to estimate γ. If we could regress the

reservation wage on the observables, that would give a consistent estimate of γ.

However, we only observe whether the difference between the market wage and

the reservation wage is positive – in the usual notation of the selection literature,

we only observe whether a dummy indicator D equals 1 or 0. We proceed by

minimizing the squared distance between D and P (D = 1|Z = z) ≡ Ψ(zγ). As

we do not know the form of this conditional probability, we estimate Ψ(·) using

kernel regression. This semi-parametric least squares procedure, as described in

Ichimura (1993), gives a consistent estimate of γ. Again, we are following the

approach taken in Buchinsky (1998a).

Second, we need to take account of the fact that when estimating a semi-

parametric sample selection model as described above, the intercept in the wage

equation is not identified. The problem is one of distinguishing between the in-

tercept, βA
0 (u), that we want to estimate and the first term in the power series

approximation to the selection correction term, δ0(u). As in Buchinsky (1998a)

and Andrews and Schafgans (1998), βA
0 (u) can be estimated through an identi-

fication at infinity approach. That is, one chooses a subsample of observations

with values of the observables such that the probability of full-time work given

those values is arbitrarily close to one and then uses that subsample to estimate

βA
0 (u) without adjusting for selection.

Our extension of the M-M algorithm to adjust for selection is as follows:

1. Estimate γ using a single-index method, e.g., Ichimura (1993).

2. Sample u from a standard uniform distribution.

3. Compute β̂A(u) using the Buchinsky technique.

4. Sample xA from the empirical distribution ĜXA
.

5. Compute ŷA = xAβ̂A(u).

6. Repeat steps 2 - 5 M times.8

8The simulation procedure given in Steps 2 - 6 is simply an application of Machado-Mata

in a slightly nonstandard context. The fact that the estimates of βA(u) need to be corrected

for selection introduces an extra difficulty. The only role that the Buchinsky (1998a) technique

plays in our analysis is to overcome this problem. If another method to correct for selection
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Following the above procedure simulates the distribution of women’s log wages

that we would expect to observe if all women worked full time. The difference

between this distribution and the distribution across women who actually work

full time gives the effect of selection. Our procedure corrects both for selection

on observables and for selection on unobservables. This can be understood as

follows. We are simulating draws from

FYA
(y) =

∫
FYA

(y|XA = x)dGXA
(x).

We correct for selection on observables by accounting for the fact that the distri-

bution of observables across all women is not the same as the one across women

who work full time. We correct for selection on unobservables by accounting for

the fact that the conditional distribution of log wages given observables is not the

same as the one across women who work full time. Equivalently, given that these

conditional distributions are completely characterized by {βA(u) : u ∈ [0, 1]} and

{βB(u) : u ∈ [0, 1]} respectively, we correct for selection on unobservables by

accounting for the difference between the selection-corrected and the uncorrected

quantile regression coefficients.

In fact, we can decompose the overall selection effect into a part due to observ-

ables and a part due to unobservables. To do this, we construct another hypo-

thetical distribution by modifying step 4 and sampling from the data on women

who work full time. We then obtain the distribution that would result if women

who do not work full time had the same distribution of observed characteristics

as those who do work full time. The difference between these two distributions

is the portion of the selection effect due to observed characteristics. The remain-

der of the sample selection effect is the part due to unobserved characteristics.

This latter portion can be obtained by comparing the distribution obtained by

sampling from full-time working women with the original distribution of observed

women’s wages.

4 Application: Log Wage Gender Gap in the

Netherlands

In this section, we use the M-M technique to analyze the gender gap across the

log wage distribution for men and women who work full time in the Netherlands.

in quantile regression were available, that alternative technique could be used in Step 3. In all

other respects, the logic underlying our use of Machado-Mata to correct for selection would be

the same.
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Studies of other European countries have found significant differences in the gen-

der gap at different quantiles of the log wage distribution.9 As in Sweden and

Denmark, but unlike, for example, Switzerland, we find a glass ceiling effect in

the Netherlands. That is, comparing the distributions of log wages of men and

women who work full time, the gender gap is greatest at the highest quantiles,

although this effect is not as pronounced as in the Scandinavian countries. As a

first step to understand this pattern, we use the M-M method without correcting

for selection and as in Albrecht, Björklund, and Vroman (2003), we decompose

the difference between the male and female full-time log wage distributions into a

component due to the difference in the distributions of observable characteristics

between genders and a component due to the difference in the distributions of

rewards to these characteristics between genders. As in the Swedish case, most

of the difference between the two log wage distributions remains after we control

for the difference between the male and female distributions of characteristics.

This, however, ignores an important part of the story. As noted in the intro-

duction, part-time work is common among women in the Netherlands, so sample

selection is a serious issue.10 Consequently, we use our extension of the M-M tech-

nique to adjust for this selection and construct a counterfactual distribution of

full-time log wages for women, namely, the distribution that would have prevailed

had all women worked full time. The overall selection effect is strongly positive;

that is, the women who actually work full time are those with the highest poten-

tial wages. Had all women worked full time in the Netherlands, the gender gap

9See Albrecht, Björklund and Vroman (2003) for Sweden, Blundell, Gosling, Ichimura and

Meghir (2007) for the UK, Bonjour and Gerfin (2001) for Switzerland, Datta Gupta, Oaxaca

and Smith (2006) for Denmark, de la Rica, Dolado and Llorens (2008) for Spain, Fitzenberger

and Wunderlich (2002) for Germany, and Arulampalam, Booth and Bryan (2007) for several

European countries.
10In terms of gender, the Dutch labor market has changed dramatically over the past 20

years. In 1980, the gender gap in employment was about 40%, similar to that of Spain, Greece,

Italy, and Ireland. By 2000, this gap had fallen to a level (about 18%) more like that of most

other Western European countries, albeit still above the levels observed in the U.S., the U.K.,

and the Scandinavian countries. Most of this change was due to an expansion of part-time

work for women. In 2000, the Netherlands had the highest rate of part-time work (defined

as fewer than 30 hours per week) among women in all the OECD countries. About 56% of

employment among women aged 25-54 was part time. This is considerably higher than the

corresponding rates for Germany and Belgium (35%), France (23%), the U.K. (38%) and the

U.S. (14%). Only Switzerland (47%) is remotely comparable. This difference relative to other

countries was mainly caused by high part-time employment rates for mothers. For example,

83% of working mothers aged 25-54 with 2 or more children worked part time. The comparable

figure for the U.S. is 24%. The part-time employment rate of men in the same age group in the

Netherlands (6%) is not substantially different from other countries, especially when we look

at fathers. These figures are taken from the July 2002 OECD Economic Outlook.
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would have been considerably larger. Our technique also allows us to decompose

the selection effect into a portion due to observables and a portion due to unob-

servables. Most of the selection effect is explained by observables. Finally, we use

the M-M technique to construct a counterfactual to the counterfactual, namely,

the distribution of log wages that women would earn if all women worked full

time and had the male distribution of labor market characteristics.

4.1 Data

We use data from the OSA (Dutch Institute for Labor Studies) Labor Supply

Panel. This panel dates from 1985 and is based on biannual (1986, 1988, etc.)

interviews of a representative sample of about 2,000 households. All members

of these households between the ages of 16 and 65 who were not in (daytime)

school and who could potentially work were interviewed. The survey focuses on

respondents’ labor market experiences. Van den Berg and Ridder (1998) give a

detailed description.11 We use data from the 1992 survey for all of our analysis.

This year is particularly rich in terms of variables that can be used to explain

participation in full-time work.12 The sample size for 1992 is 4536. In order to

focus on those who are most likely to be working full time, i.e., on those who

are least likely to still be in school or already retired, we restrict our sample to

individuals between 25 and 55 years of age inclusive. We deleted 1238 individuals

who fell outside this range. In addition, among those who were not working at

the survey date, there are relatively many individuals with missing data for years

of work experience. We set work experience equal to 0 for those who did not work

in the previous 2 years. All others lacking experience data were dropped from

our dataset. This led to an additional 113 deletions. This leaves a sample of 1617

females and 1568 males. Of course, not all of these individuals worked full time.

In terms of full-time wage data, we deleted observations lacking a reported wage.

These include 1463 individuals who did not work full-time plus 94 nonresponses.

We also deleted two individuals reporting wages below 2 euros or exceeding 20

euros per hour.13 Finally, we deleted two individuals who reported contractual

hours per week above 60 hours, as this is likely to be due to measurement error.

This leaves 391 women and 1233 men who reported usable full-time wages. We

11A description can also be found at http://www.uvt.nl/osa.
12We have repeated our analysis using data from the 1998 survey and have found qualitatively

similar results. We prefer to use the 1992 data because they are better suited for dealing with

the selection issue.
13The minimum wage in the Netherlands was the equivalent of 983 Euros per month for a

full-time worker over 22 years of age. This implies a gross wage of about 5.5 Euros per hour.

The reported wages are net wages, but this cannot explain wages below 2 Euros per hour.
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use the data on all 1617 women to carry out the selection analysis.

In Table 1, we give some descriptive statistics for the key variables for all

women, women working part time, women working full time and women working

full time with reported wages. Similar descriptive statistics for men are presented

in Table 2 (likewise for all men, men working part time, men working full time

and men working full time with reported wages). Most men between the ages of

25 and 55 work, and among those who are working, almost all work full time.

Among women, the situation is quite different. In terms of the variables that we

can use to explain variation in wages, there are also some important differences

between the genders. Among those working full time and reporting wages, men

are on average almost 3 years older than women, and years of work experience

are much higher for men than for women. We measure education using four

categories – (i) up to elementary education, (ii) lower secondary education, (iii)

upper secondary education, and (iv) bachelors/masters degree.14 Overall, men

have achieved higher levels of education than women have, but if we compare men

and women who work full time, this pattern is reversed. In general, women are

slightly more likely to be married than men are. This is simply because women

tend to marry men who are older than they are. However, women who work part

time are much more likely to be married than are women in general, and women

who work full time are much less likely to be married. Finally, men and women

are approximately equally likely to live in cities, but women who work full time

are much more likely to do so than are men who work full time.

The data include variables concerning attitudes about working and about

the relationship between family and work.15 We use reactions to the statement,

“Parents should be willing to reduce working hours for childcare.” Respondents

could reply that they completely disagreed, disagreed, were indifferent, agreed or

completely agreed. We count those individuals who either agreed or completely

agreed as agreeing with the statement. Women who work full time are less

likely to agree with this statement than are other women. We also have data

on whether there are children in the household. We report whether there are

children living at home and whether the youngest child is (i) below 5 years of

age, (ii) age 5-11, or (iii) age 12-17. Relatively few women who are working full

time have children living at home (32%); relatively many women working part

time do. This phenomenon is even more apparent when we look at the youngest

age group. Only 8 percent of the full-time working women who report wages have

14Our education variable is based on the first digit of the ISCED codes. Lower secondary

education is level 3, upper secondary education is level 4 and our last category includes all

education levels exceeding level 4.
15These attitude variables are the reason that we use the 1992 data for our analysis.
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children below the age of 5 living at home, while among all women in the sample,

this figure is 18 percent. The same holds true for children 5-11 and 12-17, but the

percentage differences are smaller. Finally, we have a variable that summarizes

religious attitudes. Overall, women seem to be a bit more “religious” than men,

but this difference disappears when we compare full-time workers among men

and women.

In sum, full-time working women are more educated, less likely to be married,

less likely to have (young) children at home, and have different attitudes towards

working than women who do not work full time.

Table 3 gives wages for women who work part time, for women who work full

time, and for men. These are net hourly wages excluding extra payments for

overtime, shift work, bonuses, tips etc. As expected, men’s wages are on average

higher than women’s wages. The average wage among women working full time

is slightly higher than the corresponding average among women who work part

time.

Figure 1 plots the estimated kernel densities of men’s and women’s wages. In

this figure, we use all wages, including those of part-time workers. The gender

gap, i.e., the difference in log wages between males and females at each quantile

of their respective distributions, is plotted in Figure 2. This figure shows the gap

for all working men versus all working women, i.e., both the male and female

distributions include part-time workers. We show the 95% confidence bands in

Figure 2. The variance used in the calculation of the confidence interval for

difference in the qth quantiles is estimated using
q(1 − q)

f̂A(θ̂(q))2
+

q(1 − q)

f̂B(θ̂(q))2
, where

θ̂(q) is our estimate of the qth quantile and the densities fA(·) and fB(·) are

estimated using a kernel density method. Figure 3 shows the corresponding gap

for men versus full-time women. Figures 2 and 3 show different patterns for the

gender gap across the distribution. In Figure 2, the gender gap is relatively flat,

but in Figure 3, the gender gap is larger at higher quantiles. That is, the gender

gap between men and women who work full time exhibits a glass ceiling effect;

full-time working women do relatively well at the bottom of the wage distribution

but not as well at the top. This pattern is presented in a different form in Figure

4, which plots the gap between the log wages of women who work full time and

those who work part time. We focus on the pattern in Figure 3. That is, we

focus on men versus women who work full time.

12



4.2 Single-Index Estimation and Quantile Regressions

We begin by estimating log wage quantile regressions for women and for men who

work full time. We regress log wage on the basic human capital variables, years

of work experience and education (with less than secondary education as the left

out category), as well as marital status and whether the individual lived in a city.

However, in comparing the quantile regressions for men and women, we need

to account for the selection of women into full-time work. As described above,

we use the method introduced by Buchinsky (1998a) to correct for selection in

quantile regression. We make this adjustment only for women.

Table 4 presents our estimates of the determinants of full-time work among

women.16 The first column gives probit results, while the second column contains

the results for an estimation using the Ichimura (1993) single-index technique.17

Table 4 indicates that older and married women are less likely to work full time.

Highly educated women are more likely to work full time, as are women with

a relatively high level of work experience. Having a young child at home has a

strong negative impact on the propensity to work full time and is more important

the lower the age of the youngest child. Finally, women with children who respond

that it is better for women to stay at home when they have children are less likely

to work full time. Whether or not a woman lives in a city seems to have little

impact on the incidence of full-time work nor does the religion variable.

Table 5 presents the uncorrected quantile regressions results for full-time work-

ing women, while Table 6 presents the corresponding results with the Buchinsky

correction.18 The quantile regression results for men are in Table 7. In the un-

corrected estimates for women, the basic human capital variables are the most

important and have the anticipated effects. That is, work experience has a pos-

itive effect, which rises across the quantiles, and education has a strong positive

effect. Marital status and the dummy for living in a city have insignificant effects

at almost all the quantiles. Correcting for selection has several effects. First,

16We model full-time work as a matter of choice for women. We base this on our comparison of

histograms for desired versus contractual working hours for both men and women (not shown).

In fact, the match between desired and contractual hours is much closer for women than for

men.
17Note that the constant and the coefficient of one of the continuous variables are not iden-

tified in a single-index model. Hence, we normalize by setting the constant and the coefficient

on age equal to their values in the probit model so that the probit and single-index results are

comparable.
18To implement the identification at infinity approach, we used a subsample of women,

namely, those who are young, not married, highly educated (with a bachelors or masters de-

gree), have no children, are not religious, live in the city and do not agree with the statement

that parents should reduce working hours to care for their children.
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the estimated constant terms decrease once we adjust for selection, especially

towards the top of the distribution. Second, the rewards to education increase in

the upper part of the distribution after correcting for selection. Table 7 indicates

that men also receive a positive return to education. As is the case for women,

the coefficients on years of experience are strongly positive and increase across

the distribution. Finally, the data show a strong marriage premium for men in

the Netherlands, which is relatively constant across the distribution.

4.3 Decomposition Results without Selection Correction

Next we turn to the decompositions. We first present a decomposition of the

gender gap without correcting for selection. The results over the whole distribu-

tion are best viewed graphically. For reference, recall that Figure 3 presented the

gender log wage gap for men versus women working full time based on the raw

data. This was derived by simply subtracting the log wage of the full-time women

at each quantile of their log wage distribution from the log wage of the men at

the corresponding quantiles of the male log wage distribution. As noted above,

without conditioning on covariates or adjusting for selection, there is a significant

glass ceiling effect in the data, i.e., the gender gap is significantly higher at the

higher quantiles of the distribution. We now use the M-M procedure to analyze

what proportion of the gap is due to differences in labor market characteristics

between the genders and what proportion is due to differences in the returns to

these characteristics between the genders.

Figure 5 plots the wage gap that remains after we take into account the differ-

ence in distributions of observed characteristics between men and women. That

is, we construct a counterfactual distribution using the M-M method that gives

the log wage distribution that women would have earned if they had the same

distribution of characteristics as men but were still paid for those characteristics

like women. The characteristics that we include are those given in the quantile

regression tables, namely, experience, education, marital status, and whether the

individual lived in a city.19 As can be seen in Figure 5, a significant positive

gender gap across the whole distribution remains. Comparing Figure 5 to Figure

3, we can see that at the bottom of the distribution, only a small part of the

gender gap for full-time workers is due to differences in characteristics between

men and women. Above the median, approximately one third of the gap can be

explained in this way.

19The standard errors underlying the confidence bands in Figure 5 are computed using the

expression given in Theorem 2. Appendix B compares the M-M quantile estimate and standard

errors with the corresponding bootstrap estimates. The two sets of estimates match quite well.
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To confirm that most of the gender gap is due to differences in returns to

characteristics, we also construct a counterfactual distribution of log wages that

represents the wages that women who work full time would earn if they retained

their observed characteristics but were paid for them like men. The gap between

the log wages of men and the log wages given in this counterfactual distribution

is presented in Figure 6. The gap is smaller over the whole distribution. Figures

5 and 6 show that most of the gender log wage gap between men and women who

work full time is explained by differences in the returns to observed characteristics

between the genders as opposed to differences in these characteristics.

We note that the standard errors presented in Figures 5 and 6 are computed

using the expression for the variance of the limiting distribution of θ̂(q) that is

given in Theorem 2. The standard errors in these two figures are standard errors

for differences between the quantiles of two distributions, and as noted in Section

2, there is a positive covariance between the quantiles of YA and those of YAB.

4.4 Decomposition Results with Selection Correction

We next investigate the effect of sample selection on the women’s log wage distri-

bution and on the counterfactual distribution. To see the direct effect of selection,

we first look at the gap between the log wage distribution for women working full

time and the log wage distribution that we would have observed had all women

worked full time. Figure 7 shows that the overall selection effect is positive. That

is, women who actually work full time have higher earnings potential in full-time

work than do women in general. This difference is significantly positive across

almost all of the distribution.

In Figure 8, we show the gender log wage gap after adjusting for selection, i.e.,

we plot the difference between the male log wage distribution and the log wage

distribution for women that we would expect to observe if all women worked full

time. This can be compared with the gender log wage gap in the raw data shown

in Figure 3. This gap after adjustment for selection is significantly greater at

almost all quantiles.

The results taking the selection effects into account are based on sampling

characteristics from the data set for all women. In Step 4 of our modification

of the M-M procedure to deal with selection, if we had only sampled women

working full time, we would have ignored the impact of the difference between

the observed characteristics of women who do and do not work full time. Al-

though this would have resulted in the wrong distribution and hence the wrong

wage gaps, it is a useful exercise in order to explain the sample selection effect.

This distribution can be interpreted as the distribution of wages that would have
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resulted if the women who do not work full time had the same characteristics as

those who do work full time. Hence, comparing the distribution with the proper

sample selection correction with this distribution allows us to view the portion of

the selection effect due to observed characteristics. The remainder of the sample

selection effect is the part due to unobserved characteristics. The portion due

to the unobserved characteristics can be obtained by comparing the distribution

obtained from sampling from full-time working women with the original distri-

bution of observed women’s wages. Figures 9 and 10 present the observed and

unobserved parts of the selection effect. The observed part is positive across the

distribution, reflecting the fact that women who work full time are in general bet-

ter educated and have more work experience than women who are not working

full time. The unobserved part of the sample selection effect is also positive across

the distribution. In general, observables account for most of the selection effect.

For example, at the median, observables account for more than three quarters of

the sample selection bias.

Finally, we can address the issue of what proportion of the wage gap shown

in Figure 8, that is, the gap between men and women that we would observe

if all women worked full time, is due to differences in characteristics between

men and women and what proportion is due to differences in returns to these

characteristics between the genders. Figure 11 shows the difference between the

male log wage distribution and the distribution of log wages that women would

earn if all women worked full time and had the characteristics of men but received

the returns of women (adjusted for sample selection). As can be seen from the

figure, accounting for the difference in characteristics reduces the gender gap by

a bit less than one third on average with the greatest effect in the middle of the

distribution.

Concluding, we find a positive and significant selection effect for full-time

work in the Netherlands. A large part of the selection effect is due to observables.

Compared with the decomposition results presented in Section 4.3, accounting

for differences in observables between men and all women, including those who

do not work full time, has more of an impact on the gender log wage gap, espe-

cially toward the bottom of the distribution. This result reflects the fact that,

in contrast to what we observe in the population of women working full time,

education and years of work experience in the population of all women are lower

than the corresponding levels for males.
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5 Conclusions

In this paper, we have made three contributions. First, we have contributed to the

econometrics underlying the M-M quantile regression decomposition technique.

This method is an intuitively appealing generalization of the Oaxaca-Blinder ap-

proach, which decomposes differences between groups in average outcomes into

differences in average characteristics and differences in rewards to those charac-

teristics. The M-M method is designed to simulate counterfactual distributions;

for example, what would the distribution of full-time log wages for women have

been if working women had the same distribution of labor market characteristics

as men do? We have shown that the M-M method leads to consistent estimators

for the quantiles of the counterfactual distribution that it is designed to simulate,

and we have developed asymptotic standard errors for these estimators. Second,

we have extended the M-M technique to account for selection. The idea is to

use the technique to simulate another counterfactual distribution; for example,

the distribution of full-time log wages for women if all women worked full time.

Our method for accounting for selection also allows us to decompose the selection

effect into a component due to observables and one due to unobservables.

Our third contribution has been to apply our extension of the M-M technique

to help understand the gender gap in the Netherlands. Specifically, we examined

the difference between the male and female distributions of log wages among full-

time workers. Taking the population of women working full time as given, we

found an average log wage gap on the order of 15-20%, and we documented that

this gap increases as we move up the distribution. That is, a glass ceiling effect

is present in the Netherlands. However, relatively many women work part time

in the Netherlands, so the sample of women working full time is a selected one.

We addressed several questions in connection with this selection process. First,

what would the difference between the male and female log wage distributions

among full-time workers have looked like if all women had worked full time? In

fact, correcting for selection turns out to be very important. Were all Dutch

women to work full time, the average log wage gap between the genders would

be much higher; that is, there is a strong positive selection into full-time work

among women in the Netherlands. Second, how can we explain the selection

we observe? Our technique allows us to ascribe most of the selection effect to

observables – women who are working full time have higher education and more

work experience than other women do. Finally, if we compare the distribution of

log wages that we would observe if women worked full time with the correspond-

ing distribution across men, to what extent would the difference between the

counterfactual female distribution and the actual male distribution be ascribed
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to differences in characteristics? We found that a bit less than one third of this

counterfactual difference would be ascribed to differences in the distributions of

characteristics between men and women. That is, once we correct for selection,

differences in labor market characteristics between men and women play a larger

role in explaining the gender gap in the Netherlands. Nonetheless, most of the

gender gap across the distribution continues to be accounted for by differences in

how men and women are rewarded.
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Appendix

A Theorems and Proofs

A.1 Consistency and Asymptotic Normality

We make the following assumptions about the distributions of YB, XA, and XB:

Assumptions A

A1. FYB
has a compact support on R and is continuously differentiable on its

support with positive density fYB

A2. GXA
and GXB

have a compact support on RK

A3. N−1
B XT

BXB converges in probability to a positive definite matrix

A4. ∀u ∈ [0, 1] and xA ∈ supp(XA) : dxAβB(u)
du

> 0

A5. XA⊥XB

These assumptions ensure that the coefficient estimates that result from quan-

tile regressions of YB on XB are consistent and asymptotically normal (see, for

example, Van der Vaart 1998, page 307 and Koenker and Bassett 1978). In addi-

tion, the joint compactness assumption (together with Condition 4) guarantees

that the support of FYAB
is also a convex and compact subset of R (not proven

here).20 This is necessary to prove consistency and asymptotic normality of θ̂(q).

20The conditions are somewhat stronger than strictly necessary. Identification may still be

satisfied even if the support of YAB is not a convex compact subset of R. Details about this

can be found in for example Van der Vaart (1998), Lemma 21.4.
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Assumption A.4 states that the quantile regression lines cannot cross on the sup-

port of XA. Assumption A.5 is made for convenience and is only necessary for

the computation of the covariance. We make this assumption in order to satisfy

the condition that the moments of the different subsamples of populations A and

B are uncorrelated (for more details, see section 6.2 of Newey and McFadden,

1994).

When we correct for sample selection, Assumption A5 cannot hold because

population B is a subset of population A. As noted above, Assumption A5 is only

used in the case without selection for computing covariances between different

regression quantiles. We do not use this assumption when we correct for sample

selection – instead, we use the method presented in Buchinsky (1998a).

In addition, when we correct for sample selection, an extra assumption is

needed to ensure that the quantile regression estimators are consistent and asymp-

totically normal, namely,

Assumption A5′: Quantu(YB − xBβA(u) − hu(zBγ)|ZB = zB) = 0 u ∈ [0, 1].

Assumption A5′ is necessary to estimate βA(u) consistently. Thus, this assump-

tion is necessary for consistency when adjusting for selection (unlike Assumption

A5 in Theorem 1). Assumption A5′ was also made by Buchinsky (1998a).

Theorem 1 Let Assumptions A1-A4 be satisfied, and let M,NA, NB → ∞ with

M/NA → IA < ∞, M/NB → IB < ∞. Then θ̂(q)
p→ θ0(q).

The most important step in the proof is relatively simple and is based on the in-

verse transformation method (see, for example, Law and Kelton 1991). However,

this method assumes that the underlying population distributions are known. In

the M-M approach, these distributions are estimated. Hence, most of our proof

is devoted to showing that when the sample sizes of both datasets are large, the

impact of the estimation method is negligible.

In addition to consistency, it is important to prove asymptotic normality.

Theorem 2 Let Assumptions A1-A5 be satisfied, and let M,NA, NB → ∞ with

M/NA → IA < ∞, M/NB → IB < ∞. Then

√
M(θ̂(q) − θ0(q)) N(0, Ω)

with Ω =
IAq(1 − q) + IBEXA,U,V

{
f 2

YAB
(θ(q) |XA = xA ) XT

AΛ(βB(U), βB(V ))XA

}

f 2
YAB

(θ(q))
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and Λ(βB(u), βB(v)), u, v ∈ [0, 1] given by

Λ(βB(u), βB(v)) =





EXB

(
fYB

(XBβB(u))XBXT
B

)−1
u(1 − v)EXB

(XBXT
B)

× EXB

(
fYB

(XBβB(u))XBXT
B

)−1
if u ≤ v

EXB

(
fYB

(XBβB(u))XBXT
B

)−1
v(1 − u)EXB

(XBXT
B)

× EXB

(
fYB

(XBβB(u))XBXT
B

)−1
otherwise

where U and V are independent standard uniform random variables.

Before proving these theorems, we have four comments about Theorem 2. The

first comment is about the two terms in the numerator of Ω. The first term is the

standard deviation of the estimated quantile at q based on a sample of size NA.

Indeed if IB → 0, the variance converges to this term since in that case the only

randomness comes from the XA’s. The second term, which is quite complicated,

takes into account the estimation of the βB(u)’s across the distribution. The

complexity of this term is mainly due to the fact that even though we sample

independent draws from a uniform distribution, the resulting quantile regression

estimates are not independent of each other.

Second, the expression for Λ(βB(u), βB(v)), which is derived below in a sep-

arate lemma (see also Koenker and Bassett 1978, Theorem 4.2), is an extension

of the usual expression for the covariance matrix for regression quantiles. This

covariance matrix can be derived when u = v is substituted into the expression

above. When u and v are different, the expression gives the covariance between re-

gression quantiles at different points in the distribution. The expression is largest

when u and v are close to each other, and its maximum occurs when u = v. This

makes sense since if u and v are close to each other, we are essentially comparing

nearby quantiles, so the regression quantiles are likely to be close to each other

as well. When u and v are far apart, the regression quantile βB(u) gives little

information about βB(v). In that case, the covariance between the two regression

quantiles is low.

Third, in terms of implementing our procedure, we use a kernel density

method to estimate the covariance matrix Λ(·) (see Buchinsky 1998b). In ad-

dition, we use the following estimates to complete the calculation of Ω:

ÎA=
M

NA

ÎB=
M

NB
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ÊXA,U,V

{
f 2

YAB
(θ(q) |XA = xA )XAΛ(βB(U), βB(V ))XT

A

}

=

[
1

MhM

M∑

i=1

K

(
θ(q) − yABi

hM

)
xAi

]T [
1

M2

M∑

i=1

M∑

j=1

Λ̂(βB(ui), β
B(uj))

]
×

[
1

MhM

M∑

i=1

K

(
θ(q) − yABi

hM

)
xAi

]

Λ̂(βB(ui), β
B(uj)) =

[
1

MhM

M∑

l=1

K

(
yBl

− xBl
β̂B(ui)

hM

)
xBl

xT
Bi

]−1

×
[
ui(1 − uj)

1

M

M∑

l=1

xBl
xT

Bl

][
1

MhM

M∑

l=1

K

(
yBl

− xBl
β̂B(uj)

hM

)
xBi

xT
Bi

]−1

f̂YAB
(y) =

1

MhM

M∑

l=1

K

(
xAl

β̂B(ul) − y

hM

)

where hM is the bandwidth and K is the kernel function.

Finally, when we correct for sample selection we can extend Theorem 2 by

replacing Λ(·) by the covariance matrix that is computed using the Buchinsky

(1998a) technique.
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A.2 Proofs of Theorems 1 and 2

A.2.1 Proof of theorem 1

We first consider the estimator θ̃(q), which is the sample quantile obtained from

the sample ỹi; i = 1 . . . M . This sample is obtained as follows

1. Sample ui from a standard uniform distribution

2. Sample x̃i from the distribution GXA

3. Compute ỹi = x̃iβ
B(ui)

4. Repeat steps 1 to 3 M times.

The realizations of this method can itself be seen as realizations of a stochastic

variable. Denote this variable by ỸAB. The distribution function of this variable

is

F
ỸAB

(y) =

∫ 1

0

∫

supp(XA)
P(ỸAB ≤ y|U = u; XA = xA)dGXA

(xA)du

=

∫ 1

0

∫

supp(XA)
1{xAβB(u)≤y}dGXA

(xA)du

=

∫ 1

0

∫

supp(XA)
1{

F−1

YAB
(u|XA=xA)≤y

}dGXA
(xA)du

=

∫

supp(XA)

∫ FYAB
(y|XA=xA)

0
dudGXA

(xA)

=

∫

supp(XA)
FYAB

(y|XA = xA)dGXA
(x) = FYAB

(y)

(1)

Hence, ỸAB
d
= YAB. This implies that the observations from the sampling method

are sampled from the population distribution YAB. For the remainder of this

proof we use vi as a k-dimensional vector that is used to sample from the dis-

tribution GXA
and ĜXA

. The elements of vi are sampled from the standard uni-

form distribution.21 Hence X̃A,i = X̃A(vi) = G−1
XA

(vi) and likewise for X̂A,i. Let

Ψ̃M(θ(q)) = 1
M

∑
i mq(ỹAB,i, θ(q)) and Ψ̂M(θ(q)) = 1

M

∑
i mq(ŷAB,i, θ(q), where

21It is always possible to sample from a k-dimensional distribution with a known
distribution function based on repetitive conditioning and a draw from a k-dimensional
vector sampled from univariate uniform distributions. Although it is also possible to
do this using the empirical distribution function of a k-dimensional stochastic vector,
bootstrapping from the data would be a much easier way to obtain such a sample. For
the remainder of the proof it does not matter.
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m(yAB, θ(q)) =





q(yAB − θ(q)) if yAB > θ(q)

(1 − q)(θ(q) − yAB) if yAB ≤ θ(q)

In addition, define Ψ(θ(q)) as

Ψ(θ(q))≡
∫

supp(YAB)

m(yAB, θ(q))dFyAB
(y) (2)

= (1 − q)

∫ θ(q)

−∞

FyAB
(y)dy + q

∫ ∞

θ(q)

F yAB
(y)dy

Taking derivatives, we obtain

Ψθ(q)(θ(q)) = (1 − q)FyAB
(θ(q)) + qF yAB

(θ(q))

It can be easily checked that under assumption A-2 and A-4, this derivative has

a single root. This is a sufficient condition for the identification for quantiles. It

remains to show that

sup
θ(q)

∣∣∣Ψ̂M (θ(q)) − Ψ(θ(q))
∣∣∣ = oP (1)

By the triangle inequality

sup
θ(q)

∣∣∣Ψ̂M (θ(q)) − Ψ(θ(q))
∣∣∣ ≤ sup

θ(q)

∣∣∣Ψ̂M (θ(q)) − Ψ̃M (θ(q))
∣∣∣+ sup

θ(q)

∣∣∣Ψ̃M (θ(q)) − Ψ(θ(q))
∣∣∣

(3)

The last term on the last line is oP (1) by the law of large numbers and the fact

that ỸAB
d
= YAB. It remains to show that the first term is oP (1) as well. We have

that (dropping the subscripts AB for ŷ and ỹ for the remainder of the proof)
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sup
θ(q)

∣∣∣Ψ̂M (θ(q)) − Ψ̃M (θ(q))
∣∣∣ = sup

θ(q)

∣∣∣∣∣∣
1

M

∑

ŷi<θ

q(ŷi − θ (q)) − 1

M

∑

ỹi<θ

q(ỹi − θ (q))+

1

M

∑

ŷi≥θ

(1 − q)(θ (q) − ŷi) −
1

M

∑

ỹi≥θ

(1 − q)(θ (q) − ỹi)

∣∣∣∣∣∣

≤ q sup
θ(q)

∣∣∣∣∣∣
1

M

∑

ỹi<θ(q)

(ŷi − ỹi)

∣∣∣∣∣∣
+ (1 − q) sup

θ(q)

∣∣∣∣∣∣
1

M

∑

ỹi≥θ(q)

(ỹi − ŷi)

∣∣∣∣∣∣

+ q sup
θ(q)

∣∣∣∣∣∣
1

M

∑

ŷi<θ(q)≤ỹi

(ŷi − θ (q))

∣∣∣∣∣∣
+ q sup

θ(q)

∣∣∣∣∣∣
1

M

∑

ỹi<θ(q)≤ŷi

(ŷi − θ (q))

∣∣∣∣∣∣

+ (1 − q) sup
θ(q)

∣∣∣∣∣∣
1

M

∑

ŷi<θ(q)≤ỹi

(θ (q) − ŷi)

∣∣∣∣∣∣

+ (1 − q) sup
θ(q)

∣∣∣∣∣∣
1

M

∑

ỹi<θ(q)≤ŷi

(θ (q) − ŷi)

∣∣∣∣∣∣
(4)

Making use of the definition of ŷi, ỹi, x̂i and xi and using the triangle inequality

again, we obtain (dropping superscript B for β and A for x)

q sup
θ(q)

∣∣∣∣∣∣
1

M

∑

ỹi<θ(q)

(ŷi − ỹi)

∣∣∣∣∣∣
≤ sup

θ(q)

∣∣∣∣∣∣
1

M

∑

ỹi<θ(q)

x̂i(vi)
(
β̂(ui) − β(ui)

)
∣∣∣∣∣∣

+

∣∣∣∣∣∣
1

M

∑

ỹi<θ(q)

(
Ĝ−1

XA
(vi) − G−1

XA
(vi)
)

β(ui)

∣∣∣∣∣∣

(5)

We have that β̂(ui)
P→ β(ui); i = 1, . . . M for NB → ∞ (uniform consistency of

quantile regressions on the open unit interval). Since M/NB → IB < ∞ when

M,NB → ∞ the first term is oP (1). For the second term, we have that Ĝ−1
XA

(vi)
P→

G−1
XA

(vi) when n → ∞ due to a combination of the Glivenko-Cantelli theorem

(satisfied by A-2) and the continuous mapping theorem.22 Hence, the second

22For the use of the continuous mapping theorem we need continuity of GXA
(·).

This is not an assumption in A1-A4. However, in case XA is strictly discrete
with mass xAj

; j = 1, . . . l, then the second part of this equation changes into∑
i

∑
j xj(p̂j −pj)β(ui), where the p̂j ’s and pj ’s are the sample and population frequen-

cies of individuals with chararacteristics equal to xj . This term obviously converges to
zero in probability. Of course the most general case is when XA contains both discrete
as well as continuous elements. We do not prove this case in this paper.
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term in equation (5) is oP (1) as well (using M/NA → IA < ∞ as M,NA → ∞).

This implies that the right-hand side of equation (5) and hence the first term

on the right-hand side of equation (4) converges in probability to zero. The

proof that the other terms on the right-hand side of (4) are op(1) as well is along

the same lines. Hence supθ(q)
∣∣∣Ψ̂M(θ(q)) − Ψ̃M(θ(q))

∣∣∣ converges in probability to

zero when NA, NB → ∞. This implies that supθ(q)
∣∣∣Ψ̂M(θ(q)) − Ψ(θ(q))

∣∣∣ (see

equation (3)) converges to zero in probability since M/NA → IA < ∞. Using

theorem 5.7 of Van der Vaart (1998) completes the proof.

�

A.2.2 Proof of theorem 2

Before we are able to prove theorem 2 we need to prove the following lemma.

Lemma 3 Let q1, q2 . . . qm ∈ (0, 1), X be a k-dimensional random vector with

compact support on Rk. In addition let β(q) be such that

Quantq (Y |X = x) = xβ(q)

where Y is a random variable with compact support on R. Then the regression

quantiles β̂(q1), . . . β̂(qm) satisfy

√
n




β̂(q1) − β(q1)
...

β̂(qk) − β(qk)


→ N (0, Λ (β))

with Λ(β) an m × k by m × k dimensional matrix, where the elements of Λ(β)

are equal to

Λ(β(qi), β(qj)) =





EX

(
fY (Xβ(qi))XXT

)−1
qi(1 − qj)EX(XXT )

× EX

(
fY (Xβ(qj))XXT

)−1
if i ≤ j

EX

(
fY (Xβ(qi))XXT

)−1
qj(1 − qi)EX(XXT )

× EX

(
fY (Xβ(qj))XXT

)−1
otherwise

Proof

We drop the subscripts B in the proof. When we define ε = Y − Xβ then if

fε(·|X = x) = fε(·) the lemma is the same as theorem 4.2. of Koenker and

Bassett (1978). The regression quantiles are estimated as the solution to
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max
β(q1),β(q2),...,β(qm)

z(yi, β(q1), . . . , β(qm), q1, . . . , qm)

where

z(x, y, β(q1), . . . , β(qm), q1, . . . , qm) =

m∑

i=1

qi(y−xβ(qi))1{y>xβ(qi)}+(1−qi)(xβ(qi)−y)1{y≤xβ(qi)}

Define

Ψ(β(q1), . . . , β(qm), q1, . . . , qm) = EY,X (z(X, Y, β(q1), . . . , β(qm), q1, . . . , qm))

It is possible to show that

∂Ψ

∂β(qi)
= EY,X [XFY (Xβ(qi)) − xqi]

We denote the hessian of Ψ by H. Its elements are equal to (i.e. k× k matrices)

Hij =
∂Ψ

∂β(qi)∂β(qj)
=

{
EY,X

[
XXT fY (Xβ(qi)

]
if i = j

0 otherwise

The first order derivative of z(x, y, β(q1), . . . , β(qm), q1, . . . , qm) with respect to

β(qi) is equal to

zβ(qi)(y, x, β(q1), . . . , β(qm), q1, . . . , qm) =





−qix y > xβ(qi)

(1 − qi) x y ≤ xβ(qi)

Hence the (expected) cross derivative matrix Z has the following elements i, j =

1, . . . ,m; j ≥ i (i.e. k × k matrices)

Zij = EY,X

(
zβ(qi)z

T
β(qj)

)
= qi(1 − qj)EX(XXT )

The covariance matrix of
√

n(β̂(q1)−β(q1), . . . β̂(qm)−β(qm)) is equal to Λ(β) =

H−1ZH−1. Taking the results above, the lemma follows immediately.

�

Proof of theorem 2: The criterion function to obtain θ̂(q) is equal to

min
θ(q)

1

M

∑

ŷABi
>θ(q)

q‖ŷABi
− θ‖ + (1 − q)

∑

ŷABi
≤θ(q)

‖ŷABi
− θ(q)‖ = min

θ

M∑

i=1

m(ŷABi
, θ(q))
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where23

m(yAB, θ(q)) =





q(yAB − θ(q)) if yAB > θ(q)

(1 − q)(θ(q) − yAB) if yAB ≤ θ(q)

and ŷABi
is the estimated level of yABi

(i.e. the i-th observation from the sample

using the M-M technique). The first order condition is equal to

M∑

i=1

∂m(ŷABi
, θ̂(q))

∂θ(q)
= 0

In general we should take account of the fact that we are taking bootstrap samples

from XA and hence the convergence of the expression above is dependent on this.

As is proven in Van der Vaart (1998, page 333-334), this expression has the same

limit as the statistic that results when we sample from the population instead of

the data set. Hence we will not take this into account in the remainder of our

analysis. Taking a first order Taylor series expansion of this results in

0 =
1√
M

M∑

i=1

∂m(ŷABi
, θ(q))

∂θ(q)
+

1

M

n∑

i=1

∂2m(ŷABi
, θ(q))

∂θ(q)2

√
M(θ̂(q) − θ(q)) + oP (1) (6)

We have that (see for example Van der Vaart (1998))

1

M

n∑

i=1

∂2m(ŷABi
, θ(q))

∂θ(q)2

P→ fyABi
(θ(q))

The first part on the right-hand side of equation (6) can be further expanded

using a Taylor series expansion around the true value of the β (u)′ s

1√
M

M∑

i=1

∂m(ŷABi
, θ(q))

∂θ̂(q)
=

1√
M

M∑

i=1

∂m(yABi
, θ(q))

∂θ(q)
+

√
M

NB

1

M

M∑

i=1

∂2m(yABi
, θ(q))

∂θ(q)∂βB(ui)

√
NB(β̂B(ui) − βB(ui)) + oP (1)

(7)

23Note that the function presented is not differentiable everywhere. This is not
necessary for the proofs presented below. In general it suffices to show that a Lipshitz
condition holds. It is not difficult to show that this condition is satisfied. See Van der
Vaart (1998) for more details.
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Without loss of generality, we assume that the ui’s are in ascending order. The

second expression of equation (7) is non-standard because of the dependence

between the regression quantiles. Using the analogy of equation (2) we obtain

EYAB
(m(YAB, θ(q))) = q

∫ ∞

θ(q)
F (y) dy + (1 − q)

∫ θ(q)

−∞
F (y) dy

= q

∫ 1

0

∫

suppXA

∫ xAβB(u)

θ(q)
dy1{xAβB(u)>θ(q)}dGXA

(xA)du

+ (1 − q)

∫ 1

0

∫

suppXA

∫ θ(q)

xAβB(u)
dy1{xAβB(u)≤θ(q)}dGXA

(xA)du

In the second line we use equation (1) as well as a change of the integrals together

with the observation that xAβB(u) > θ(q) whenever y > θ(q). The partial

derivative with respect to βB(u) is

EXA,U

(
∂m(YAB, θ(q))

∂βB(U)

)
= q

∫ 1

0

∫

suppXA

xA1{xAβB(u)>θ(q)}dGXA
(xA)du

− (1 − q)

∫ 1

0

∫

suppXA

xA1{xAβB(u)≤θ(q)}dGXA
(xA)du

Here we use the fact that limε↓0(1{θ(q)−ε<xAβB(u)≤θ(q)})/ε = 0 when we condition

on both xA and u.The cross derivative with respect to θ(q) is

EXA,U

(
∂2m(YAB, θ(q))

∂βB(U)∂θ(q)

)
= −q

∫ 1

0

∫

suppXA

xA lim
ε↓0

1

ε
1{θ(q)<xAβB(u)≤θ(q)+ε}dGXA

(xA)du

− (1 − q)

∫ 1

0

∫

suppXA

xA lim
ε↓0

1

ε
1{θ(q)<xAβB(u)≤θ(q)+ε}dGXA

(xA)du

= −
∫ 1

0

∫

suppXA

xA lim
ε↓0

1

ε
1{θ(q)<xAβB(u)≤θ(q)+ε}dGXA

(xA)du

= −
∫

suppXA

xAfYAB
(θ(q) |XA = xA ) dGXA

(xA)

= −EXA
(XAfYAB

(θ(q) |XA = xA ))

Combining this with lemma 3 we find that the second part of equation (7) con-

verges to a 1 dimensional normal distribution with variance

EXA
(XAfYAB

(θ(q) |XA = xA ))T EU,V

{
Λ(βB(U), βB(V ))

}
EXA

(XAfYAB
(θ(q) |XA = xA ))

= EXA,U,V

{
f2

YAB
(θ(q) |XA = xA ) XT

AΛ(βB(U), βB(V ))XA

}
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The first part of equation (7) is standard and can be shown to converge to a zero

mean normal distribution with variance IAq(1 − q). Making assumption A-5, it

can be shown that the criterion functions of the first step (i.e. z as in lemma 3)

and the criterion function of the second step, m are independent.24 Hence the

right hand side of equation (7) converges to a normal distribution with zero mean

and covariance matrix

IAq(1 − q) + IBEXA,U,V

{
f2

YAB
(θ(q) |XA = xA )XT

AΛ(βB(U), βB(V ))XA

}

The result of the theorem follows directly.

�

B Comparison of Asymptotic Results with Boot-

strap Standard Errors

In order to obtain an idea about the performance of our asymptotic results we com-

pare them with those derived from a bootstrap sampling procedure. We are comparing

two
√

n-approximations of the unknown finite sample distribution with each other. In

general, if the number of observations is not too small, the difference in the approxi-

mations should not be large. In order to proceed we draw a replacement sample of size

NA from the data of population A (XA) and a replacement sample of size NB from

the data of population B (XB and YB). For every sample we proceed through steps

1 to 5 of the M-M method and compute the quantiles of the sample obtained from

this procedure at different locations of the distribution. For reasons of convenience we

take M = NA, making our results and those obtained from the bootstrap sampling

procedure directly comparable. Both methods converge at rate
√

NA in this case. We

repeat this procedure 1000 times.

Table 8 presents results from our bootstrap exercise. These are the results when

we sample from the data of the characteristics of men and use the regression quantiles

of women who are working full time. This is the exercise that is described in section 4.

The first column reports the different locations of the distribution. The second column

24Although the intuition behind this is easy, the notation is some-
what tedious. Define z(yB, xB, βB(u), u) in the same way as in
lemma 3. This implies that E(z(yB, xB, βB(u), u)m(yAB, θ(q)) =∫
XA,YB ,XB ,U

z(yB, xB, βB(u), u)m(yAB, θ(q))dGXA,YB ,XB ,U (xA, yB, xB, u) =∫
XA,U

m(yAB, θ(q))
∫
YB ,XB

z(yB, xB, βB(u), u)dGYB ,XB
(yB, xB)dGXA,U (xA, u). The

inner integral has derivative with respect to β(u) being equal to zero. This completes
the proof of independence.
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reports the results of the M-M method, and the third column reports the average over

the bootstrap samples. The M-M quantile estimates and the bootstrapped estimates

match quite well. The fourth column of Table 8 lists the levels of the standard errors

using the asymptotic results as presented in Appendix A.1, while the last column of

the table lists the results of the standard errors from the bootstraps. We find the

standard errors to be quite close to each other. This implies that the asymptotics

derived in theorem 2 of Appendix A.1 work quite well with the sample sizes we use in

our analysis.

33



C Tables and Figures

Table 1: Descriptive Statistics for Women in OSA Data

All Part-time Full-time Full-time

wage obs.

Age 39.3 39.94 36.07 35.97

(8.36) (7.48) (8.56) (8.61)

Married 0.87 0.95 0.76 0.76

Number of years of work experience 10.9 12.1 12.8 12.2

(7.32) (7.89) (7.84) (7.91)

Agree, parents should reduce hours 0.65 0.64 0.55 0.55

Living in city 0.32 0.32 0.39 0.40

Religious 0.60 0.60 0.53 0.52

Education levels

Up to elementary school 0.12 0.10 0.06 0.06

Lower secondary education 0.44 0.49 0.30 0.27

Higher secondary education 0.30 0.25 0.40 0.40

Bachelors/masters 0.14 0.16 0.23 0.26

Age of youngest child living at home

Below 5 years 0.18 0.19 0.08 0.08

Between 5 and 11 years 0.20 0.23 0.13 0.11

Between 12 and 17 years of age 0.19 0.26 0.11 0.12

Number of observations 1617 336 410 391
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Table 2: Descriptive Statistics for Men in OSA Data

All Part-time Full-time Full-time

wage obs.

Age 39.26 43.20 38.90 38.74

(8.39) (8.74) (8.28) (8.22)

Married 0.86 0.78 0.87 0.87

Number of years of work experience 19.53 23.74 19.61 19.45

(9.76) (10.56) (9.67) (9.64)

Agree, parents should reduce hours 0.61 0.70 0.61 0.62

Living in city 0.34 0.39 0.32 0.33

Religious 0.55 0.74 0.54 0.54

Education levels

Up to elementary school 0.10 0.05 0.10 0.10

Lower secondary education 0.36 0.39 0.36 0.36

Higher secondary education 0.33 0.39 0.33 0.33

Bachelors/masters 0.21 0.17 0.21 0.21

Age of youngest child living at home

Below 5 years 0.19 0.13 0.19 0.20

Between 5 and 11 years 0.19 0.22 0.19 0.19

Between 12 and 17 years of age 0.17 0.17 0.17 0.17

Number of observations 1568 23 1312 1233
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Table 3: Net Hourly Wages in the OSA Labor Supply Survey

in 1992 as Measured in Euros

Women Men

Part time Full time

Wages 6.33 6.36 7.72

(2.15) (2.12) (2.38)
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Table 4: Estimates of the Incidence of Full-Time Work

Probit Single-index

Constant 2.226 2.226

( 0.282) ( · )‡

Age -0.085 -0.085

( 0.006) ( · )‡

Married -0.259 -0.176

( 0.115) ( 0.123)

Religious -0.046 0.013

( 0.082) ( 0.098)

Number of years of work experience 0.065 0.063

( 0.006) ( 0.005)

Living in city 0.076 -0.020

( 0.084) ( 0.102)

Agree, parents should reduce hours -0.237 -0.329

interacted with children present ( 0.113) ( 0.168)

Education

Lower secondary education 0.085 0.296

( 0.140) ( 0.200)

Upper secondary education 0.511 0.684

( 0.144) ( 0.212)

Bachelors/masters 0.735 0.947

( 0.157) ( 0.225)

Age of youngest child

Younger than 5 years of age -1.300 -1.360

( 0.145) ( 0.221)

Between 5 and 12 years of age -0.654 -0.658

( 0.127) ( 0.160)

Between 12 and 18 years of age -0.290 -0.404

( 0.134) ( 0.180)

‡ We normalize the constant and age coefficient in the single index model.
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Table 5: Quantile Regressions for Women Without Correc-

tions for Selectivity

10% 20% 30% 40% 50% 60% 70% 80% 90%

Constant 1.30 1.40 1.41 1.45 1.52 1.54 1.59 1.67 1.81

( 0.12) ( 0.08) ( 0.07) ( 0.06) ( 0.08) ( 0.07) ( 0.07) ( 0.08) ( 0.07)

Married -0.00 0.03 0.02 0.02 0.02 0.02 -0.00 -0.01 -0.09

( 0.05) ( 0.04) ( 0.04) ( 0.03) ( 0.04) ( 0.03) ( 0.03) ( 0.04) ( 0.03)

Yrs of experience/100 0.52 0.72 0.76 0.93 1.00 1.13 1.11 1.04 1.22

( 0.31) ( 0.21) ( 0.19) ( 0.15) ( 0.21) ( 0.17) ( 0.17) ( 0.19) ( 0.14)

City -0.02 -0.01 -0.00 0.02 0.03 0.02 0.01 0.00 0.00

( 0.05) ( 0.03) ( 0.03) ( 0.02) ( 0.03) ( 0.03) ( 0.03) ( 0.03) ( 0.03)

Education

Lower secondary 0.15 0.05 0.11 0.08 0.06 0.08 0.11 0.11 0.10

( 0.09) ( 0.07) ( 0.06) ( 0.05) ( 0.07) ( 0.06) ( 0.06) ( 0.07) ( 0.06)

Upper secondary 0.21 0.14 0.20 0.20 0.16 0.18 0.19 0.18 0.14

( 0.09) ( 0.07) ( 0.06) ( 0.05) ( 0.07) ( 0.06) ( 0.06) ( 0.07) ( 0.06)

Bachelors/masters 0.33 0.32 0.36 0.33 0.31 0.35 0.40 0.42 0.41

( 0.10) ( 0.07) ( 0.06) ( 0.05) ( 0.07) ( 0.06) ( 0.07) ( 0.07) ( 0.06)
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Table 6: Quantile Regressions for Women with Corrections

for Selectivity

10% 20% 30% 40% 50% 60% 70% 80% 90%

Constant 1.27 1.28 1.34 1.35 1.38 1.40 1.44 1.52 1.56

(0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03)

Married 0.00 0.00 -0.00 0.01 -0.01 -0.02 -0.03 -0.05 -0.05

(0.04) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

Yrs of experience/100 0.39 0.60 0.72 0.80 0.89 1.03 0.94 0.88 1.19

(0.40) (0.24) (0.19) (0.18) (0.18) (0.21) (0.21) (0.21) (0.30)

City -0.01 -0.02 -0.00 -0.02 0.01 0.03 0.02 0.01 0.01

(0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04)

Education

Lower secondary 0.13 0.07 0.08 0.11 0.10 0.11 0.10 0.11 0.18

(0.12) (0.06) (0.06) (0.07) (0.06) (0.06) (0.06) (0.06) (0.07)

Upper secondary 0.19 0.16 0.20 0.23 0.23 0.23 0.21 0.19 0.21

(0.13) (0.07) (0.06) (0.07) (0.06) (0.06) (0.06) (0.06) (0.07)

Bachelors/masters 0.31 0.33 0.34 0.40 0.38 0.39 0.41 0.43 0.49

(0.13) (0.07) (0.07) (0.07) (0.07) (0.06) (0.07) (0.07) (0.08)
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Table 7: Estimates of the Quantile Regressions for Men

Without Correction

10% 20% 30% 40% 50% 60% 70% 80% 90%

Constant 1.36 1.42 1.48 1.51 1.55 1.59 1.61 1.67 1.75

( 0.05) ( 0.04) ( 0.04) ( 0.04) ( 0.02) ( 0.04) ( 0.04) ( 0.05) ( 0.07)

Married 0.11 0.10 0.11 0.12 0.13 0.11 0.13 0.13 0.10

( 0.03) ( 0.02) ( 0.02) ( 0.02) ( 0.02) ( 0.02) ( 0.03) ( 0.03) ( 0.05)

Yrs of experience/100 0.49 0.65 0.65 0.68 0.69 0.80 0.86 1.03 1.18

( 0.13) ( 0.09) ( 0.09) ( 0.09) ( 0.06) ( 0.08) ( 0.10) ( 0.12) ( 0.16)

City -0.00 -0.01 -0.01 0.00 0.01 0.01 0.00 0.02 -0.00

( 0.02) ( 0.02) ( 0.02) ( 0.02) ( 0.01) ( 0.02) ( 0.02) ( 0.02) ( 0.03)

Education

Lower secondary 0.14 0.12 0.11 0.11 0.10 0.10 0.10 0.07 0.12

( 0.04) ( 0.03) ( 0.03) ( 0.03) ( 0.02) ( 0.03) ( 0.03) ( 0.04) ( 0.06)

Upper secondary 0.19 0.18 0.18 0.20 0.20 0.21 0.24 0.21 0.27

( 0.04) ( 0.03) ( 0.03) ( 0.03) ( 0.02) ( 0.03) ( 0.03) ( 0.04) ( 0.06)

Bachelors/masters 0.33 0.37 0.39 0.42 0.42 0.43 0.45 0.47 0.54

( 0.04) ( 0.03) ( 0.03) ( 0.03) ( 0.02) ( 0.03) ( 0.04) ( 0.04) ( 0.06)
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Table 8: Results of the Bootstrap Exercise for the MM-

method for the Counterfactual Distribution of Women with

the Characteristics of Men but paid for these Characteristics

like Women Using 1000 Bootstrap Samples

Quantile estimates Standard errors

M-M M-M computed boot-

bootstrap straped

10 % 1.655 1.659 0.0132 0.0119

20 % 1.747 1.744 0.0123 0.0114

30 % 1.806 1.812 0.0121 0.0117

40 % 1.861 1.874 0.0124 0.0122

50 % 1.919 1.935 0.0120 0.0128

60 % 1.980 2.000 0.0125 0.0149

70 % 2.060 2.075 0.0138 0.0160

80 % 2.164 2.165 0.0152 0.0181

90 % 2.299 2.306 0.0177 0.0234
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Figure 1: Kernel Density Estimates for Wages in OSA Labor

Supply Panel Survey
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Figure 2: Gender Log Wage Gap from Raw Data
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Figure 3: Gender Log Wage Gap from Raw Data for Women

Working Full Time
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Figure 4: Log Wage Gap Between Women Working Full

Time and Part Time
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Figure 5: Log Wage Gap Between Men’s Wages and Wages

that Women Would Earn if They had Men’s Characteristics

and Women’s Returns to Those Characteristics
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Figure 6: Log Wage Gap Between Men and Full-Time

Women Paid Like Men
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Figure 7: Log Wage Gap Between Full-Time Women’s

Wages Before and After Selection Correction

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

wag
e g

ap

percentile

Figure 8: Log Wage Gap Between Men and Full-Time

Women Corrected for Selection
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Figure 9: Sample Selection Based on Observed Characteris-

tics
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Figure 10: Sample Selection Based on Unobserved Charac-

teristics
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Figure 11: Difference Between Men’s Log Wages and the

Distribution of Wages That Women Would Earn If All

Women Worked Full Time and Had Male Characteristics

but Women’s (Selection Adjusted) Returns
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