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Abstract

We consider the problem of sequential search when the decision to stop is
made by a committee and show that a unique symmetric stationary equilib-
rium exists given a log concave distribution of rewards. We compare search by
committee to the corresponding single-agent problem and show that committee
members are less picky and more conservative than the single agent. We show
how (i) increasing committee size holding the plurality fraction constant and (ii)
increasing the plurality rule affect the equilibrium acceptance threshold and ex-
pected search duration. Finally, we show that unanimity is optimal if committee
members are sufficiently patient.
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“A committee is a group that keeps minutes and loses hours.” - Milton Berle

1 Introduction

In the classic sequential search problem, an individual makes one draw per period from

an exogenous and known distribution. These draws are independently and identically

distributed through time. After every draw, there is a decision to be made – to stop

and accept the payoff given by the realization of the most recent draw or to continue

searching. The benefit of further search is the expectation that a higher payoff will

eventually be realized; the cost is that the searcher’s enjoyment of this payoff will be

delayed. Elaborations and applications of this optimal stopping framework abound in

economics. See [13], [16], and [17] for a set of excellent surveys.

Almost all of the search literature to date has a common feature, namely, that the

stopping decision is made by a single agent.1 For many applications, this assumption is

a good one, but often the decision to stop or to continue searching is made by a group

of agents. Consider, for example, an academic department that brings a sequence of

candidates to campus to interview for an open position, and suppose that after each

visit, a decision is made whether to make an offer to the latest candidate or to continue

the search. This decision is typically taken by a group of faculty. Or, consider a couple

that is shown a sequence of rental properties. After each property is observed, the

couple decides whether to accept the latest apartment they have seen or to continue

their search. It is, of course, easy to think of other situations in which a group makes

a stopping decision.

We model this group decision as a problem of search by committee. As in the single-

agent problem, in each period, a group of agents (the committee) is presented with an

option. The values that the committee members place on this option are draws from an

exogenous and known distribution, and these draws are iid across committee members

and over time. In each period, the committee votes whether to stop or to continue.

1The single exception that we know of is a 2008 unpublished paper by O. Compte and P. Jehiel,
“Bargaining and majority rules: A collective search perspective,” which we discuss below. At first
glance, the problem of household search considered in the 2009 unpublished paper, “Joint-search
theory: New opportunities and new frictions” by B. Guler, F. Guvenen and G. Violante might also
seem to be an exception. However, they use a unitary model; that is, their household behaves as if it
were a single agent.
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Specifically, we consider a committee with N members and we suppose that at least

M votes are required to stop. The voting game played by the committee aggregates

its members’ preferences. If at least M members find the current option acceptable,

the search stops; otherwise, the search continues. Our approach thus combines two

literatures, sequential search and private-values voting.

What do we learn from this combination? First, we show that the problem of search

by committee is well posed. A symmetric stationary equilibrium exists and is unique

given a log concavity assumption on the distribution of payoffs.

Second, we compare the outcomes of committee and single-agent search. Suppose

the committee and the single agent face the same environment, i.e., the same distri-

bution of payoffs and the same cost of delay. We show that committee members are

always less picky than a single agent would be in the same environment in the sense

that the acceptance threshold set by the committee members is always less than the

threshold the single agent would set. In equilibrium, the acceptance threshold equals

the discounted value of continuing to search; thus, the expected discounted payoff to a

committee member is less than the corresponding value achieved by the single searcher.

The fact that committee members set a lower acceptance threshold than a single agent

need not imply, however, that expected search duration is shorter for a committee than

it is for the single agent. In fact, the comparison between the expected duration of

search for a committee and for a single searcher depends on the cost of delay in an

interestingly non-monotonic way. Specifically, so long as unanimity is not required,

the committee can expect to end its search faster than a single agent would if the cost

of delay is either sufficiently low or sufficiently high. We also show that a standard

result from the single-agent search literature, namely, that a single agent raises his or

her acceptance threshold in response to a mean preserving spread in the distribution of

rewards, can be reversed in the search-by-committee problem. In this sense, committee

search is more conservative than is single-agent search. The two results, less picky and

more conservative, follow from two fundamental elements of the search-by-committee

problem. First, committee members impose externalities on each other that are by

definition absent in the single-agent problem. (See [5] for a related point in a static

voting game.) Second, the voting game played by its members defines a value function

(the expected discounted payoff) for the committee. The value function in the single-
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agent problem is necessarily convex, but the committee value function is necessarily

not convex.

Third, we examine the effects of changing the size of the committee on the accep-

tance threshold and on expected search duration. We do this holding the fraction of

votes required to stop fixed; that is, we increase both M and N while holding M/N

fixed. For example, we examine the effects of moving from a situation in which at

least 2 out of 3 votes are required to stop to one in which at least 4 out of 6 votes are

needed. We show that increasing committee size in this way leads to a decrease in the

acceptance threshold. Equivalently, committee members are worse off as the size of the

committee increases. We also show that, when unanimity is not required, increasing

the size of the committee while holding the plurality fraction fixed decreases expected

search duration so long as committee members are sufficiently impatient; on the other

hand, increasing the size of the committee increases expected search duration when

unanimity is required to stop.

Finally, we consider the effect of varying the plurality rule, M , holding committee

size fixed. We show that expected search duration is always increasing in M. Starting

with low values of M , the acceptance threshold increases as the required number of

votes increases. However, if at some point an increase in M leads to a decrease in the

acceptance threshold, then further increases in M also cause the acceptance threshold

to fall. We also show that the welfare-maximizing choice of M increases as committee

members become more patient and that unanimity is optimal for high enough (but

bounded) rates of patience. The idea that unanimity can be optimal is in contrast

to a standard result (e.g., [10]) from the common-values voting literature, albeit in a

different context.

To make progress on a new problem, we have made simplifying assumptions. On

the search side, we restrict our attention to the stationary sequential problem, and we

assume that once an option is discarded it is lost forever to the committee (no recall).

These assumptions are close to those of [14]. That is, we use a simple, one-sided

search framework and do not embed the search-by-committee problem in a market

environment in which the distribution of payoffs is endogenously generated by the

actions of agents on the other side of the market. On the voting side, we restrict our

attention to the private-values case, in which the values that committee members place
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on the option at hand are iid draws.2 Thus, we do not allow for the possibility that

voting can convey information. More fundamentally, we restrict the strategies available

to committee members in the voting game. We consider Markovian strategies in which

each committee member’s vote (stop or continue) depends only on the option at hand.

Thus our voting model harks back to the pioneering work of Hotelling and Black ([12]

and [4]).3

As mentioned in footnote 1, Compte and Jehiel also consider a collective search

problem. In both our paper and theirs, a committee considers a sequence of iid draws,

and the problem is to find an equilibrium in the committee members’ stopping rules.

In our model, each committee member’s reaction to an option is the realization of an

idiosyncratic random variable. Compte and Jehiel consider our case, but only for a

uniform distribution of rewards. They also allow the possibility that the committee

members may have intrinsic differences in their tastes. However, this increased gener-

ality comes at a cost – almost all of their interesting results require the discount rate

to go to one, i.e., the situation in which there is no time cost to search. In contrast,

our results are not restricted to the limiting case. Indeed, some of our more surpris-

ing results depend critically on allowing for low discount rates (Propositions 3 and 4).

Relative to their paper, our contribution is to give a much more general and complete

analysis of the “symmetric” case. As this is the natural generalization of the canonical

McCall sequential search problem, our primary contribution is to the search literature.

In contrast, their contribution is primarily to the bargaining literature. In this sense,

the two papers are natural complements.

In the next section, we describe our model and prove the existence of a unique

symmetric stationary equilibrium. In Section 3, we compare search by committee

to single-agent search and show that committee members are less picky and more

2Committee members who share a sense of purpose could be modeled as making positively corre-
lated draws. A general approach to this problem would therefore posit affiliated values, as is often
done in auction theory (see [15]). Two polar cases would then be perfectly positively correlated draws
(common values) and our case of iid draws. The former coincides with the single-agent search prob-
lem. The case of iid draws affords two advantages. First, it is far more tractable than affiliated values.
Second, it is the unexplored polar case, and the results in an affiliated values model are surely a blend
of our new results and those of the well understood single-agent problem.

3We follow the terminology of Black, who also calls a collection of voters a committee. In his
model, the committee decides between a proposal and the status quo. In our model, the proposal is
the current option and the status quo is continuing to search. In [4], the status quo is exogenous,
while the value of the “status quo” is endogenous in our model.
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conservative. We elaborate on the two crucial aspects of the search-by-committee

problem that drive these results, externalities and non-convexities, in the context of

the simplest possible committee, namely, the case of N = 2. Section 4 explores how

the acceptance threshold and expected search duration vary in committee size (holding

the plurality fraction fixed) and in the number of votes required to stop. Finally, in

Section 5, we conclude.

2 The Model

2.1 Assumptions

A committee is a pair (N, M), where N is the number of members and M is the number

of votes required to end the search. Time is discrete, and all committee members dis-

count the future at common rate δ ∈ (0, 1). In each period, the committee is presented

with an option. Each committee member then draws a value for the option from a

continuous cdf F : [0, 1] 7→ [0, 1] with positive density f . These values can represent

von Neumann-Morgenstern utility payoffs or monetary payoffs for risk neutral agents.

We assume value draws are iid both across time and across committee members. We

rule out side payments, i.e., utility is non-transferable.

We assume that both
∫ z

0
F (s)ds and

∫ z

0
(1 − F (s))ds are log concave in z — for

which it suffices that f be log concave, as is well-known. To see how we use these

assumptions, define the truncated means:

µh(z) ≡ E[X|X ≥ z] and µ`(z) ≡ E[X|X < z].

The above log-concavity assumptions imply that µ′h(z) ≤ 1 and µ′`(z) ≤ 1 as is shown

in [6].4 We use these two upper bounds to establish uniqueness of equilibrium and

also to sign some of our comparative statics results. Log concavity assumptions are

common in many economic applications (search, signaling, mechanism design, etc.).

See [3] for a survey of log concavity results and applications.

Each period is divided into two stages. In the first stage, the option arrives and

each committee member’s value is realized. In the second stage, the committee decides

4Similar results can be found in [11] and in [19].
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whether to stop searching and accept the most recently observed option or to continue

to the next period. By restricting voting to stopping with the most recent option or

continuing to search we are ruling out recall ; i.e., once an option is discarded it is

lost forever.5 We model this choice using a simple voting mechanism: the committee

members simultaneously vote either to stop and accept the current option or to continue

to search. The search ends if and only if at least M committee members vote to stop.

Each committee member seeks to maximize his or her own discounted payoff.

A strategy for committee member i is a sequence of functions σi = {σi(t)}t, such

that σi(t) maps from possible histories through time t to the set {continue, stop}.
Player i employs a Markov strategy if σi(t) is only a function of the most recently

evaluated option. We restrict attention to symmetric stationary equilibria in which all

players employ the same Markov strategy.

We assume that the above description of the model is common knowledge among

the committee members. Given our Markovian restriction, whether individual draws

are private or public information is immaterial. Further, whether an agent knows in

advance that he or she is pivotal is also irrelevant.

2.2 Equilibrium

Once we assume no recall and stationary Markov strategies, cutoff strategies are opti-

mal for the same reason they are optimal in single agent search problems: the continu-

ation value is a constant with respect to the current draw. Suppose all other committee

members set acceptance threshold z′. We define W (z, z′, N, M, δ) to be the expected

continuation value starting just before draws are made for a committee member who

sets acceptance threshold z for all future time periods while all other committee mem-

bers use threshold z′. Then we have

W (z, z′, N, M, δ) = P (z′, N − 1,M − 1)δW (z, z′, N, M, δ) + (1− P (z′, N − 1, M))E[X]

+p(z′, N − 1,M − 1)

∫
max{δW (z, z′, N,M, δ), x}dF (x),

5In single-agent search, the no-recall assumption is without loss of generality. However, search by
committee is a game, and thus non stationary strategies can potentially be supported in equilibrium
by conditioning on past history. With recall, the state variable is the entire past history of draws, so
the no-recall assumption is important in the committee search problem. The assumption of Markov
strategies, however, takes the bite out of the no-recall assumption in the committee search problem.
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where p(z′, N − 1, i) =

(
N − 1

i

)
(1 − F (z′))iF (z′)N−1−i is the (binomial) probability

that exactly i of the other N − 1 members draw a value greater than or equal to z′

and P (z′, N − 1, i) =
∑i−1

j=0 p(z′, N − 1, j) is the probability that i − 1 or fewer of the

other N − 1 members vote to stop. Notice that if p(z′, N − 1,M − 1) = 0, i.e., if

the probability that this committee member is pivotal equals zero, his or her payoff is

independent of z. In this case, we impose the refinement that the committee member

chooses z to solve max{δW (z, z′, N, M, δ), x} when the reward drawn is x.

We seek a symmetric stationary equilibrium, so we define V (z, N, M, δ) = W (z, z, N,M, δ).

Substituting and simplifying yields

V (z, N,M, δ) = P (z, N,M)δV (z, N,M, δ) + (1− P (z, N, M))Ω(z, N, M),

where Ω(z, N, M) is the expected payoff conditional on stopping. Rearranging, we have

V (z, N, M, δ) = S(z, N,M, δ)Ω(z, N,M), where S(z, N, M, δ) =
1− P (z,N, M)

1− δP (z, N, M)
.

An agent’s payoff is only affected by the cutoff chosen when he or she is pivotal, i.e.,

when exactly M−1 of the remaining N−1 agents vote to stop. Thus, best responses are

determined by considering a pivotal voter, who can choose either to stop and accept

the most recently drawn reward, x, or instead continue. The pivotal agent solves

max{x, δV (z, ·)}. Since the continuation value, V (z, ·), is a constant with respect to

the current period’s decision, the optimal strategy is an acceptance threshold, i.e., vote

for an option iff its value exceeds some threshold. Thus, if all members set threshold

z in the future, the acceptance threshold for the pivotal voter equates the values of

stopping and continuing, given that he or she is pivotal now, i.e., x(z) ≡ δV (z, ·).
For an equilibrium to be stationary and symmetric the following equilibrium con-

dition must be satisfied:6

x∗ = δV (x∗, ·).

In equilibrium, V (x∗, ·) is the expected payoff for each committee member. Equiva-

lently, since V (x∗, ·) is proportional to x∗, the equilibrium acceptance threshold can be

6The equilibrium refinement discussed above excludes the trivial equilibria in weakly dominated
strategies in which all agents set a threshold of zero or a threshold of one.
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used as a measure of each committee member’s welfare.

To establish existence and uniqueness and to characterize equilibrium, our first step

is to show that Ω(x,N, M) is a weighted average of µh(x) and µ`(x) and to bound its

derivative with respect to x. These results are given in Lemma 1. The proof is given

in the Appendix.

Lemma 1 The stopping value Ω(x,N, M) is a weighted average of the truncated means

µh and µ`, and 0 ≤ Ωx(x,N, M) ≤ 1.

Having characterized Ω(x, N,M), we now state the main result of this section.

Proposition 1 A symmetric stationary Markov equilibrium exists and is unique.

The details of the proof are in the Appendix. However, the basic idea is straight-

forward, as shown in Figure 1. Existence follows from V (0, ·) = E[X] > 0, V (1, ·) = 0,

and V (x, ·) continuous in x. To establish uniqueness, we need to show that δV (x, ·)
crosses the 45-degree line only once, i.e., that δVx(x, ·) < 1. This last condition follows

from the inequality Ωx(x,N, M) ≤ 1 established in Lemma 1 and δ ∈ (0, 1).

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

δV (x; ·)

x

Figure 1: We have graphed 0.9V (x, 2, 2, 0.9) and X uniform on [0, 1] to illustrate our
equilibrium: x∗ ≈ 0.515.
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3 Comparison to Single-Agent Search

In this section, we compare the symmetric stationary committee search equilibrium

outcome with the outcome in the case of a single searcher. We first show that committee

members are less picky than a single searcher would be in the same situation; i.e., the

committee members set a lower acceptance threshold in equilibrium. We then show that

committees conclude search more quickly for extreme (high or low) rates of patience

but that the comparison can be reversed for intermediate rates of patience. Finally,

we establish that committees are more conservative than single searchers in the sense

that a mean preserving spread in F can lower the committee members’ equilibrium

acceptance threshold.

3.1 Committees are Less Picky

For fixed δ and F, we say that committee members are less picky than a single agent

if the equilibrium acceptance threshold of the committee members is lower than the

acceptance threshold that a single searcher would set. We establish the following in

the Appendix.

Proposition 2 (Less Picky) Committee members are less picky than a single searcher.

The idea of the proof is straightforward. The single searcher can achieve at least as

high an expected payoff as a committee member by mimicking the committee behavior

but can then improve his or her payoff by optimizing. Since in equilibrium expected

welfare is proportional to the acceptance threshold, committee members are less picky

than a single searcher.

The intuition for Proposition 2 is as follows. A single searcher maximizes his or her

continuation value, but a pivotal committee member cannot count on the committee

doing so. More specifically, there are two negative externalities that committee mem-

bers can impose on one another that do not arise in the single-searcher case. They

can vote to stop when a committee member has drawn a low value or they can vote to

continue when the committee member has drawn a high value. These externalities lead

committee members to set a lower acceptance threshold than would a single searcher.7

7In the Börgers model of costly voting and voluntary participation ([5]), there is a single negative
externality that arises because an individual’s decision to participate makes it less likely that others
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Note that this argument does not require independence of draws. Committees are less

picky than single searchers even with correlated values, as long as the correlation is

not perfect, at which point the single-agent and committee problems are identical.

3.2 Patient and Impatient Committees Conclude Search Faster

We know that committee members set an acceptance threshold that is below the cor-

responding threshold for a single searcher (holding F and δ constant), but this does

not necessarily imply that the committee has a shorter expected search duration. In

fact, the committee may take longer to search, as the following example illustrates.

Example 1 Let X be uniform on [0, 1] and δ = 0.8. Then a single searcher sets

threshold 0.5, i.e., stops with probability 0.5. With N = 5 and M = 4, the equilibrium

committee threshold is approximately 0.37, which yields a probability of stopping of

approximately 0.39; i.e., the committee searches longer on average.

The point illustrated by the above example is simple. We can, however, say some-

thing considerably less obvious about expected search duration. The comparison of

expected search duration between a committee and a single searcher has an interesting

non-monotonicity in δ. While expected search duration rises in δ for committees and

for single searchers, the rate of change differs between committees and single searchers,

so that the sign of the difference in expected search duration is not monotonic.

Our comparison of expected search duration between a committee and a single

searcher relies on the following property of the binomial distribution:

Lemma 2 If N − n > M − m > 0, ∃ x̄ ∈ (0, 1) such that P (x,N, M) − P (x, n,m)

satisfies single crossing, negative for x < x̄ and positive for x > x̄.

Note that the continuation probability for the single searcher is F (x) ≡ P (x, 1, 1).

The lemma is stated in a more general form because we use it again when we consider

the implication for expected search duration of increasing committee size holding the

plurality fraction constant.8

are pivotal and thus imposes a cost on them.
8Lemma 2 is related to a classic problem in probability theory. In 1693, the essayist Samuel Pepys

asked Isaac Newton which of the following was most likely: (i) at least one “6” in 6 rolls of a fair die,
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Proposition 3 If M < N , then committees conclude search more quickly than indi-

viduals for sufficiently low and sufficiently high rates of patience.

Formally, we show in the Appendix that there exists 0 < δL ≤ δH < 1 such that

expected search duration is lower for the committee whenever δ /∈ (δL, δH). When

δL = δH , expected search duration is always lower for a committee.

To understand why committees conclude search faster for extreme rates of patience

(and also why the comparison may be reversed for medium rates of patience), note

that expected search duration depends on both the acceptance threshold (the thresh-

old effect) and the probability of stopping given any acceptance threshold (the vote

aggregation effect). Since committee members are less picky, the threshold effect al-

ways pushes committees toward concluding search faster. Thus, committees can only

search longer if the vote aggregation effect is dominant and has the opposite sign of

the threshold effect.

For low x, when M < N, Lemma 2 implies P (x,N,M) < F (x). This means that

whenever the committee and single-searcher acceptance thresholds are low enough, the

vote aggregation effect reinforces the threshold effect, and the committee expects to

conclude search faster. Low δ implies low acceptance thresholds, which implies that

committees conclude search faster on average for low enough δ. This is illustrated

in Figure 2. Above, we interpret low δ as impatience. Alternatively, since ours is a

discrete-time model that does not specify the length of a period, we could interpret

low δ as a situation in which there is a long interval between the arrival of options.

If δ is high, we cannot make the same argument. In fact, for high enough acceptance

thresholds, the vote aggregation effect must have the opposite sign from the threshold

effect (as long as M > 1). So the question becomes: which effect dominates? As δ → 1,

the single-agent threshold goes to 1; thus, the probability of continuing goes to 1. As

long as M < N, the committee threshold is bounded away from 1 as δ → 1 because

as a weighted average of the truncated means, Ω < 1. This in turn implies that the

committee’s probability of continuing is bounded away from 1. Thus, for sufficiently

(ii) at least two “6’s” in 12 rolls of a fair die, or (iii) at least three “6’s” in 18 rolls of a fair die. In
our notation, if X is uniform on [0, 1], the question is how P (x,N, αN) is ordered for x = α = 1/6
and N = 6, 12, 18. As discussed in [18], the answer that Newton gave was correct, but his explanation
only applies when the die is fair. More generally, it is interesting to know how P (x,N, αN) is ordered
for all values of x, N and α. Lemma 2 addresses this question.
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high δ, the threshold effect must dominate the vote aggregation effect. High δ can

be interpreted either as patience or a situation in which options arrive quickly. For

intermediate values of δ, the vote aggregation effect can be of the opposite sign and

dominant as in Example 1. However, this intermediate range need not exist. For

example, if N = 2 and M = 1 and values are distributed uniformly on [0, 1], then the

committee has a lower expected search duration than a single agent for all discount

rates.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Acceptance Thresholds Probability of Stopping

δ δ

Figure 2: We compare the optimal single-agent solution to the committee equilibrium
with (N, M) = (5, 4) and X uniform on [0, 1]. In the graph on the left, we compare
the single-agent acceptance threshold, x̃ (dashed line) to the committee threshold x∗

(solid line). On the right, we compare the probability of stopping for a single agent,
1−F (x̃) (dashed line) to the probability of stopping for the committee, 1−P (x∗, 5, 4)
(solid line).

3.3 Committees are More Conservative

In this subsection, we show that committee members are more conservative than they

would be were they single searchers. By more conservative we mean that a committee

member may reduce his or her acceptance threshold in response to a mean preserving

spread in the distribution of rewards, F. Equivalently, since the acceptance thresh-

old gives each committee member’s expected welfare, an increase in risk may make

committee members worse off. In the single-agent search problem, however, mean pre-

serving spreads in F are always good news, increasing continuation values and raising
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acceptance thresholds. To see that a mean preserving spread can reduce the acceptance

threshold for a committee member, consider the case in which X is uniform on [x, x].

Let δ = 0.65 and M = N = 2. If [x, x] = [1, 3] then x∗ ≈ 1.25, while if [x, x] = [0.5, 3.5]

then x∗ ≈ 1.22.

The increase in the single searcher’s acceptance threshold follows from considering

the individual’s value function ν which solves the recursion ν(x) = max{x, δE[ν(X)]}.
Since ν is the max of a constant and a linear function, ν is convex. As is well known,

mean preserving spreads increase the expectation of a convex function, so that E[ν(X)]

increases in mean preserving spreads. In turn, the acceptance threshold for single

searchers (where x̃ = δE[ν(X)]) must rise in mean preserving spreads.

I: II:

III: IV:

M = 1

z

v(x, y) = 2δV v(x, y) = x + y

v(x, y) = x + y

z

v(x, y) = x + y

I: II:

III: IV:

M = 2

z

v(x, y) = 2δV v(x, y) = 2δV

v(x, y) = x + y

z

v(x, y) = 2δV

Figure 3: Joint value function. We show v(x, y) in each region, given symmetric
threshold z and continuation value V .

Why does this simple logic not carry over to the committee problem? To provide

insight, let N = 2 and consider an analogous value function approach to the committee

problem. Let v(x, y) be the sum of the two committee members’ payoffs given that

they both set threshold z and draw values (x, y). Our continuation value function is

related to v(x, y) as follows:

V (z, ·) =
1

2

∫ ∫
v(x, y)f(x)f(y)dxdy, (1)

where v(x, y) = x + y when the committee stops searching and 2δV (z, ·) otherwise. In

Figure 3, we consider the function v. Any symmetric threshold z divides the unit square
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into four regions. If M = 1, then (x, y) < (z, z) is the continuation region in which

v(x, y) = 2δV (z, ·), while v(x, y) = x+y elsewhere. When M = 2, then v(x, y) = x+y

on the stopping region (x, y) ≥ (z, z), and v(x, y) = 2δV (z, ·) elsewhere.

Negative externalities obtain in Regions I and IV. For example, when M = 1, in

Region I, member 2 forces a conclusion to the search problem despite a relatively low

draw by member 1. When M = 2, it is member 1 who imposes a negative externality

on member 2 in Region I, forcing a continuation of search even though member 2 has

drawn a high value.

Now consider how changes in F affect the continuation value and the threshold x∗

by examining equation (1). As in the single-agent problem, continuation values and

acceptance thresholds must be increasing in first order stochastic dominance changes

in F since v is increasing in both x and y. What about mean preserving spreads in

F? If v were convex in x and y, then we would get monotonicity in mean preserving

spreads in F , as in the single-agent problem. However, it turns out that v is not convex

in x and y.

To see the non-convexities, fix M = 1 and again consider Figure 3. Take any

three pairs (x, y), (x′, y′), (x′′, y′′) and any λ ∈ (0, 1) such that (x, y) = λ(x′, y′) + (1−
λ)(x′′, y′′), x′ < x < z < x′′, and y′′ < y < z < y′, i.e. (x, y) in Region III, (x′, y′) in

Region I and (x′′, y′′) in Region IV. Then v(x, y) = 2δV = 2z (in equilibrium) and

λv(x′, y′) + (1− λ)v(x′′, y′′) = λ(x′, y′) + (1− λ)(x′′, y′′) = x + y.

Finally, 2z > x + y since z exceeds x and y individually. Thus, when M = 1, v is not

everywhere convex in (x, y). To see that v is not convex in (x, y) when M = 2, choose

pairs such that (x′, y′) is in Region I, (x′′, y′′) is in Region IV, and (x, y) is in Region

II. Then v(x′, y′) = v(x′′, y′′) = 2z < v(x, y) = x + y.

While v is not convex in (x, y), given our independence assumption we could still

prove monotonicity in mean preserving spreads in F if v(x, y) were convex in one

variable holding the other fixed (bi-convex). However, this weaker convexity condition

is also not met. We show this in Figure 4, in which we graph v(x, y) for M = 1 and

y < z (left) and v(x, y) for M = 2 and y > z (right). These non-convexities have an

intuitive externality interpretation. For example, consider the M = 1, y < z case. At

14
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Figure 4: v is not bi-convex. We graph v(x, y) as a function of x holding y fixed. In
the graph on the left: M = 1 and y < z, while on the right: M = 2 and y > z.

the boundary x = z, agent 1 is just indifferent between continuing and stopping, while

agent 2 strictly prefers continuing (y < z). Thus, agent 1 confers a negative externality

on agent 2, and the joint payoff jumps down discontinuously. Similarly, when M = 2

and y > z, agent 2 strictly prefers to stop, so that agent 1 confers a negative externality

on agent 2 by forcing continuation when x < z, and the joint payoff discontinuously

jumps upward at x = z.

4 Effects of Committee Size and the Plurality Rule

In this section, we investigate the effects of committee size (N) and the plurality

rule (M) on the equilibrium acceptance threshold and on expected search duration.

Since, as we noted in Section 2, the equilibrium acceptance threshold is proportional

to the expected payoff for each committee member, our results have both positive and

normative implications.

4.1 Committee Size

We first examine the effects of changes in committee size. We do this holding the

fraction of votes required to stop, α = M/N , constant, recognizing that the committee

problem is only defined when αN is an integer. This assumption means that as we

increase committee size, we are proportionally increasing the number of votes required

to stop. An increase in committee size, holding α constant, decreases the acceptance

threshold; i.e., individual committee members have lower expected payoffs. When
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it comes to expected search duration, there is again both a threshold effect and a

vote aggregation effect. The threshold effect unambiguously acts to decrease expected

search duration as the size of the committee grows, while the vote aggregation effect

reinforces the threshold effect at low values of x (equivalently, for low values of δ) but

counteracts it at higher values of x. The pattern exhibited by the vote aggregation

effect follows from Lemma 2. Our final result on the effects of a change in committee

size is that, when unanimity is required to stop, increasing the size of the committee

causes expected search duration to rise. We summarize the above discussion in the

following Proposition.

Proposition 4 If M = αN , then x∗ falls in N . If α < 1, there exists a δL > 0 such

that expected search duration falls in N for δ < δL. If α = 1, expected search duration

rises in N.

The result with respect to x∗ presented in Propostion 4 is related to our result that

committees are less picky. In a sense, the latter is more general than the result with

respect to x∗ in Proposition 4 in that it compares the single searcher (a committee

with M and N equal to 1) to committees with any values for M and N, i.e., it does

not require α = M/N constant.

The intuition for why x∗ falls when N increases holding M/N fixed is the same as

that underlying Proposition 2; namely, additional committee members imply additional

externalities. The method of proof, however, is more involved. The idea behind our

proof of Proposition 2 was simple – the single searcher can always mimic committee

behavior. Since the single searcher can in fact do better than that, he or she must

achieve a higher payoff; equivalently, x̃ > x∗. That logic cannot be carried over to our

proof of Proposition 4. Suppose we compare a situation in which at least one vote out

of two is required to stop to a situation in which at least two votes out of four are

required. In order to mimic the behavior of the larger committee, the two members

of the smaller committee would have to coordinate their behavior. Thus, we have to

examine directly how V (x∗, N, αN, δ) = S(x∗, N, αN, δ)Ω(x∗, N, αN) varies with N.

The key step, which is nontrivial, is to show that Ω(x∗, N, αN) falls in N. That is, as

the size of the committee increases while holding the plurality fraction constant, the

expected payoff per committee member conditional on stopping falls. The details are

given in the appendix.
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By Lemma 2, the probability of continuing exhibits a single crossing as N increases

holding M/N constant. Thus, as in Proposition 3, the result for expected duration

involves a comparison of two opposing effects – the vote threshold effect and the ag-

gregation effect. For low δ, these reinforce each other so that expected duration falls as

N increases. For high δ, however, the two effects are opposed and the resulting effect

on expected duration is unclear.

4.2 Plurality Rule

In this subsection, we consider how the acceptance threshold, x∗, and expected search

duration vary with the number of votes required to stop, M, holding committee size,

N, constant. We first show that expected search duration is increasing in M. Second,

we show that starting with low values of M , the acceptance threshold increases as M

increases. However, if at some point an increase in M leads to a decrease in the accep-

tance threshold, then further increases in M also cause the acceptance threshold to fall.

In short, the acceptance threshold is either everywhere increasing in M or is hump-

shaped in M . Since, as we showed above, the acceptance threshold is proportional to

the expected payoff for committee members, our results for x∗ have implications for

the optimal plurality rule. We explore these in Proposition 6 below. First, however, we

summarize the effects of an increase in M on the acceptance threshold and expected

search duration, holding N fixed.

Proposition 5 Expected search duration is increasing in M . There exists a k ∈ (0, N ]

such that x∗ is increasing in M when M < k, while x∗ decreases in M when M > k.

The fact that increasing M raises expected search duration is not as obvious as

it might appear at first glance. Of course, increasing M would necessarily increase

expected search duration were x∗ held fixed. However, particularly for high values of

M, the acceptance threshold can fall as the plurality requirement increases. That is, we

need to show that the vote aggregation effect, which is positive for all M, necessarily

overwhelms the threshold effect when the two are opposed.

The intuition for the potentially non-monotonic effect of M on the acceptance

threshold has to do with the two externalities in the search-by-committee problem

that were discussed in Section 3. Changing a parameter of the problem – in this case
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the plurality rule – can alleviate one of these externalities at the cost of exacerbating

the other. When M is low, the important externality is that relatively many committee

members (as many as N−M) may be forced to stop when they would prefer to continue.

The other externality – that relatively few committee members (fewer than M) may be

forced to continue when they would prefer to stop – is less important. When M is high,

the relative importance of these two effects is reversed. Increasing M reduces the effect

of the first externality (the one that is especially costly when M is low) and increases

the effect of the second externality (the one that is relatively unimportant when M is

low). Thus, when M is low, an increase in the plurality rule makes committee members

better off; equivalently, increases x∗. When M is high, the effect of an increase in the

plurality rule on the second externality may become more important, i.e., x∗ can fall.

The Optimal Plurality Rule

Since the acceptance threshold varies in a systematic way with the plurality rule, and

since the expected payoff for committee members is proportional to x∗, we can set

M to maximize the committee members’ expected payoffs. We show that the welfare-

maximizing choice of M increases with δ and that unanimity is optimal for high enough

(but bounded) δ.9

Proposition 6 The welfare-maximizing plurality rule, M , is weakly rising in the dis-

count rate, δ. Given sufficient patience, unanimity is welfare maximizing.

As above, we can gain some intuition by considering an externality interpretation.

The relative costs of the two external effects (forcing your fellow committee members

to stop when they would prefer to continue; forcing them to continue when they would

prefer to stop) vary with the discount rate. When δ is low, the cost of being forced

to stop on a low draw is low relative to the cost of being forced to continue on a high

draw, so the optimal M is low. When committee members are patient, i.e., when δ is

high, these relative costs are reversed. The optimal M is thus increasing in δ. If δ is

high enough, the cost of being forced to continue on a high draw is low enough relative

to the cost of being forced to stop on a low draw that the optimal plurality rule is

unanimity. We have illustrated Propositions 5 and 6 in Figure 5.

9A similar result for the special case in which X is uniform on [−1, 1] is proven in the Compte and
Jehiel paper.
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M δ = 0.5 δ = 0.7 δ = 0.9 δ = 0.99
1 0.250004 0.350079 0.450767 0.496838
2 0.250038 0.350695 0.455635 0.507872
3 0.249935 0.351811 0.467617 0.539919
4 0.247398 0.347614 0.474651 0.591816
5 0.234549 0.325010 0.450359 0.607018
6 0.201928 0.276230 0.388368 0.552019
7 0.144056 0.198564 0.290138 0.445081

Figure 5: This table lists x∗ for X uniform on [0, 1] and N = 7 for different values of
M and δ. In every column we highlight the highest value of x∗ for the given δ.

We can compare our results on the optimal plurality rule to the extensive literature

on voting with common values and private information, which began with Condorcet

([8]). To fix ideas, assume there are two choices, {c1, c2}, and two states of the world,

{ω1, ω2}. Everyone agrees that choice ci is optimal in state ωi, but everyone has private

information about the state of the world (think of a jury that would like to convict iff

the defendant is guilty). In this context, Condorcet argued that for a “large population”

(formally as N → ∞), majority rule yields the correct choice with probability 1 (the

Condorcet Jury Theorem), although he assumed sincere voting. Austen-Smith and

Banks ([2]) proved the Condorcet Jury Theorem for strategic voting, i.e., assuming that

pivotal voters correctly process the information contained in being pivotal. Feddersen

and Pesendorfer ([10]) showed that unanimity is the uniquely suboptimal rule. That

is, requiring any plurality fraction α < 1 results in the correct action with probability

arbitrarily close to 1 for high enough N , while if unanimity is required, the probability

of a correct choice does not converge to 1.

Clearly, we have a very different model, one with private values and search exter-

nalities, while in the information aggregation literature, values are common and sub-

optimal decisions result from information externalities. Thus, we do not want to push

the comparison too far. To the extent that the information aggregation literature’s

main message has been that requiring unanimity is (uniquely) suboptimal, we offer a

contrasting message; namely, with search externalities, unanimity can be optimal.
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5 Conclusion

In this paper, we analyze a new type of search problem, search by committee, in which

the decision to stop or to continue searching is made by a group of agents. First, we

show that the problem is well posed in that a symmetric stationary equilibrium exists

and is unique given a log concavity assumption on the distribution of payoffs. We then

show that agents in a committee are less picky than they would be were they searching

on their own; that is, they set a lower acceptance threshold. This does not necessarily

imply a lower expected search duration. We find that the expected search duration

of a committee versus that of a single agent varies with the discount rate in a non-

monotonic way. We also show that committee members are more conservative than a

single-agent searcher in the sense that a mean preserving spread in the distribution of

returns may make them worse off.

We then examine the effects of varying committee size and the plurality rule. We

show that increasing the size of the committee holding the plurality fraction M/N

constant decreases the acceptance threshold; equivalently the expected payoff per com-

mittee member falls. Assuming M < N, expected search duration is shorter for larger

committees if the committee members are sufficiently impatient, but when unanimity

is required, expected search duration increases with N . We also show that, holding N

constant, expected search duration is increasing in M and that the acceptance threshold

is either increasing in M or “hump shaped” in M. Finally, we find that the welfare-

maximizing plurality rule M increases with the discount rate and that unanimity is

optimal for sufficiently high (but bounded) discount rates.

The single-agent sequential search problem has been extended in many directions.

One could do the same in the search-by-committee problem. We leave these exten-

sions for later research since our aim here is to introduce and analyze the search-by-

committee model in its most basic form.

Appendix: Proofs

Lemma 1 The stopping value Ω(x,N, M) is a weighted average of the truncated means

µh and µ` and 0 ≤ Ωx(x,N, M) ≤ 1

Step 1: Ω as a weighted average of (µh, µ`).
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Ω(x,N, M) ≡
N∑

i=M

p(x,N, i)

1− P (x,N, M)

[
i

N
µh(x) +

N − i

N
µ`(x)

]

≡ w(x)µh(x) + (1− w(x))µ`(x),

where

w(x) =
N∑

i=M

i p(x, N, i)

N(1− P (x,N, M))
≡

N∑
i=M

(
i

N

)
wi(x)

Step 2: w′(x) < 0.

Note that w(x) is the wi(x)-weighted average of the function i/N, which is increasing

in i. Thus, if we can show that increasing x causes a first-order stochastic decrease

in the weights wi(x), we are done. As is well known, the monotone likelihood ratio

property implies first-order stochastic dominance. That is, if wi(x)/wj(x) increases in

x for all i < j, then w′(x) < 0.

wi(x)

wj(x)
=

(
N
i

)
(

N
j

)F (x)j−i(1− F (x))i−j ⇒

∂(wi(x)/wj(x))

∂x
= (j − i)f(x)

(
N
i

)
(

N
j

)F (x)j−i−1(1− F (x))i−j−1 > 0 ∀ i < j

Step 3: Log-Concavity Completes the proof that Ωx(x,N,M) ≤ 1.

Ωx(x, N,M) = w(x)µ′h(x) + (1− w(x))µ′`(x) + w′(x)(µh(x)− µ`(x))

≤ w(x)µ′h(x) + (1− w(x))µ′`(x) (by w′(x) ≤ 0 and µh > µ`)

≤ 1 (by Log Concavity).

Proposition 1 A symmetric stationary Markov equilibrium exists and is unique.

Step 1: Existence.

We have V (x, ·) continuous in x, δV (0, ·) = δ
∫

xf(x)dx > 0, and δV (1, ·) = 0.
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Step 2: Single Crossing ⇒ Uniqueness.

Given δV (0, ·) > 0 and continuity of V (x, ·) in x, if there are multiple equilibria,

δVx(x
∗, ·) ≥ 1 for at least one of them. Suppose that δVx(x,N, M, δ) ≥ 1 and note that

Vδ(x, ·) =
P (x, ·)V (x, ·)
1− δP (x, ·) .

Then

Vδx(x, ·) =
P (x, ·)Vx(x, ·)
1− δP (x, ·) +

V (x, ·)Px(x, ·)
(1− δP (x, ·))2

≥ 0,

where the inequality follows from the assumption that Vx ≥ 1 and the fact that the

continuation probability is increasing in x (i.e. Px ≥ 0). Thus, Vx is maximized at

δ = 1, but since δVx(x,N, M, 1) = δΩx(x,N,M) < 1 (by Lemma 1) and δ ∈ (0, 1), we

have a contradiction. Thus, δVx(x
∗, ·) < 1 and there cannot be multiple equilibria. ¤

Proposition 2 (Less Picky) Committee members are less picky than a single searcher.

Proof: The single searcher can achieve at least as high an expected payoff as a

committee member by mimicking the committee behavior. That is, assume a symmetric

committee threshold x∗ and let the single searcher commit to the following strategy:

1. Generate N − 1 draws from a standard uniform distribution.

2. Stop whenever M or more of these draws exceed 1− F (x∗).

3. Continue if fewer than M − 1 of these draws exceed 1− F (x∗).

4. Employ threshold x∗ otherwise.

The single searcher, however, can do better. For example, suppose the single searcher

draws x < x∗ and that M of the N − 1 draws exceed 1 − F (x∗). The single searcher

can increase his or her expected payoff by continuing. The expected payoff for a single

searcher thus exceeds the expected payoff for a committee member: x̃ > x∗. ¤

Lemma 2 If N − n > M − m > 0, ∃ x̄ ∈ (0, 1) such that P (x,N, M) − P (x, n,m)

satisfies single crossing, negative for x < x̄ and positive for x > x̄.
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Step 1: Likelihood Ratio Simplification.

We use the relationship between the binomial and beta cdfs (see, e.g., [7, p. 82]),

namely,

P (x,N, M) =
N !

(N −M + 1)!M !

∫ F (x)

0

tN−M−1(1− t)Mdt

⇒ Px(x,N, M) = f(x)
N !

(N −M + 1)!M !
F (x)N−M−1(1− F (x))M .

Thus, the ratio Px(x,N, M)/Px(x, n, m) is proportional to

h(F ) ≡ F (x)(N−n)−(M−m)(1− F (x))M−m.

Note that h(0) = h(1) = 0 and that h(F ) has a unique maximum in (0, 1) at

F = ((N − n)− (M −m))/(N − n).

Step 2: The Single Crossing Result.

lim
F→0

h(F ) = 0 and P (0, ·) = 0.

By the continuity of h(F ), this implies that for x close to 0 (F close to 0), P (x,N, M) <

P (x, n,m). Similarly,

lim
F→1

h(F ) = 0 and P (1, ·) = 1 ⇒ P (x,N, M) > P (x, n, m) for x near 1.

Thus, by continuity, P (x,N, M) = P (x, n, m) for at least one x ∈ (0, 1), and if

P (x,N, M) and P (x, n, m) cross more than once in (0, 1), they must cross at least

3 times. Call these three crossing points 0 < F1 < F2 < F3 < 1. By the endpoint

conditions, we must have h(F1) > 1, h(F2) < 1, and h(F3) > 1. But h is continuous

and unimodal when N − n > M −m > 0, a contradiction. ¤

Proposition 3 If M < N , then committees conclude search more quickly than indi-

viduals for sufficiently low and sufficiently high rates of patience.

Step 1: If M = 1, committees conclude search more quickly ∀δ ∈ (0, 1).
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Trivially, P (x,N, 1) < F (x) = P (x, 1, 1) for each x ∈ (0, 1). Denote the sin-

gle agent acceptance threshold by x̃(δ). By Proposition 2, x∗(N, 1, δ) < x̃(δ), so

P (x∗(N, 1, δ), N, 1) < F (x̃(δ)).

Step 2: When N > M ≥ 2, Committees search more quickly for low δ.

Given N > M ≥ 2, ∃ x̄ ∈ (0, 1) s.t. P (x,N, M) < F (x) ∀x < x̄ by Lemma 2. Since

x̃(δ) is strictly increasing in δ, x̃(0) = 0, and limδ→1 x̃(δ) = 1, we can define δL by

x̃(δL) = x̄. Thus, for all δ < δL

x̃(δ) < x̄ ⇒ P (x̃(δ), N, M) < F (x̃(δ)) (by Lemma 1)

⇒ P (x∗(N,M, δ), N, M) < F (x̃(δ)) (by Proposition 2).

Step 3: Committees conclude search more quickly for high δ.

If M < N , then Ω(x,N, M) < 1 for all x. Thus, x∗(N, M, δ) < 1 for all δ. This

implies

lim
δ→1

P (x∗(N, M, δ), N,M) < 1 = lim
δ→1

F (x̃(δ)),

Since P (x∗(N, M, δ), N,M) and F (x̃(δ)) are continuous in δ, ∃ δH < 1 such that

P (x∗(N, M, δ), N,M) < F (x̃(δ)) ∀ δ > δH . ¤

Proposition 4 If M = αN , then x∗ falls in N . If α < 1, there exists a δL > 0 such

that expected search duration falls in N for δ < δL. If α = 1, expected search duration

rises in N.

Proof Preliminaries: While our committee problem is only defined for non

negative integer values of M and N such that M ≤ N , we can use the equivalence

between the binomial and beta cdfs to write all our functions as continuous functions

of N and M . Note that since we have set M = αN in this proposition, the partial

derivatives that we discuss, VN(x∗, N, αN, δ), SN(x∗, N, αN, δ), and ΩN(x∗, N, αN, δ),

are calculated taking into account the dependence of M on N, i.e., we take the partial

derivative of the function with respect to N plus α times the partial derivative with

respect to M.

Step 1: ΩN(x,N, αN) ≤ 0.

24



Recall from Lemma 1, that Ω(x,N, αN) = w(x)µh(x) + (1−w(x))µ`(x). Thus, we

wish to show that w(x) is decreasing in N when M = αN . Let q ≡ 1− F (x).

w(q) =

[
N∑

i=M

i

N

(
N

i

)
qi(1− q)N−i

]
/

[
N∑

i=M

(
N

i

)
qi(1− q)N−i

]

=

[
N∑

i=M

(
N − 1

i− 1

)(
q

1− q

)i
]

/

[
N∑

i=M

(
N

i

)(
q

1− q

)i
]

=
q

1− q

[
N−1∑

i=M−1

(
N − 1

i

)(
q

1− q

)i
]

/

[
N∑

i=M

(
N

i

)(
q

1− q

)i
]

=
M

N

G(1,M −N,M,−q/(1− q))

G(1, M −N, M + 1,−q/(1− q))
.

The final equality follows from the identity

N∑
i=M

(
N

i

)
(−z)i = (−z)M N !

(N −M)!M !
G(1,M −N, M + 1, z),

where G is Gauss’ hypergeometric function, satisfying10

G(1, b, c, z) =
∞∑

k=0

(b)k

(c)k

zk with (b)k =
(b + k − 1)!

(b− 1)!
and (c)k =

(c + k − 1)!

(c− 1)!
.

Let z = −q/(1 − q) < 0 and recall that M = αN . Then we complete the proof by

showing: G(1, (α− 1)N, αN, z)/G(1, (α− 1)N, αN + 1, z) falls in N .11

The hypergeometric series G satisfies the identity:

(z − 1)G(1, b, c, z) +

(
b− c

c

)
zG(1, b, c + 1, z) + 1 = 0,

or in our notation

(z − 1)G(1, (α− 1)N, αN, z)− (
1

α
)zG(1, (α− 1)N, αN + 1, z) + 1 = 0

10There are many references for hypergeometric functions, e.g., [9] and [1].
11The proof that this ratio is falling in N was provided by Frits Beukers, Mathematics

faculty, Utrecht University.
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⇒ α(1− z)
G(1, (α− 1)N,αN, z)

G(1, (α− 1)N, αN + 1, z)
= −z + αG(1, (α− 1)N, αN + 1, z)−1.

Note that the LHS of the previous equality equals (1− z)w(q). We can show that the

RHS of the equality is decreasing in N by showing that G(1, (α − 1)N,αN + 1, z) is

increasing in N . We do this by using the Euler integral:

G(1, (α−1)N,αN+1, z) = αN

∫ 1

0

(1−s)αN−1(1−zs)(1−α)Nds =

∫ 1

0

(1−z(1−y1/αN))(1−α)Ndy

where the second equality follows from change of variable y = (1−s)αN . Simplification

yields

w(q) = q + α(1− q)

[∫ 1

0

(1 +
q

1− q
(1− y1/αN))(1−α)Ndy

]−1

.

Differentiating the integrand in w(q) gives

∂[(1 + ( q
1−q

)(1− y1/αN))(1−α)N ]

∂N

=
(1− α)h(N, y)(1−α)N−1

αN

(
αN h(N, y) log(h(N, y)) + (

q

1− q
)y1/αN log[y]

)
> 0,

where h(N, y) = 1 + ( q
1−q

)(1 − y1/αN) ≥ 1 given αN > 0, q ≥ 0, and y ∈ [0, 1]. Thus,

w(q) decreases in N and so ΩN(x,N, αN) < 0.

Step 2: x∗ falls in N .

Using the equilibrium condition, x∗ = δV (x∗, N, αN, δ) = δS(x∗, N, αN, δ)Ω(x∗, N, αN),

we get the following comparative static:

∂x∗

∂N
=

δVN(x∗, ·)
1− δSx(x∗, ·)Ω(x∗, ·)− δS(x∗, ·)Ωx(x∗, ·) (2)

The denominator is positive as Sx < 0 and 1− SΩx > 0 (by Lemma 1), and so x∗ falls

in N if VN(x∗, ·) < 0.

We now show that VN(x∗, ·) < 0. Consider first

Vδ(x, ·) =
(1− P (x, ·))P (x, ·)

(1− δP (x, ·))2
Ω(x, ·) =

P (x, ·)
(1− δP (x, ·))V (x, ·).
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This implies

VNδ(x, ·) = VδN(x, ·) =
P (x, ·)

(1− δP (x, ·))VN(x, ·) +

[
P (x, ·)

(1− δP (x, ·))
]2

V (x, ·).

Thus, VN(x, ·) ≥ 0 implies VNδ(x, ·) > 0, and we have

VN(x,N, αN, δ) ≥ 0 ⇒ VN(x,N, αN, 1) > 0 ∀δ < 1.

This is equivalent to

VN(x,N, αN, 1) ≤ 0 ⇒ VN(x,N, αN, δ) < 0 ∀δ < 1.

Finally, since S(x,N, αN, 1) = 1 and SN(x,N, αN, 1) = 0, we have

VN(x,N, αN, 1) = ΩN(x,N, αN) ≤ 0 (by step 1).

Since δ ∈ (0, 1), x∗ must fall with N.

Step 3: ∃δL > 0 such that Search duration falls in N for δ < δL.

By Lemma 2, P satisfies single crossing in x. Let x̄ be the threshold defined in

Lemma 2. That is, for all x < x̄, we have P (x,N, αN) < P (x, n, αn) when N > n.

Since x∗(n, αn, δ) is continuous in δ and limδ→0 x∗(n, αn, δ) = 0, there exists a δL > 0

such that x∗(n, αn, δ) < x̄ for all δ < δL. From Step 2, we have that x∗(N, αN, δ) <

x∗(n, αn, δ). Therefore, P (x∗(N, αN, δ), N, αN) < P (x∗(n, αn, δ), n, αn) for all δ <

δL.

Step 4: Search duration rises in N when α = 1.

When α = 1, Ω(x,N,N) = µh(x) is constant in N . Further our equilibrium

condition is x∗ = δS(x∗, ·)Ω(x∗, ·), and so when α = 1, x∗ and S(x∗, ·) must move in

the same direction in N . By Step 2, x∗ falls in N , and so S(x∗, ·) must fall as well.

Since S is inversely related to P , and search duration is given by (1−P (x∗, N, αN))−1,

search duration must rise in N . ¤

Proposition 5 Expected search duration is increasing in M . There exists a k ∈ (0, N ]

such that x∗ is increasing in M when M < k, while x∗ decreases in M when M > k.
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Step 1: Search Duration Rises in M .

Assume M < M ′ and x∗(N,M, δ) < x∗(N, M ′, δ). Since the probability of contin-

uing, P, increases in x and M : P (x∗(N, M, δ), N,M) < P (x∗(N, M ′, δ), N, M ′).

Assume instead x∗(N, M ′, δ) < x∗(N, M, δ). Expected search duration is inversely

related to S, so we must show that S(x∗(N, M, δ), N, M, δ) falls in M . Define x′ = x∗(N,M ′, δ)

and x = x∗(N, M, δ), and abuse notation by suppressing arguments N and δ, then

S(x,M)Ω(x,M)− S(x′,M ′)Ω(x′,M ′) = x− x′

⇔ S(x,M)Ω(x,M)− S(x′,M ′)Ω(x′,M ′) + S(x′,M ′)Ω(x,M)− S(x′,M ′)Ω(x,M) = x− x′

⇔ [S(x,M)− S(x′,M ′)] Ω(x,M) + S(x′,M ′) [Ω(x,M)− Ω(x′,M ′)] = x− x′

⇔ [S(x,M)− S(x′,M ′)] Ω(x,M) = x− x′ + S(x′,M ′) [Ω(x′,M ′)− Ω(x,M)] .

We wish to show that S(x,M) > S(x′,M ′), i.e. that the left hand side is positive.

Since the expected payoff conditional on stopping, Ω, is increasing in M (see the proof

of Lemma 1, Step 1), the right hand side weakly exceeds:

x− x′ + S(x′,M ′) [Ω(x′,M)− Ω(x,M)] ≥ x− x′ + [Ω(x′,M)− Ω(x,M)]

= x− x′ −
∫ x

x′
Ωx(y, M)dy > 0,

which gives the desired result. ¤

Step 2: ∃k ∈ (0, N ] such that for all M < k, x∗(M + 1) > x∗(M), while for

all M > k, x∗(M + 1) < x∗(M).

Henceforth we abuse notation and let x∗(M) = x∗(N,M, δ).

Step 2-A: A Useful Single Crossing Property.

Define φ(x,M) ≡ P (x, ·)x + (1 − P (x, ·))Ω(x, ·). Since, x∗ = δV (x∗, ·), we have

V (x∗(M), N,M, δ) = φ(x∗(M),M). As with δV (x, ·)−x, Ωx ≤ 1 implies that δφ(x,M)−
x satisfies single crossing, positive for x < x∗(M) and negative otherwise. In turn this

implies:

x∗(M + 1) < x∗(M) ⇔ φ(x∗(M),M + 1) < φ(x∗(M),M).
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Routine algebra establishes that:

φ(x,M + 1, ·)− φ(x,M, ·) = p(x,N, M) [x− ψ(x,M)] ,

where ψ(x,M) ≡ M
N

µh(x) + (1 − M
N

)µ`(x), i.e. the expected payoff when exactly M

members vote to stop with threshold x.12 Altogether we may conclude:

x∗(M + 1) < x∗(M) ⇔ x∗(M) < ψ(x∗(M),M)

x∗(M + 1) > x∗(M) ⇔ x∗(M) > ψ(x∗(M),M)
(3)

Step 2-B: x∗(1) > x∗(0).

When M = 0: P = 0 and Ω = E[X], and we have:

0 < δE[X] = x∗(0) > µ`(x
∗(0)) = ψ(x∗(0), 0).

Thus, x∗(1) > x∗(0) by condition (3).

Step 2-C: x∗(M + 1) ≤ x∗(M) ⇒ x∗(M + 2) < x∗(M + 1).

x∗(M + 1) ≤ x∗(M) ⇒ x∗(M) ≤ ψ(x∗(M),M) (By condition (3))

⇒ x∗(M + 1) ≤ ψ(x∗(M + 1),M) (By ψx(x,M) ≤ 1)

⇒ x∗(M + 1) < ψ(x∗(M + 1),M + 1) (By ψ ↑ M)

⇒ x∗(M + 2) < x∗(M + 1) (By condition (3)).

Step 2-B asserts that x∗ is initially increasing in M , and Step 2-C asserts that once

x∗ stops increasing in M, it strictly decreases for higher values of M. ¤

Proposition 6 The welfare-maximizing plurality rule, M , is weakly rising in the dis-

count rate, δ. Given sufficient patience, unanimity is welfare maximizing.

12For an intuition: We are comparing the value when requiring M + 1 versus M
votes, fixing the threshold and continuation value at x. The difference in values is
then the probability that exactly M values exceed the threshold, p(x,N, M), times the
difference in value from continuing x and stopping with exactly M values above the
threshold ψ(x,M).
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Step 1: The welfare maximizing M weakly rises in δ.

Suppose not. Let MH < ML be welfare maximizing for δH > δL, and assume ML

does not maximize welfare at δH , i.e. x∗(N, MH , δH) > x∗(N, ML, δH). Since ML is

welfare maximizing for δL, x∗(N, ML, δL) ≥ x∗(N, ML − 1, δL), which implies

x∗(N,ML − 1, δL) ≥ ψ(x∗(N, ML − 1, δL),ML − 1) (by condition (3))

⇒ x∗(N,ML − 1, δH) ≥ ψ(x∗(N, ML − 1, δH),ML − 1) (by ψx(x,M) ≤ 1 and x∗ ↑ δ)

⇒ x∗(N,ML, δH) ≥ x∗(N,ML − 1, δH) (by condition (3))

⇒ x∗(N,ML, δH) ≥ x∗(N,MH , δH) (by Prop. 5 and ML > MH),

which contradicts ML not being welfare maximizing for δH .

Step 2: For sufficiently high δ, x∗(N, N, δ) > x∗(N, M, δ) for all M < N .

Assume M < N . Then Ω(x, N,M) > ψ(x,M) and limδ→1 x∗ = Ω(x∗, ·)

⇒ lim
δ→1

[x∗(N,M, δ)− ψ(x∗(N, M, δ),M)] > 0

⇒ lim
δ→1

x∗(N, N, δ)− x∗(N, M, δ) > 0 (by condition (3))

⇒ ∃δ∗ < 1 s.t. x∗(N,N, δ) > x∗(N,M, δ) ∀ δ > δ∗,

where the last implication follows from the continuity of x∗ in δ and ψ in x. ¤
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