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1 Shortlisting Derivations

1.1 The Matching Probability

We first derive m(θ) for a worker (call her A). Let q1 be the probability that
an application leads to a first-round offer. Let q2 be the probability that an
application would lead to a second round offer given it does not generate a first-
round offer. Recall that we are assuming that workers make two applications.
We then have

m(θ) = 1− (1− q1)
2 + (1− q1)

2(1− (1− q2)
2) = 1− (1− q1)

2(1− q2)
2. (1)

The probability that A gets an offer in the first round is 1 − (1 − q1)
2. The

probability that she gets an offer in the second round is the probability that
she fails to get a first-round offer, (1 − q1)

2, times the probability of getting a
second-round offer conditional on not having received an offer in the first round,
1− (1− q2)

2.
The calculation of q1 is as before. Suppose A applies to vacancy V. Let Y

be the number of other applications to V. Y is Poisson (2/θ). Then

q1 =
∞∑

y=0

1

y + 1
P [Y = y] =

θ

2
(1− e−2/θ). (2)

Now suppose A applies to V and doesn’t get a first-round offer (neither from
V nor from the other vacancy to which she applies). The probability that A
gets a second-round offer from V is q2.
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To compute q2 some notation is useful. Let C1 = 1 if A gets a 1st-round
offer from V; 0 otherwise. Thus, P [C1 = 1] = q1. Similarly, let C2 = 1 if A
gets a second-round offer from V; 0 otherwise. Assuming that A did not get
a first-round offer from the other vacancy to which she applied (in which case,
the following computations are not relevant), we have

q2 = P [C2 = 1|C1 = 0].

Suppose C1 = 0. Then V made a first-round offer to some other worker — call
him B. In order for A to get a second-round offer from V, it must be that V
failed to hire B in the first round. This can occur in two ways. First, B gets
a second first-round offer, and the vacancy (call it V*) making this other offer
has no second-round candidate. This occurs with probability e−2/θ.1 Second, B
gets a second first-round offer, the vacancy making the offer has a second-round
candidate, and B chooses the other vacancy. This occurs with probability

q1
1− e−2/θ

q1

2
= (q1 − e−2/θ)/2.

The probability that V fails to hire in the first round is thus

e−2/θ +
q1 − e−2/θ

2
=

q1 + e−2/θ

2
.

Next, given that A is not first on V’s short list, what is the probability that

she is second? If y applicants other than A applied to V, and if one of those

applicants was chosen to be first on V’s short list, then there are y−1 remaining

applicants with whom A is competing for second place. Given y, the probability
that A is second is thus 1/y. To find the probability that A is second on V’s

short list, given that she is not first, we need to sum this conditional probability

against the probability mass function for Y. We know that unconditionally, Y
is Poisson (2/θ). We also know that V did not make an offer to A in the first

round, i.e., C1 = 0. So,

P [Y = y|C1 = 0] =
P [C1 = 0|Y = y]P [Y = y]

P [C1 = 0]

=

y
y+1e

−2/θ(2θ )
y/y!

1− q1
=

ye−2/θ(2θ )
y/(y + 1)!

1− q1
for y = 0, 1, ...

1B gets the other first-round offer with probability q1. Let C1 = 1 if B gets a first-round

offer from V* , and let Y be the number of workers in addition to B who applied to V* . Then

V* has no second candidate on its short list if Y = 0. Using Bayes Law,

P [Y = 0|C1 = 1] =
P [C1 = 1|Y = 0]P [Y = 0]

P [C1 = 1]
=

e−2/θ

q1
.

We thus have

P [C1 = 1 and Y = 0] = q1
e−2/θ

q1
= e−2/θ .
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The probability that A is second on V’s short list given that she was not first

is then

∞∑

y=1

1

y
P [Y = y|C1 = 0] =

∞∑

y=1

e−2/θ(2θ )
y/(y + 1)!

1− q1
=

q1 − e−2/θ

1− q1

and

q2 = P [C2 = 1|C1 = 0] =

(
q1 + e−2/θ

2

)(
q1 − e−2/θ

1− q1

)
. (3)

Substitution then gives m(θ).

1.2 Expected Profit for a Vacancy

The efficient level of labor market tightness is determined as before by cv =
mθ(θ

∗). That is, from the social planner’s perspective, the only effect of allowing
for shortlisting is to change the form of m(θ). We want to compare the efficient
level of labor market tightness, θ∗, with the corresponding free-entry equilibrium
value, θ∗∗. Assuming for now the existence of a symmetric equilibrium posted
wage, the free-entry value of labor market tightness is determined by cv =
π(w(θ∗∗)), where w(θ) is the symmetric equilibrium posted wage given labor
market tightness θ and π(w(θ)) is expected profit net of the cost of vacancy
creation for a vacancy that posts the equilibrium wage in a market with labor
market tightness θ. In this subsection, we derive the general form of π(·).

Suppose all vacancies post w. The number of applications that any one
vacancy receives is Poisson with parameter 2/θ. Vacancy V gets no applications
(and thus no profit) with probability e−2/θ; it receives one application (and
thus has only one applicant on its short list) with probability 2

θe
−2/θ; it receives

two or more applications (and thus has two applicants on its short list) with
probability 1− e−2/θ − 2

θe
−2/θ.

Suppose V has only one applicant (again, call her A) on its short list. With
probability 1 − q1, A does not receive a competing offer in the first round,
in which case V’s profit is 1 − w.

2 With probability q1, A has a competing
first-round offer. The other vacancy (V*) has only this applicant, i.e., no one

in second place on its short list, with probability e
−2/θ

q1
.
3 In this case, the two

vacancies drive the wage to 1 (and profit to zero) through Bertrand competition.

With probability 1−
e
−2/θ

q1
, however, V* has a second-round choice. In this case,

Bertrand competition pushes the wage to s, the maximum wage V* is willing to

2A accepts any w ≥ 0. Were she instead to hold out in hopes of receiving a second-round

offer from the other vacancy to which she applied, she could not do better than w. The reason

is that there cannot be competition for A’s services in the second round. Of course, if workers

each make a > 2 applications, then there is a nontrivial first-round reservation wage problem

for workers. It would be straightforward, but algebraically tedious, to add this feature.
3The derivation is given in footnote 1.

3



pay rather than dropping out to proceed to the second round, and V realizes a
profit of 1− s.

This highest wage, s, that a vacancy with two applicants on its short list is
willing to pay in the first round is determined by

1− s = (1− q1)(1− q2)(1− w). (4)

The right-hand side can be understood as follows. With probability 1 − q1, a
vacancy’s second-place candidate is still available after the first round. Condi-
tional on still being available, she fails to get a competing second-round offer
with probability 1− q2. The vacancy then realizes a profit of 1− w.

Summarizing, a vacancy has only one applicant on its short list with prob-
ability 2

θe
−2/θ

. In this case, the vacancy’s expected profit is

(1− q1)(1− w) + (q1 − e
−2/θ)(1− s).

Now suppose V receives two or more applications. V’s first-round choice
(again, call her A) fails to get a competing first-round offer with probability
1 − q1, in which case V’s profit is 1 − w. With probability q1, A does receive
a competing first-round offer. The other vacancy competing for A (call it V*)

has no second-round candidate with probability e−2/θ

q1
. In this case, V is outbid

and proceeds to the second round. V’s second-round choice (call him B) is still
available with probability 1− q1. Given that he is still available, B receives no
competing second round offer with probability 1−q2, and V’s profit is 1−w. If B
does receive a competing second-round offer, then Bertrand competition drives

profit to zero. Alternatively, with probability 1− e−2/θ

q1
, V* does have a second

applicant on its short list. Both V and V* are willing to bid the wage up to s.

V then gets A with probability 1

2
and realizes profit 1− s. With probability 1

2
,

V fails to get A and proceeds to its second-round choice (again, call him B). As
before, B is still available in the second round with probability 1−q1; given that
he is still available, B receives no competing second round offer with probability
1− q2; and V gets profit 1− w.

Summarizing, a vacancy has two applicants on its short list with probability
1− e

−2/θ
−

2

θ e
−2/θ

. In this case, the vacancy’s expected profit is

(1−q1)(1−w)+q1

[
e
−2/θ

q1
(1− q1)(1− q2)(1− w) + (1− e

−2/θ

q1
)
(
1−s
2 + (1−q1)(1−q2)(1−w)

2

)]
.

Using equation (4) gives an expected profit of

(1− q1)(1− w) + q1(1− s).

We can now compute the expected profit for a vacancy that posts the same
wage w as all other vacancies:

π(w) = 2

θ e
−2/θ

(
(1− q1)(1− w) + (q1 − e

−2/θ)(1− s)
)

+
(
1− e

−2/θ
−

2

θe
−2/θ

)
((1− q1)(1− w) + q1(1− s))

=
(
1− e

−2/θ
)
[(1− q1)(1− w) + q1(1− s)]− 2

θ e
−4/θ(1− s). (5)
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1.3 The Equilibrium Wage

1.3.1 Deviations

Suppose all vacancies, save possibly one, post w. Suppose a deviant (D) posts
w
′. A deviation to w′ changes the worker application intensity to D from 2/θ to

ξ. The indifference condition giving ξ = ξ(w′;w) is given below.
Consider the deviant posting w′ and receiving applications at rate ξ. D

receives exactly one application with probability ξe−ξ. With probability 1 −
q1, D’s applicant (again, call her A) does not have a competing first-round
offer. In this case, D’s profit is 1− w′. With probability q1, A has a competing

first-round offer. With probability e−2/θ

q1
, the competing vacancy (V*) has no

second-round candidate, and Bertrand competition drives profit to zero. With

probability 1 − e−2/θ

q1
, V* has a second-round candidate, and D realizes profit

1− s. Summarizing, D receives expected profit

(1− q1)(1− w′) + (q1 − e−2/θ)(1− s)

with probability ξe−ξ.
D receives 2 or more applications with probability 1− e−ξ

− ξe−ξ. D’s first-
round choice fails to get a competing first-round offer with probability 1 − q1,
in which case D’s profit is again 1 − w′. With probability q1, A has another

first-round offer. V* has no second-round candidate with probability e−2/θ

q1
, and

D is thus outbid and proceeds to the second round. D’s second-round choice
(B) is still available with probability 1 − q1. Given that B is still available, he
does not receive a competing second-round offer with probability 1− q2, and D
gets profit 1−w′. If B does receive a second-round offer, Bertrand competition
drives profit to zero.

Now suppose V* has a second-round choice. This occurs with probability

1 − e−2/θ

q1
. In this case, D wins the race for A (s′ > s) if w′ > w. D’s profit is

then 1− s. If w′ < w, D loses the race and turns to its second-round candidate
(B). B is still available with probability 1 − q1; given that he is still available,
he receives no competing second-round offer with probability 1− q2; and D gets
profit 1− w′.

Note that with 2 or more applicants, D’s expected profit (as a function of
w′) depends on whether w′ is greater or less than w. Specifically, if w′ > w, D
receives expected profit

(1− q1)(1− w′) + q1

[
e−2/θ

q1
(1− q1)(1− q2)(1− w′) + (1−

e−2/θ

q1
)(1− s)

]

= (1− q1)(1− w′) + e−2/θ(1− s′) + (q1 − e−2/θ)(1− s),

while if w′ < w, D receives expected profit

(1− q1)(1− w′) + q1

[
e−2/θ

q1
(1− q1)(1− q2)(1− w′) + (1−

e−2/θ

q1
)(1− q1)(1− q2)(1− w′)

]

= (1− q1)(1− w′) + q1(1− s′).
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Summarizing, if w′ > w,

π(w′;w) = ξe−ξ
[
(1− q1)(1− w′) + (q1 − e−2/θ)(1− s)

]

+
(
1− e−ξ

− ξe−ξ
) [

(1− q1)(1− w′) + e−2/θ(1− s′) + (q1 − e−2/θ)(1− s)
]

=
(
1− e−ξ

)
[(1− q1)(1− w′) + (q1 − e−2/θ)(1− s)] +

(
1− e−ξ

− ξe−ξ
)
e−2/θ(1− s′).

If w′ < w,

π(w′;w) = ξe−ξ
[
(1− q1)(1− w′) + (q1 − e−2/θ)(1− s)

]

+
(
1− e−ξ

− ξe−ξ
)
[(1− q1)(1− w′) + q1(1− s′).]

=
(
1− e−ξ

)
(1− q1)(1− w′) + ξe−ξ(q1 − e−2/θ)(1− s) +

(
1− e−ξ

− ξe−ξ
)
q1(1− s′).

To derive ξ = ξ(w′;w), we now turn to the indifference condition.

1.3.2 Indifference Condition

An applicant (A) should be indifferent between sending both applications to
nondeviant (N) vacancies versus sending one application to N and the other to
D when the arrival intensity is 2/θ at any N vacancy and ξ at D. Consider an
application to an N vacancy. A is first on N’s short list with probability q1. She
is second on N’s short list with probability q1−e−2/θ. (A is not first on N’s short
list with probability 1 − q1. Conditional on not being first, she is second with

probability q1−e
−2/θ

1−q1
.) Finally, she is out of the running at N with probability

1 − 2q1 + e−2/θ. Similarly, if A applies to D, she is first on D’s short list with
probability qD1 = 1

ξ (1 − e−ξ), she is second on D’s short list with probability

qD1 − e−ξ, and she is out of the running at D with probability 1− 2qD1 + e−ξ.

Suppose A sends one application to D and one to N. There are 9 possibilities
to consider.

1. A is first on both short lists. This occurs with probability qD1 q1. If neither
D nor N has a second candidate, A’s payoff is 1. Given that A is first on

both short lists, this occurs with probability e−ξe−2/θ

qD
1
q1

. If D has a second

candidate but N does not, A’s payoff is s′. This occurs with probability
(qD
1
−e−ξ)e−2/θ

qD
1
q1

. If N has a second candidate, but D does not, A’s payoff is s.

This occurs with probability e−ξ(q1−e
−2/θ)

qD
1
q1

. If both vacancies have second

candidates, A’s payoff is s if w′ > w and s′ if w > w′. The probability

that both D and N have second candidates is
(qD
1
−e−ξ)(q1−e

−2/θ)

qD
1
q1

.
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2. A is first on D’s short list and second on N’s. This occurs with probability
qD1 (q1 − e−2/θ), and A’s payoff is w′.4

3. A is first on D’s short list and out of the running at N. This occurs with
probability qD

1
(1− 2q1 + e−2/θ), and A’s payoff is again w′.

4. A is second on D’s short list and first on N’s. This occurs with probability
(qD1 − e−ξ)q1, and A’s payoff is w.

5. A is second on both short lists. This occurs with probability (qD1 −

e−ξ)(q1 − e−2/θ).

a. w′ > w. The probability that A gets a second-round offer from D
is e−2/θ. This follows because D hires its first-round candidate if that
person has no other offer (probability 1−q1) or if that person has another
offer and the competing vacancy has a second applicant (probability q1−

e−2/θ). Thus D fails to hire its first-round candidate and makes a second-
round offer to A with probability 1 − (1 − q1 + q1 − e−2/θ) = e−2/θ.

The probability that A gets a second-round offer from N is q1+e
−2/θ

2 . N
hires its first-round candidate if that person does not have another first-
round offer (probability 1 − q1) or if that person has another offer, the
other vacancy has a second- round candidate, and the applicant chooses

N (probability
1

2
× (q1 − e

−2/θ)). There are now 4 possibilities. First, A

receives a second-round offer neither from D nor from N. In this case, A’s
payoff is zero. Second, A receives a second-round offer from D but not

from N. This occurs with probability e−2/θ(1− q1+e−2/θ

2 ), and A receives
payoff w′. Third, A receives a second-round offer from N but not from D.

This occurs with probability q1+e−2/θ

2 (1−e−2/θ), and A receives payoff w.

Finally, A receives second-round offers from both D and N. This occurs

with probability e−2/θ(q1+e−2/θ)
2 , and A receives payoff 1. Thus, when

w′ > w, A’s expected payoff in the event that she is second on both short

lists is e−2/θ(1− q1+e−2/θ

2 )w′ + q1+e−2/θ

2 (1− e−2/θ)w + e−2/θ(q1+e−2/θ)
2 .

b. w′ < w. In this case, the probability that D makes a second-round
offer is q1 since the only way that D can succeed in the first round is if its
candidate does not have another offer (probability 1−q1). The probability

that A gets a second-round offer from N is again q1+e−2/θ

2 .With probability

q1(1−
q1+e−2/θ

2 ), A gets a second-round offer from D but not from N. In

this case, A’s payoff is w′. With probability (1 − q1)
q1+e−2/θ

2 , D hires in
the first round, but N does not. In this case, A’s payoff is w. Finally,

with probability q1(q1+e−2/θ)
2 , both D and N make second-round offers to

A and A’s payoff is 1. Summarizing, if w′ < w, A’s expected payoff is

q1(1−
q1+e−2/θ

2 )w′ + (1− q1)
q1+e−2/θ

2 w + q1(q1+e−2/θ)
2 .

4We evaluate the derivative of ξ(w′;w) at w′ = w, so we need not consider the case in

which w′ is “considerably less than” w. Were that the case, A might prefer to reject w′ in

hopes of getting a second round offer from N.
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6. A is second on D’s short list and out of the running at N. This occurs

with probability (qD
1
−e−ξ)(1−2q1+e−2/θ). If w′ > w, D hires in the first

round with probability 1− e−2/θ and A’s payoff is zero. With probability
e−2/θ, A’s payoff is w′. If w′ < w, D fails to hire in the first round with
probability q1. In this case, A’s payoff is w′

.

7. A is out of the running at D and first on N’s short list. This occurs with
probability (1− 2qD1 + e−ξ)q1. In this case, A’s payoff is w.

8. A is out of the running at D and second on N’s short list. This occurs with
probability (1− 2qD1 + e−ξ)(q1 − e−2/θ). N hires its first-round candidate

with probability 1 − (q1+e
−2/θ)
2 and A’s payoff is zero. Alternatively, N

fails to hire on the first round with probability (q1+e
−2/θ)
2 , in which case

A’s payoff is w.

9. Finally, A is out of the running at both D and N. This occurs with prob-
ability (1 − 2qD1 + e−ξ)(1 − 2q1 + e−2/θ), and in this case, A’s payoff is
zero.

The discussion above is summarized in the following table, which presents the
expected payoff for a worker who sends one application to D and one to N for
each of the nine possible outcomes associated with that application strategy.

D N Probability Expected Payoff (w′ > w)

1 1 qD1 q1
e−ξe−2/θ

qD
1
q1

+
(qD
1
−e−ξ)e−2/θ

qD
1
q1

s′+
qD
1
(q1−e

−2/θ)

qD
1
q1

s

1 2 qD1 (q1−e
−2/θ) w′

1 x qD1 (1− 2q1+e
−2/θ) w′

2 1 (qD1 −e
−ξ)q1 w

2 2 (q
D
1 −e

−ξ)(q1−e
−2/θ) e−2/θ(2−q1−e

−2/θ)w′

2 + (q1+e
−2/θ)(1−e−2/θ)w

2 + e−2/θ(q1+e
−2/θ)

2

2 x (q
D
1 −e

−ξ)(1− 2q1+e
−2/θ) w′e−2/θ

x 1 (1− 2qD1 +e
−ξ)q1 w

x 2 (1− 2q
D
1 +e

−ξ)(q1−e
−2/θ) (q1+e

−2/θ)
2 w

x x (1− 2q
D
1 +e

−ξ)(1− 2q1+e
−2/θ) 0

D N Probability Expected Payoff (w′ < w)

1 1 qD
1
q1

e−ξe−2/θ

qD
1
q1

+
(qD1 −e−ξ)q1

qD
1
q1

s′+e−ξ(q1−e
−2/θ)

qD
1
q1

s

1 2 qD1 (q1−e
−2/θ) w′

1 x qD1 (1− 2q1+e
−2/θ) w′

2 1 (q
D
1 −e

−ξ)q1 w

2 2 (q
D
1 −e

−ξ)(q1−e
−2/θ) q1(1−

q1+e
−2/θ

2 )w
′

+(1− q1)
q1+e

−2/θ

2 w+ q1(q1+e
−2/θ)

2

2 x (q
D
1 −e

−ξ)(1− 2q1+e
−2/θ) q1w

′

x 1 (1− 2q
D
1 +e

−ξ)q1 w

x 2 (1− 2q
D
1 +e

−ξ)(q1−e
−2/θ) (q1+e

−2/θ)
2 w

x x (1− 2q
D
1 +e

−ξ)(1− 2q1+e
−2/θ) 0
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We can now compute the value of sending one application to D and one to
N, i.e., a (D,N) strategy, for any w′, w pair. The table indicates that the form
of this value differs according to whether w′ > w or vice versa.

Indifference between sending one application to D and one to N versus send-
ing both applications to N vacancies defines ξ(w′, w). We want to find how
the application intensity to D varies with small deviations from w, first for the
case in which the deviant’s wage is above the wage offered by the N vacancies

and then for the case of w′ < w. That is, we want to find ∂ξ+(w′,w)
∂w′ |w′=w and

∂ξ−(w′,w)
∂w′

|w′=w, the right-hand and left-hand side derivatives of the application
intensity, evaluated at w′ = w.

We begin with ∂ξ+(w′,w)
∂w′ |w′=w. The expected payoff from a (D,N) strategy

when w′ > w is found using the figures in the top panel of the table and can be
written as:

e−ξe−2/θ + (qD1 − e−ξ)e−2/θs′ + qD1 (q1 − e−2/θ)s+ (qD1 − e−ξ)(1− q1)e
−2/θq2

+w′{qD
1
(1− q1)(1 + e−2/θ(1− q2))− e−ξe−2/θ(1− q1)(1− q2)}

+w{q1(1− qD1 ) + (1− qD1 − e−2/θ(qD1 − e−ξ))(1− q1)q2}

The application intensity ξ is found by equating the individual’s expected payoff
from a (D,N) strategy to the expected payoff from applying to two N vacancies.

We find ∂ξ+(w′,w)
∂w′ by taking the derivatives of both sides with respect to w′.

Since the expected payoff from applying to two N vacancies does not depend
on w′, this entails equating the derivative of the expected payoff from a (D,N)

strategy with respect to w′ to zero and solving for ∂ξ+(w′,w)
∂w′

.

This gives: ∂ξ+(w′,w)
∂w′ |w′=w =

(1−q1)[q1+2e−2/θ(1−q2)(q1−e
−2/θ)]

e−4/θ(1−q1)[(1−2q2)−w(2−3q2)]−
∂qD1
∂ξ [q1(q2+q1(1−q2))+(1−q1)q2e−2/θ+w((1−q1)e−2/θ−q1+(1−q2

1
)(1−q2))]

Next, we find ∂ξ−(w′,w)
∂w′

|w′=w. The procedure is the same, but we must take into
account the differences in the expected payoff a (D,N) strategy when w > w′.

The expected payoff is now found using the figures in the bottom panel of the
table and can be written as:

e−ξe−2/θ + e−ξ(q1 − e−2/θ)s+ q1(q
D
1 − e−ξ)s′ + q1(q

D
1 − e−ξ)(1− q1)q2]

+w′(1− q1)[q
D
1 + q1(q

D
1 − e−ξ)(1− q2)]

+w[q1(1− qD1 ) + q2(1− q1)(1− qD1 − q1(q
D
1 − e−ξ))].

Setting the derivative of this expression with respect to w′ equal to zero allows
us to find
∂ξ−(w′,w)

∂w′
|w′=w =

(1−q1)q1(1+2(q1−e
−2/θ)(1−q2))

e−2/θ(1−q1)(e−2/θ−q2(q1+e−2/θ)−w((q1+e−2/θ)(1−q2)−q1q2))−
∂qD1
∂ξ (q2

1
+2q1q2(1−q1)+w((3q1−2)q1q2−2q2

1
+1−q2))
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1.3.3 Equilibrium with Shortlisting

We seek a symmetric pure-strategy Nash equilibrium posted wage. That is, we

seek a posted wage w with the property that if all other vacancies post w, an

individual vacancy neither has an incentive to post a higher wage nor a lower

wage. If all vacancies post w, then there will be three wages paid in equilibrium,

namely, w, s, and 1.

Recall that for w′ > w,

π+(w′;w) =
(
1− e−ξ

)
[(1−q1)(1−w

′)+(q1−e
−2/θ)(1−s)]+

(
1− e−ξ − ξe−ξ

)
e−2/θ(1−s′).

The right-hand side derivative of profit is

∂π+(w′,w)
∂w′

=
(
e−ξ

(
(1− q1)(1− w′) + (q1 − e−2/θ)(1− s)

)
+ ξe−ξe−2/θ(1− s′)

)
∂ξ+(w′;w)

∂w′

−

(
1− e−ξ

)
(1− q1)−

(
1− e−ξ − ξe−ξ

)
e−2/θ(1− q1)(1− q2).

Evaluating at w′ = w gives

∂π+(w′,w)
∂w′

=
(
e−2/θ

(
(1− q1)(1− w) + (q1 − e−2/θ)(1− s)

)
+ 2

θe
−4/θ(1− s)

)
∂ξ+(w;w)

∂w′

−

(
1− e−2/θ

)
(1− q1)−

(
1− e−2/θ

−

2
θ e

−2/θ
)
e−2/θ(1− q1)(1− q2).

We find the left-hand side derivative in a similar fashion. For w′ < w,

π−(w′;w) =
(
1− e−ξ

)
(1−q1)(1−w

′)+ξe−ξ(q1−e
−2/θ)(1−s)+

(
1− e−ξ − ξe−ξ

)
q1(1−s

′),

so

∂π−(w′,w)
∂w′

=

(
e−ξ((1− q1)(1− w′) + (q1 − e−2/θ)(1− s))
−ξe−ξ

(
(q1 − e−2/θ)(1− s)− q1(1− s′)

)
)

∂ξ−(w′;w)
∂w′

−

(
1− e−ξ

)
((1− q1) + q1(1− q1)(1− q2)) + ξe−ξq1(1− q1)(1− q2).

Evaluating at w′ = w gives

∂π−(w,w)
∂w′

=
(
e−2/θ

(
(1− q1)(1− w) + (q1 − e−2/θ)(1− s)

)
+ 2

θe
−4/θ(1− s)

)
∂ξ−(w;w)

∂w′

−(1− e−2/θ)(1− q1)− q1(1− e−2/θ
−

2
θe

−2/θ)(1− q1)(1− q2).

Given θ, a posted wage w is a symmetric Nash equilibrium if
∂π+(w′,w)

∂w′
|w′=w ≤ 0

and ∂π−(w′,w)
∂w′

|w′=w ≥ 0.
We investigate the nature of equilibrium numerically. For θ below approx-

imately 0.42, both derivatives are negative for all w ∈ [0, 1]. Thus, for these
values of θ, the unique pure-strategy symmetric Nash equilibrium is w = 0. For
θ above this cutoff level, there exists a range of w such that both inequalities are
satisfied. The range of equilibrium posted wages goes from about 0.01 to about
0.04 when θ = 0.5. When θ = 2, there is again a range of equilibrium posted
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wages, this time from about w = 0.36 to about w = 0.71. We have repeated this
exercise for many values of θ, and the result is always qualitatively the same.
The left-hand side derivative of profit with respect to the deviant wage, evalu-
ated at the common wage, is always greater than the corresponding right-hand
side derivative. Both derivatives are positive at w = 0 and both are negative
(and equal to each other) at w = 1. Thus, given θ above the cutoff level, there is

a continuum of equilibria, ranging from the wage at which ∂π+(w′,w)
∂w′

|w′=w = 0

to the one at which ∂π−(w′,w)
∂w′

|w′=w = 0.

1.4 Efficiency

The final step is to investigate the relationship between the equilibrium and
efficient levels of θ.We show numerically that there is excessive vacancy creation
in equilibrium; that is, θ∗∗ > θ∗.

As in Section 3 of the paper, θ
∗ is defined by cv = mθ(θ

∗), where the
derivative mθ(θ) is now computed using equation (1) and the definitions of
q1 and q2, which are given in equations (2) and (3). The equilibrium value,
θ
∗∗ is defined by the free-entry condition, cv = π(w(θ∗∗)), where w(θ) is an
equilibrium wage given θ. As noted above, for θ below the cutoff level, w(θ) = 0.
For θ above the cutoff level, we focus on w−(θ), that is, the wage that, given

θ, solves ∂π−(w′,w)
∂w′

|w′=w = 0. Given θ, this is the highest possible equilibrium
wage.

In Figure 1, we plot mθ(θ) and π(w−(θ)) against θ. As in Section 3 of the
paper, π(w−(θ)) > mθ(θ) for each value of θ. Equivalently, θ∗∗ > θ∗.

2 Offer-Beating Strategies

2.1 Proof of Proposition 5

Proposition 5 Let w(θ; a) =

a

θ
e−a/θ

1− e−a/θ
. There exists a continuum of sym-

metric offer-beating Nash equilibria indexed by w ∈ [0, w(θ; a)].

The strategy of proof is simple. We first show that if all vacancies follow
an offer-beating strategy at any common posted wage w, it is never in the
interest of any one vacancy to post a higher wage, w′. Posting a higher wage
increases the probability of attracting an applicant. This is beneficial only if that
applicant receives no other offers. We place an upper bound on the expected
benefit associated with an upward deviation in the posted wage by supposing
that an arbitrarily small increase in the posted wage above w attracts one or
more applicants with probability one. Nevertheless, it is not profitable to post
w′ > w. The increase in the probability of attracting an applicant is outweighed
by the decrease in the probability that the vacancy will receive a positive profit

11



Figure 1: π(w(θ)) (upper curve) and mθ(θ) (lower curve)
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from that worker. Second, we check that a downward deviation, i.e., w′ < w,

is not profitable. This is the case for all w ∈ [0, w(θ; a)] . The argument is
essentially the same as the one we used for the case of a = 1 in the proof of
Proposition 2.

Expected profit in a symmetric offer-beating equilibrium in which all vacan-
cies post w is

π(w) = (1− w)(1− e−a/θ)(
1− (1− q)a

aq
), where q =

θ

a
(1− e−a/θ).

The first term in π(w) is profit for a vacancy that hires a worker at w, the second
term is the probability the vacancy receives at least one application, and the
third term is the probability that the vacancy hires conditional on receiving at
least one application. The derivation of the third term is as follows. Consider
an applicant selected by a particular vacancy. The number of other offers this
applicant has is bin(a − 1, q). Given that all vacancies follow the offer-beating
strategy, i.e., do not engage in Bertrand competition, the probability that the
vacancy in question succeeds in hiring the applicant is then

a−1∑

x=0

1

x+ 1

(
a− 1

x

)
qx(1− q)a−1−x =

1− (1− q)a

aq
.

We first consider the expected profit associated with an upward deviation,
i.e., a posted wage of w′ > w. We bound this expected profit, which we call
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π+(w′;w), by noting that an upward deviation can increase the hiring proba-
bility to at most 1 and that profit conditional on hiring the worker, 1 − w′, is
less than 1−w. The deviant makes a profit on its applicant only if all the other
applications that the applicant makes are rejected. This occurs with probabil-
ity (1 − q)a−1. If the applicant has one or more other offers, the offer-beating
strategy followed by the other vacancies calls for Bertrand competition since
w′ > w. We thus have

π+(w′;w) < (1− w) · 1 · (1− q)a−1.

The fact that no vacancy wants to make an upward deviation then follows from

(1− q)a−1 < (1− e−a/θ)(
1− (1− q)a

aq
) =

1− (1− q)a

θ
,

which holds for a ≥ 2.
To verify this, rewrite the inequality as

y(a, q) =
1− (1− q)a

θ
− (1− q)a−1 > 0.

Let x =
a

θ
, so q(x) =

1− e−x

x
, and define z(x, a) = ay(a, q) or

z(x, a) = x(1− (1− q)a)− a(1− q)a−1.

We want to show that z(x, a) > 0 for all x > 0 and a ≥ 2. This is done by
induction. First,

z(x, 2) = xq(2− q) + 2q − 2 =
1− e−2x − 2xe−2x

x
.

Using L’Hôpital’s Rule, z(0, 2) = 0. Since the numerator of z(x, 2) is increasing
in x, it follows that z(x, 2) > 0.

Now suppose z(x, b) > 0 for some integer b > 0. We have

z(x, b+ 1) = x(1− (1− q)b+1)− (b+ 1)(1− q)b

=
(
x(1− (1− q)b)− b(1− q)b−1

)
(1− q) + xq − (1− q)b

= z(x, b)(1− q) + xq − (1− q)b.

Thus,

z(x, b+ 1) > xq − (1− q)b = 1− e−x − (1− q)b

> 1− e−x − (1− q) = q − e−x =
1− e−x − xe−x

x
.

Because the numerator equals the probability of two or more arrivals in a Poisson
process with parameter x, this final term is positive for all x > 0. Thus, z(x, b) >
0 => z(x, b+ 1) > 0, and our proof by induction is complete.
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Next, we consider the expected profit associated with a downward deviation,
i.e., a posted wage of w′ < w. To develop an expression for this expectation,
π−(w′;w), we mimic the argument given in the proof of Proposition 2. Specifi-
cally, suppose workers apply to the deviant (D) with Poisson intensity ξ, where
ξ is determined by an indifference condition to be given below. Then

π−(w′;w) = (1− w′)(1− e−ξ)(1− q)a−1.

The second term is the probability that D gets at least one application, and
the third term is the probability that D’s chosen applicant has no other offers.
Note that the final term is independent of w′.

The condition determining ξ is that each worker be indifferent between send-
ing all a applications to nondeviants (N) versus a−1 applications to N and one
application to D. The expected payoff to the first strategy depends on neither
w′ nor ξ. The expected payoff to the second strategy is

qD(1− q)a−1w′ + (1− (1− q)a−1)w,

where

qD =
1− e−ξ

ξ

is the probability that a worker’s application to D is accepted. The first term
in this expected payoff is the probability that the worker gets the offer from
D but no offers from N ; in this case, the payoff is w′. The second term is the
probability of at least one offer from N ; in this case the expected payoff is w.
Equating these two expected payoffs defines ξ as a function of w′. Using

dqD

dξ
=
−
(
1− e−ξ − ξe−ξ

)
ξ2

,

it is straightforward to derive

dξ

dw′
=

ξ(1− e−ξ)

w′ (1− e−ξ − ξe−ξ)
.

Finally,

dπ−(w′;w)

dw′
=

[
−(1− e−ξ) + (1− w′)e−ξ

dξ

dw′

]
(1− q)a−1.

This derivative is nonnegative, i.e., D has no incentive to post w′ < w, so long
as

w′
(
1− e−ξ − ξe−ξ

)
≤ (1− w′)ξe−ξ, i.e.,

w′
≤

ξe−ξ

1− e−ξ
.

Evaluating at w′ = w, D has no incentive to undercut the common wage w so

long as w ≤
a

θ

e−a/θ

1− e
−a/θ

. QED
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2.2 Proof of Proposition 6

Proposition 6 There is excessive vacancy creation in any symmetric offer-

beating Nash equilibrium.

Suppose all vacancies follow an offer-beating strategy with a posted wage of

w. The equilibrium value of θ is then determined as usual by

cv =
m(θ)

θ
(1− w).

Now, however, any w ∈ [0, w(θ; a)] is consistent with symmetric Nash equilib-
rium, so there is a corresponding range of θ that is consistent with free-entry
equilibrium. The lowest possible equilibrium level of labor market tightness is
the one associated with w(θ; a). Call this lowest possible equilibrium value of
labor market tightness θ∗∗. Then θ∗∗ solves

c
v
=

1−

(
1−

θ

a
(1− e−a/θ)

)a

θ

(
1−

a

θ

e−a/θ(
1− e−a/θ

)
)
.

As above, let q =
θ

a
(1− e−a/θ). The free-entry condition is then

cv =
1− (1− q)a

aq
(1− e−a/θ −

a

θ
e−a/θ). (6)

The planner’s problem is unchanged, so the efficient level of labor market
tightness, θ∗, is again the solution to

cv = (1−
θ

a
(1− e−a/θ))a−1(1− e−a/θ −

a

θ
e−a/θ),

cf., equation (9). This condition can be rewritten as

cv = (1− q)a−1(1− e−a/θ −
a

θ
e−a/θ). (7)

Since 1 − (1 − q)a > aq(1 − q)a−1 so long as a ≥ 2 (by the properties of the
binomial), the right hand side of (6) is greater than the right hand side of (7)
for each θ > 0. That is, θ∗∗ > θ

∗

. QED
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